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On a paper by Igbalunnisa
by
M. F. Janowitz (Amherst, Mass.)

Abstract. It is known that if I is a complete lattice which is relatively comple-
mented or (more generally) both section and dual section semicomplemented, then its
congruence lattice is a Stone lattice. Recently, Igbalunnisa has proved this to be true
when L is a complete, weakly modular, section complemented lattice. By weakening
the axioms of weak modularity and section semicomplementation, a class of lattices
is produced that includes all of the above examples, and for which the above result
remains valid. A second class of lattices is then introduced on which a fairly explicit
formula can be given for the pseudocomplement of a congruence relation. This second
class includes all section semicomplemented lattices whose dual is section semicomple-
mented, and the formula for pseudocomplements is a new one for these lattices also.

-1. Introduction. In [3], Theorem 2, p. 316, Iqbalunnisa proves that
if L is a complete, weakly modular, section complemented lattice, then
the lattice of congruence relations of I forms a Stone lattice, thus
generalizing a result of the author ([5], Theorem 4.8, p. 202). On the
other hand, the author has shown ([6], Theorem 4.17, p. 72) that if L is
a complete lattice which is both section semicomplemented and dual
section semicomplemented, then its congruence lattice is a Stone lattice.
Our purpose here is to provide a common generalization of these results.
For convenience, our notation and terminology will follow that of [4].
Also, it will prove useful to let Axiom (X*) denote the dual of Axiom (X)
throughout the paper. ‘

2. The general case. Though all of the above lattices are weakly
modular, it turns out that we can get by with a slightly weaker axiom.
Accordingly, we introduce Axiom (A) in a lattice with 0:

(A) a/0->c/d with ¢ > d implies c/d—a,ja, for suitable elements ay, a,
such that a > a, > a,.

Lewvwva 1. Let L be a lattice with 0. Aziom (A) is equivalent to the
assertion that for every congruence relation @ on L, a = 0(0*) iff the interval
[0, a] contains only trivial congruence classes modulo 6.

Proof. Let Axiom (A) hold. If a =0(0*) and a>b>¢ with
b = ¢(0), then b = ¢(@AO") implies b = c. Suppose on the other hand
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that [0, @] contains only trivial congruence classes modulo 6. Then if
- aj0->bjc with b = ¢(@) and b > ¢, we may apply Axiom (A) to deduce
that bje—ayja, with a > a; > a,. But then o, = a,(O) provides a contra-
diction. By [4], p. 290 we have a = 0(6"). ' .

Suppose now that Axiom (A) fails. There must exist elements a, ¢, d
such that ¢ >d, a/0—c/d but ¢/d->aja, with @ = a, implies a, = a,. If
a=z=y with # = y(0,,;) we must have #=y. On the other hand,
since a/0->¢/d we know that a # 0(@,;").

LemMA 2. If Axiom (A) holds, then every dual distributive element
of L is neutral.

Proof. Let d be dual distributive. Define the congruence relation @
by the rule ¢ = b(0) < and =bAd. Then 2 = 1(0) if and only if 2 > d,
and d > o > b with a¢ = b(0) implies a = b, so by Lemma 1, d = 0(6%).
If a =b(@* then avd =bvd(OAO*) forces avd= bvd. Clearly avd
= bvd implies a = b(6). It follows that [0, d] is the kernel of &%, and
that d is distributive. Evidently avd = bvd, and = bAd together imply
a = b(OAO%), whence a = b. By [1], Theorem 1, p. 28 and [1], Lemma 12,
p. 41, d is neutral.

In a lattice L with 1, we now introduce Axiom (B):

.(B) a >0b implies the existence of an element t such that t = 1(@3,4)
and 1 3£ a.

The significance of Axiom (B) can best be understood by considering
a lattice L with 0 having the property that every congruence relation
on L is the minimal one generated by a distributive ideal. If a > b, we
must then have avi=bvt for some t = 0(6,;). This clearly implies
1t b, so Axiom (B*) holds. As a matter of fact, if the kernel of every
-congruence relation of a lattice L with 0 is a prineipal ideal, then by [4],
Theorem 5.2, p. 295, Axiom (B*) is equivalent to the assertion that every
congruence relation on L is the minimal one generated by a distributive
element. Before proceeding, we consider some examples.l

Exawpre 1. Every bounded section complemented lattice satisfies
Axiom (B). To see this, let @ >b. If ¢ is a complement of b in the interval
[0, a], then ¢ =0(0,,). Letting ¢ denote a complement of ¢ in L, we
have { = 1(60,;) and t 3 a.

) ExampLE 2. Every dual section semicomplemented lattice satisties
Axiom (B). For if & > b, and if ¢ is chosen so that ¢cve =1 and 1 > ¢ > b,
then ¢ =1(0,,) and ¢ ¥ a. -

. EIZIAMPLE 3. Ifet L Dbe a bounded section semicomplemented . lattice
which is dual semicomplemented in the sense that g >0 implies avi=1
for some << 1. Then if a4 > b, choose ¢ so that 0 < ¢ < a and cAb = 0.

Clearly ¢ =0(0,,) and just as clearly if evéi=1 with t< 1, then
t =1(0,,) and 1 3% a. ‘
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Of course Example 1 is a special case of Example 3. As a matter
of fact, the above examples show that the lattices in Example 3 satisfy
both Axioms (B) and (B¥). We now translate our axioms into a condition

involving pseudocomplements of congruence relations.

THEOREM 3. Let L be a bounded lattice. The following conditions are
then equivalent:

(1) For each congruence relation @ on L, a = 0(0%) < a is a lower
bound for {tel; t = 1(0)}.

(2) L satisfies Azioms (A) and (B).

Proof. (1) = (2). Let a>b. Then a # 0(0,,") so there must exist
an element ¢ = 1(@,,) such that 3 a, thus establishing Axiom (B).
To verify (A), note that for any congruence @, if ¢ > b > ¢ with b = ¢(0)
implies b = ¢, then a = 0(6%). For if ¢{ = 1(0), then art = a(0) forces

a=anrt<t It is immediate that a = 0(0%) < [0,a] contains only

trivial congruence classes modulo @, so by Lemma 1, Axiom (A) holds.
(2)=1). I a=0(0% and ¢ =1(6), then ant=a(OrO%) %0 @
= aAnt < t. Suppose on the other hand that & is & lower bound for
{tel; t=1(0)}. If a > b >e¢ with b = ¢(0), then there is an element
t =1(6,,) such that t % b. But t = 1(0y,) =1 =1(6) >t > a>b. This
contradiction, together with Lemma 1, shows that a = 0(8").
This brings us to the theorem that provides a generalization of the

results mentioned in the introduction.

THEOREM 4. Suppose that both L and its dual satisfy Awioms (A) and (B).
If T is complete, then its lattice of congruence relations is a Stone lattice.
Proof. Let ©® be a congruence relation on L. By Theorem 3, the
kernel of @ is [0,2], where 2= A {teL; 1 =1(0)}. If a >b>2 and
a = b(0%) there must exist an element t = 0(8,,) such that ¢ £ b. But

1=0(0,) =t =0(0" =>t<2<b, a contradiction. This a > b > » with

a = b(O%) implies @ = b, 30 by the dual of Lemma 1, z = 1(€**). This

.shows that ©* and O are complements in the lattice of congruence
relations of L.

In the presence of lower continuity we are able to improve Theorem

4 as follows:

THEOREM 5. Let L be a lower continuous lattice satisfying Azioms (A)

and (B). The lattice of congruence relations of L is then a Stone lattice.

Proof. Let ©® be a congruence relation on L. By the dual of [4],

Theorem 2.1, p. 291, {teL; t = 1(6*)} is a principal filter of L. By
Theorem 3, a = 0(60™) < a is a lower bound for this set. Thus if [z, 1]
= {teL; t = 1(6%)} then 2z = 0(@**) and z = 1(6"), thereby completing
the proof.

13 — Fundamenta Mathematicae, T. LXXVIIL
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1t should be mentioned that the above proof shows the theorem to
be valid for any latbice L satisfying (A) and (B), provided that for each
congruence relation @ on L, {tel; 1= 1(6%)} is a principal filter.

3. The incomplete case. In this section we shall generalize [6], Theo-
rem 4.13, p. 71. In connection with this, we shall need the following
strengthened version of Axiom {B) in a lattice L with 1:

(C) a>b implies the ewistence of an element t such that ¥ =1(60,,),
> b, but t 2 a.

This axiom is clearly satisfied by any dual section semicomplemented
lattice. Tt turns out that Axiom (C) is related to standard ideals in much
the same way as Axiom (B) is related to disgtributive ideals. In order to
see this, we consider a lattice I with 0 having the property that every
congruence relation on L i3 the minimal one generated by a standard
ideal. If a > b, we then have a4 =bvi for some ? = 0(0,). Evidently
t<aandt<b so (C*) holds. Suppose'in fact that L is a lattice with 0
having the property that the kernel of every congruence relation on L is
a principal ideal. By [4], Theorem 5.3, p. 296, Axiom (C*) is equivalent
to the assertion that every congruence relation on L is the minimal one
generated by a standard element.

Tn the case of a distributive lattice L with 1, Axiom (C) is easily

seen to be equivalent to I being dual section semicomplemented. It is’

also worth noting that every bounded simple lattice satisties both
Axioms (C) and (C*). In the next theorem we translate Axiom (C) to
a condition involving pseudocomplements of congruence relations. '

THEOREM 6. For a bounded lattice L, the following conditions are
equivalent:

(1) For each congruence relation © on L,

a=b(0"«[0,a] ~ker@=[0,d] nker®.

(2) L is weakly modular and satisfies (C*).

Proof. (1)=(2). Let a>b in L. Then a # b(0,,") so [0,a]n
~ker @, D [0, b] ~ ker 6. Thus there must exist an element ¢ = 0(6,)
sach that ¢ < e but t £ b. This establishes Axiom (C¥).

Tn order to verify weak modularity, we next consider an arbitrary
congruence relation 6 on L. If a = b(0*), the interval [anb, avb] clearly
contains only trivial congruence classes modulo @. Suppose conversely
that [aAb, avb] contains only trivial congruence classes with respect to @.
If te[0,a] ~ker®, we claim that ¢ <b. Otherwise, aAb < (anb)Vi< @
with aAd =(anb)vi(®) produces a contradiction. Thus [0, a] ~ ker @
C{0, b] nker®, and a similar argument produces the reverse inclusion.

Consequently a = b(0*), and by [2], Theorem 4, p. 230, L is weakly
modular. .
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(2) = (1). Suppose now that L 'is weakly modular and satisfies
Axiom (C%). If @ = 5(6*) and if i ¢ [0, a] nker &, then {=1Aa = tAD(O™)
and iAD =1 = 0(@) together show that = tAb < b. By the symmetry
of a and b, we deduce that

(%) [0,a] ~ker @ =[0,b] ~ker®.

Suppose on the other hand that (+) is true. We are to show that @ = b(6%).
It clearly suffices to show that a = anb(0%), and by weak modularity,
this will follow if we can just show that [aAb, a] contains no nontrivial
congruence classes modulo 6. If this were false, we could find =z, y such
that a >z >¥ > aAb with # = y(0). Choosing e so that t <, ¢ <y
and t = 0(@,,), then { =0(0) and I << a implies ¢ < b, 80 t<and<y.
From this contradiction we deduce that a = b(6"), as desired.

TaeorEM 7. Let L be a bounded weakly modular lattice satisfying
Azioms (C) and (C*). Let © be a congruence relation on L and let J be the
kernel of ©F. Then: '

" (1) J is @ central element of L, the completion by cuts of L.

@) a =b(6") [0, alvJ = [0, b]vJ in L.

Proof. (1) The fact that J e L follows from Theorem 3. Let J" denote
the kernel of @**. Our plan of attack will be to show that for arbitrary
Kel,

E= (K nd)VE nJ)= (EvJ) ~ (EVJ").

By [4], Theorem 2.7, p. 299 it will follow that J is central with J* its unique
complement.

To begin with, let a be an upper bound for (K nJ)v (K ndJ’), and
let % ¢ K. Then [0, aAk] ~J’ = [0, k] ~J’ so by Theorem 6, & = ank(60").
Similarly, [0, aAk] nd = [0, k] nJ implies % = ank(6™). We conclude
that k= aAk < a, so that & is an upper bound for K. Thus

K= (En~Jd)V(E~JT).

If K* denotes the set of upper bounds of K, then by the dual of Theo-
rem 3, J* = {t e L; t = 1(0*)} and J” = {t e L; t = 1(6%)}. An argument
dual to the one given above shows that

E* = (E*vJ*) ~ (E*vd'"™)
in the completion by cuts of the dual of L. As in the proof of [7], Lemma 7,
p. 5 we see that K = (KvJ)~(EvJ') in L.
(2) By Theorem 6, a = b(6%) < [0,a] nJ' = [0, b] ~dJ’. Since J is
central with J’ its unique complement in L, this is equivalent to saying
that [0, a]vd = [0, b]Vd.

i3*
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Real maximal round filters in proximity spaces

by
Don A. Mattsen (Mankato, Minn.)

Abstract. Given a proximity space (X, d), where P(X) is the collection of real-
valued proximity functions on (X, §), a maximal round filter is called real whenever the
corresponding maximal p-ideal is real. The maximal p-ideals in P(X) which are
not real are characterized in terms of their corresponding maximal round filters. From
this follow results concerning the realcompletion of (X, §). The realcompletion is dis-
tinguished from the completion of X relative to the total structure associated with &
and from the completion by local clusters.

If (X,4) is a dense (topological) subspace of 7T, conditions are obtained which
characterize when every member of P(X) can be continuously extended to 7. Examples
concerning these results are also provided.

1. Intreduction. Let (X, §) be a proximity space with Smirnov com-
pactification 6X. The points # of §X may then serve as indices which
make explicit the one-one correspondence between the maximal round
filters 5 on (X, 6) and the maximal “p-ideals” I” in the collection P(X)
of real-valued proximity functions on (X, d). A maximal round filter %
is called real if the eorresponding maximal p-ideal I is real. In this paper
we characterize the maximal p-ideals I® which are not real in terms of
maxjmal round filters. It then follows that the realcompletion of (X, 8)
is the completion of the generalized uniform space (X, L), where U is
the weak generalized uniformity determined by P(X). It is also shown
that the realcompletion of (X, d) is not, in general, coincidental with the
completion of X relative to the total structure U, associated with o,
nor with the completion of (X, §) by clusters.

When (X, 8) is a dense (topological) subspace of T, conditions are
obtained which characterize the property that every member of P(X)
can be continuously extended to 7. This supplements the results of [6],
[7] and [8]. An example is provided to show that this property can hold
when X is not C-embedded in 7 and when there is no compatible pro-
Ximity on T for which (X, §) is a p-subspace.

2. Real maximal round filters. We note that the collection P(X) need
not be a group nor a lattice (c¢f. [2], p. 135). The theory of p-ideals (or
p-systems) in P(X) is developed in [8] and [9]. Appropriate definitions


Artur




