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On a plane compactum with the maximal shape
by
S. Spiez (Warszawa)

Abstract. In this note a proof is given that there exists a compactum ¥, C E? such
that every compactum X C E* has the same shape as a retract of ¥,.

; § 1. Preliminaries. The definitions of a fundamental sequence, of
shape Sh(X), of the relation Sh(X)<Sh(Y) and of related concepts
may be found in [1]. It is known ([2], p. 236) that there exists in the
plane B* a continuum X, (actually, any continuum decomposing E* into
an infinite number of regions) such that Sh(X) << Sh(X,) for every plane
continuum X. We say that X, is a majorant for the shapes of plane con-
tinua. On the other hand one kmows ([3], p. 108) that for continua lying
in the space B® the situation is different, because already for the family p
of all selenoids, no compactum X, satisfies the condition Sh(X) < Sh(X,)
for every X ey.

The purpose of this note is to prove that there exists a compaetum
Y, C B* which is & majorant for shapes of all plane compacta.

For a subset X of E? by X, X and X we always understand re-
spectively, the closure, interior and boundary of the set X in E°

§ 2. Construction of Y,. By a k-perforated geometric disk (where % is
a non negative integer) we understand a 2-dimensional eontinuum @ C B?
with the boundary Q which is the union of k1 disjoint geometric circles.
In particular, a 0-perforated geometric disk is any geometric disk lying
in B’ The 1-perforated geometric disks will be called also geometric
annula.

A k-perforated geometric disk Q' is said to be imseribed into an
m-perforated geometric disk @ (where k>m) if Q' is contained in the
interior @ of Q and if the closure @\Q' of the set Q\Q’ is the union
of k-1 mutually disjoint sets, among them m--1 geometric annula and
k—m geometric disks (see Fig. 1).

By a set of type I inscribed into an m-perforated geometric disk @ we
understand a set Z C Q satisfying the following two conditions, (1;) and (2):
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(1;) The family of components of Z consists of one m-perforated

geometric disk €' inscribed in @ (called the main component of Z), of
geometric disks and of x, geomelric ampule. )

Observe that (1;) implies that each component of O\Q’ is geometric
annulus.
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(2) Ewery geometric annulus A which is a component of Q\Q' contains %
geometric annula which are components of Z, the union of those annula is
compact and none of them is contractible in A. Moreover, A contains 8, geo-
metric disks which are components of Z, and the union of those disks is
compact.

By a set of type 1T, inseribed into an m-perforated geometric disk ¢
we understand a set ZC Q satistying conditions (1), (2) and (3):

(xx) The family of components of Z consists of ome (m-+1)-perforaied
geometmic disk Q' (called the main component of Z) inscribed into @, of %
geometric disks and of 8, geometric annula.

_ Observe that (1p) implies that Q\Q' contains m--2 components of
which one is a geometric disk and the other are geometric annula.

(3) The component R of Q\Q', which is a geometric disk, is disjoint to Z.

Nov?' let. us define by induction a decreasing sequence {¥,} of com-
pacta lying in B2 and a sequence of functions

o (Ya)=Nuw (0) U (o0),

where [(Y,) denotes the set of components of ¥, and N denotes th.

set of all natural numbers.
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1) Let Y, be a compactum lying in E* and baving w, components
each of which is a geometric disk. Let o, be any one-to-one functions
mapping [I(¥;) onto 9w (0) v (=e).

2) Assume that for an index n a compactum ¥, C E* is defined such
that every component of ¥, is a perforated geometrie disk or a circle.
Moreover, assume that we already have a funetion ap: Yu)->Nu
U (0)w (o) such that if ¥, ;e 0(Y,) is a k-perforated disk, then
a,(¥, ;) =k (we observe that the function o, satisfies this condition).
Let Y, ; be a k-perforated geometric disk which is a component of ¥,.
It oY, ) =k then ¢,(¥, ) denotes a set of type I inseribed into ¥, ;
and if a,(Y,, ;) >k then ¢, (Y, ;) denotes a set of type II inscribed into
Y, . Let ¢,(Y, ) denotes the main component of (Y, ). ¥ Y, is
s circle which is a component of Y,, then g, (Y, ,) denotes Y, ;.

We define Y,,, by the formula

}rn+1 = U u’n( Yn,i) e :Yn
Yn,ieiZl(¥a)
and we define a,,, as a function mapping [1(Y,,) onto N w (0) v (o)
and satisfying the following two conditions:

(21)  @pey(@n(Tn o)) = @n( Xy, ) for every perforated geometric disk Y, ;
swhich is component of Y.

(2.2) If ¥, is a component of ¥, which is a perforated geometric
disk and if 4 is a geometric annulus which is & component of
T-Y’;ﬂ\qan( Y, ), then a,,, assigns in a one-to-one manner to all
geometric disks which are components of ¥, lying in A the
elements of the set MU (0) w (o), and to all geometric annula
which are components of ¥, ., lying in A the elements of the set
RN U (o0). We observe that if ¥, ;¢ [(¥pyy) is @ k-perforated
disk, then a, (¥, 1) = k.

We observe that

(23) If Y,,e0(Yn) is a k-perforated disk and o,(Y, )=k
(0y( X, ;) > k), then the set ¢,(Y,, ;) 8 & L-perforated disk (resp.
a (k-+1)-perforated disk).

(2.4) If a perforated disk X,.,; which is a component of Y,,, is
contained in a component ¥, ; of T, then ¥, ; is contained
in the interior IQ'M of ¥, ;-

(2.5) Tt an annulus Y,,, ; which is a component of ¥, is contained
in a component Y, ; of ¥, and is different from @l Y, ), then
Y,.,; is not contractible in the set Yo, NPl Yo, 1)

11 — Fundamenta Mathematicae, T. LXXVIII
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define:
‘Poo( Yn, i) = J‘QR Pt j Pregomt oo q’n( Yﬂ,b) .

It is obvious thait:

(2.6) TFor every e M and for every perforated disk ¥, ;e[ (Y,) the !
set po( Y, ;) is non-empty, and if it contains more than onenpoint' '

then the boundary of ‘every component of tt i i
a geometric circle. ' 19 8eh I\ pud Tud

We observe that the sequence {¥,} can be constructed in guch |

a manner that the following condition is satisfying:

2. i it

(2.7) Th:lare exist a sequence of positive numbers {en} converging to 0
and sugh that for every n e % and for every perforated disk ¥
which is a component of ¥, we have: o

ol=, Pl Xy, ) < &, for every z e Y, ..

We will show in §§ 4-7 that setting
(2.8) ’ Yo=Y,

neN
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(8.5) Let P,; be a .-perforated disk which is a component, of Py.
Then P, ; contains one or two components of P,,,. One of those
components is a k-perforated or (k-+1)-perforated disk inseribed
into P, ;, we denote it by @l Py ;). The second of these components
(if it exists) is a disk or an annulus lying in an annulus 4 which.
is a component of the set P, N@u( Py, ) and if this component is
an annulus, then it is not contractible in 4. .

Consider now a component P, ; of Py and let us set
‘;:‘oo(Pn, z‘) =N @n—}-]‘ q;n(Pn, i) )
jet

and let &,(P, ;) denote the number of bounded components of the set
FEA\@ool P ;)- Then
tn: [{Pa)>RN v (0) v (o0)
and it is clear that one can select the sequence {Py} so that, additionally,
the following condition is satisfied:
(3.6) If P, ;e (P, is a k-perforated disk, where k< a,(P, ), then
Pu(Py ) is & (k-+1)-perforated disk.

We observe that

(3.7) If P, ;e (P, is a k-perforated disk then a,(P, ;) = k.

(38) For each Pn,z’ € :(Pﬂ) we have E\l1b+1“:1571,(z'n, 'L)) = &n(Pn, i)'

(8.9) It P, ;e (P, is a Jk-perforated disk and ay(P,, ;) =k, then
#ul Py o) is also a k-perforated disk.

From conditions (2.3), (3.6), (3.7) and (8.9) it follows that:

(3.10) If the components P, ;e TI(P,) and Y, e [(¥as) are k-perfo-
rated disks such that (P, ;) = a,(¥,, ») then either the sets
#a(Pn. o) and @, (Y, ;) are both k-perforated disks or they are
both (k-4-1)-perforated disks.

§ 4. The sets Y,(X). Keeping the notation nsed in §§ 2 and 3, let us
show that we can assign to every non-empty compactum X C B* a sub-
set Yo(X) satisfying the following conditions: )

(£1) Xy

(4.2) Sh{Y,(X)) = Sh(X).

Let ¥, = ) ¥, where {1,}is the sequence (satisfying condition (2.7))

neN

which we constructed in § 2. Let {P,} be a special system of neighbour-
hoods of X in E* satisfying the conditions (3.1)~(3.6). Let us assign  to

11%

X) is a retract of ¥,.
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every 'perforated disk Y, ; which is a component of the set Y, a function
ﬂYn,s: D(Ez\ynt)%m - (0)
in the following manner:
If n=1, then ¥, ,is a disk and B\, , is a connected set. Then
we set .
51’1,¢(E'\Y1,¢) = 0.

Assume that for a natural number » the function By, , is already
defined for every perforated disk Y, , which is a component of the set ¥,.
Let Y., ; be a perforated disk which is a component of ¥, ;. I ¥, ,is
a disk, then we set '

ﬂYn+1.j(E2\Yn+1,7) =0,

If ¥4, ;18 an annulus, then B\ Y, ,, ; has two components ¢’, ¢’ from
which one, say (', is unbounded and the other, ¢"’, is bounded. Then
we set

BramdC)=0 and By, (07")=1.

It Y,.,;is a k-perforated disk with % 2, then ¥, +1,7 18 inseribed into
& eertain component ¥, ; of the set ¥,. The set ¥, ; is either a %-perfo-
rated or a (k—1)-perforated disk. If € is a component of EAY,,,,
containing 2 component ¢’ of the set B\, ,, then we set

ﬂlfﬁl,j(o) = ﬂyn,f(o') .

If ¢ is a component of B\ Y, +1,7 Which does not contain any component
of B\Y, ; (there exists at most one such component (), then we set

ﬁYn.q.l,](O) =k.

In an analogous manner (replacing Y, by Py) we define for every
component P, ; of the set P, the map

| Brai OUENE, ) >N (0).
(4.3) LemMma. There exisis o sequence of functions
Wy D(P'n)—”](yn)

satisfying the following conditions Sor every natural number n and for every
component P, ; of P,: ‘

Ap,;  If Po;sis a k-perforated disk ,

o g then o (P, I perfo-
rated disk. ) (P, ) is a k-perfo

4. ) ~

{ 5)n,Pu,t w"“(%(Pn,i)):%(%(Pn,i)) .

(4-6)np,; If P, is a component of P,., contained in P,, and

different from (P, ), then
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(@) @pya(Pry,;) C 0(Pr,s)s

(D) if Py, lies in a component O of the set E\@,(P, ;) then
Opy1(Prys,;) lies in a component C of the sel EA\gp0n( Py, 9))
satisfying,. condition:

Binpat ©) = Bontontpan(€) -

Proof. Let us define function w,;: (P;)— (Y;). We have [(F;)
= {P,} because P, is a disk (see (3.1)). We define o (F;) as a component
of Y, satisfying condition al(wl(Pl)) = a,(P,) (since the g, is & one-to-one
function mapping F)(¥,) onto Nu (0) v (o0) and a(P;) € T (0) w (o),
there exists such a component w,(P,)— only one — of Y;).

Suppose that we already have a function wn: [J(Pn)- [1(Yn) satis-
fying for every component P, ; of P, the condition (4.4), p,, and a con-
dition
(4‘7)R,Pn,i an(wn(Pn,i)) = an(Pn,i) .

We observe that the conditions (4.4), p, and (4.7), p, are satisfied.

Let Ppyy,; € O(Ppyy)- I Pryy = (P, ;) for a some component P,
of P, then we define o, .,(P,,, ;) by condition (4.5), p,, 1.6. @, 1(Ppys5)
= @yl 0n( Py, o)) From (3.10), (4.4), p,, and (4.7), p,, it follows that the
condition (4.4),.; p,.,, I8 satisfied. From (2.1), (3.8) and (4.7), p,; it
follows that the condition (4.7),,, p,,,, is satistied. If P, ; is contained
in a component P, ; of P, and P, ; is different from ¢,(P, ;) then we
define @, .,(P,,; ;) as a component of ¥,,, satisfying the conditions
(44)ns1, prrgr (£:6)n, p,, and such that a,(w,1(Priy, ) = @u(Pryy, ). We
must prove that there exists such a component w, (P, 0f ¥,y
Let ¢ and O be components of BN\g, (P, ;) and E\g,(w,(P, ), respectively,
such that Bzp, 0 (0) = Beywnenny(C) and ¢ contains P, ;. From (3.5)
it follows that C is not contained in P, ,. We know that if P, , is a k-perfo-
rated disk, then o, (P, ;) is a k-perforated disk and either the sets
#u(P,, ;) and @n(®n(Py,4) are both k-perforated disks or they are both
(k+1)-perforated disks. It follows that ( is not contained in wﬂ(PM),
hence C contains an annulus A which is a component of w, (P, i)\tpn(wn( P,m-)).
The set P, ., ; is a disk or an annulus (see (3.5)). Then (see (2.2) and (3.7))
it follows that there exist such a component w,,,(P,,,;) (only one)
of ¥,,,. The proof of Lemma (4.3) is finished.

For 1= 4,5,6, by condition (4.I) we understand the following
condition: for each » e 9t and for each component P, of P, the con-
dition (4.1),, p,, is satisfied.

From (2.4), (4.5) and (4.6) (a) it follows that
(+.7)  If a component P, ., ; of P,., is contained in a component P, ;

of P,, then the set w,,,(P,,; ;) is contained in the interior
[,mn(Pn, 'L'))D of "’)n(Pn,i)‘
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From (2.5), (4.4) and (4.6) it follows that

(4.8) If an annulus P, ; which is a component of P, ., Ais containec
in a component P, ; of P, and is different from (P, ), the
0p11(Ppay,;) 18 an annulus not contractible in w, (P, ,.)‘\(/}“((%(Pm )

Since each component P, ; of P, contains at most one componens
of P,., different from ¢,(P, ) (see (3.5)), it follows from the conditions
(4.5) and (4.8) that

(4.9) For each n ¢ M the function wp: C(Fn) - Y,) is single-valued,

Now let us set

Y (X)= U wn(Pn,i) and Yy(X) = Y, (X).
Pa,i€|Z1(Pn) nedN
For each number n ¢ N the set Y,(X) is compaect, because it is the
union of a finite number of perforated disks. It follows that the set ¥y(X)
is also compact.
From the conditions (4.7), (£.9) and definition of Y,(X) it fol-
lows that:

{410) 1If a component P, ; of P, contains exactly one component
(exactly two components) of P, ., then w,(P, ;) contains exactly
one component (resp. exactly two components) of ¥Y,.,(X).

§ 5. Proof of (4.1). We observe that if a perforated disk Y, ,is a com-
ponent of the set Y, (X), then ¢ (¥, ;) C ¥, (X).

For every ne % the set ¥, (T,(X))° is a compactum, because it
is the intersection of the compact set ¥, with the union of all the set
¥u( ¥y, 1), Where ¥, ;e O(Y,(X)) (we know that the number of components
of ¥,(X) is finite and that each of the sets y,( Y, ;) is compact).

Consider a map

1ot Yo=Yy (YI(X))o

wh%ch a.sign§ to all points y € Yo\(¥,(X))> one point of the set ¥,(X) and
which satisfies the condition ry(y) =y for every point y ¢ ¥, ~ (¥y(X))-
Now let us construct a -sequence of maps

ot Yy o (Y (X)) >Y, (o@D for meR
as follows:
Iy e ¥y (Y X)P then ry(y) = y.
If ¥, ,is a component of the set Y,.(X) then:
If <pgo(Y,,’,-) consists of only one point then the restriction
al[¥o n ¥, \(T, (@) is.a map with values in Pl Xy, 0)

icm®
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If ¢ (T, ;) contains many points then the boundary of every com-
ponent of the set EN\g (Y, ;) is a geometric circle (see (2.6)). Let C be
a component of the set E™\g,(Y, ;) and let ¢’ denote the component
of the set EN\g(Y,, ;) containing C. If ' is bounded and contains a com-
ponent ¢/ of the set E\Y, ;, then the restriction

rll(To o Tt m ONTa D]
coincides with the projection from the centre of the open disk € onto
the circle forming the boundary of C’. If € is bounded and contains no
component of the set B\ Y, ;, then the restriction

Tn]{( Yy~ I;n,l n G’)\\(Yn+1(X))°]

coincides with the projection from the centre of the open disk ¢ onto
the circle forming the boundary of (. We observe that from the defi-
nition of {¥,} and from condition (3) in the definition of the set of
type II (§ 2) it follows that if ¢ contains no component of B\ ¥, ; then C is
disjoint with Y,. However, if € is unbounded, then
1l [(To m Yo 0 ON(Yaa(D))]
coincides with the projection onto the circle forming the boundary of .
Let us observe that the maps
79 Yo—>X, N [Yl(X))",
rat oo (T X)) =Ty~ (LX) for ne®
are retractions such that

1) e, = Sup  o[r,(¥), %) then lim &, = 0,
yeXon{Tn(X))° ’ n=00

2) 7o T\ (T2(X))°) C To(X),

8) 1 (To ~ (W TP\ (To v (Vs X)) C To(X) for m e 9.

(The above Condition 1) follows from (2.7)).

Moreover, one can easily see that ¥y~ (¥ (X)) D ¥, (¥pua(X)°

and that ) X, (Ya(X))° = Xo(X). It follows that setting
neN '

r(y) = r(y) for every point y e (YD\(YI(X))") v Y(X),
r(y) = ma(y) for every point y e ¥y~ ((Yn(X))°\(Yn +1(X))°)
we get a retraction 7: ¥,—=X(X).

§ 6. Proof of (4.2). Let us construct for every n =1, 2, .. a homeo-
morphism

ha: E* — E*
onto
so that
(6.1), ha(Pn) = Ya(X)
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and
(6.2)a » hn-u l (E‘Z\Pn) = h’nl (E'—"\\]J}n) .

Since P, and Y, (X) are disks, there exists a homeomorphism

hy: EF - E? such that hy(P;) = ¥,(X).
onto s )
Suppose that we already have a homeomorphism hy,: B* — B2 gatis.
orito

fying the condition (6.1), and such that
(6.3), IfP
and

is a component of P, then 1,(P, ) = w,(P, ,)

n, i

(64). If P, ;is 2 component of F, and ¢ is a component of BN\P, .,
then B, (C) = Buyp,,lal €)-

One can easily see that the conditions (6.1),, (6.3),, (6.4), are satisfied,

As we know, each component P, ; of the set P, contains one or two
components of the set P,,,, a k-perforated disk 5’”(1’7;,& inscribed into
P, ; and perhaps also a component P, ., ; which is a disk or an annulus
(see (3.2) and (3.5)). The component w;L(P“, 1) = (P, ;) contains one or
two components of the sef Y,,,(X), one (which is the set w,,(p,(P, ;)
if P, contains only one component of P, +15 and two (of which one is
the set w,.,(@,(P, ) and the second is the set Opy (P, ) i Py,
eontains. two components of P,,, (see (4.10)). The set Oyt (@l P 1))
= Pu(wn(Py, o)) is & k-perforated disk inscribed into wn(P,, ;) (this follows
from (4.4) and (%.5)‘). The sets P,.,; and ,,,(P,,, ;) are contained,
respectively, in P, , and [wg(Py, )T (this follows from (3.4) and (4.7)).
From (4.4) it follows that either the components P, ; and wy,,,(P,,, ;)
are both disks, or they are both annula. In this last case these annula
axe not contractible in the sefs P, Ng(P,, ;) and w,(P, )\wp 11 (FulPr. o)
rej,spectively, (see (3.5) and (4.8)). From (4.6) (b) and (6.’4),1 and the defi-
nition of the sequences of functions {#,} and {B,} it follows that if a circle §
which is a component of P, , and the set P, +1,7 are contained in the
same component (' of the set E™\g,(P, ) then the circle Ip(8) (it 8
a component of [w, (P, )I') and the set w, +1(Ppry,;) are contained in the
Same component ¢ of the set A\a, (P, ). '

From the above facts (see Fig. 2) it follows that the homeomorphism

th,z: Pn, i+[wn(Pn,i)].
defined by the formula

hp,, (€)= h,(z) for every point ze P
can be extended to a homeom
the conditions:

W, T

Ol‘l)hism th,i: 1—)7‘14,1!—> wn<Pn, z) satisfying

ﬁPn,c(‘ign (Pn, z)) = Opyqq ((;Jn(Pn, L))

e ©
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and
hPu,i(Pn-'l—l,i) = wn+1(Pn+1,1’)

(this last condition only in the case where P, ; contains two components
of the set P,.,). ’

Setting

By (%) = Ry () for every point » ¢ AP, ,

Rpyi(@) = kp, (2) for every point zeP, ;,
where P, ;e O(P,),
one gets a homeomorphism &, : Egon_;, E* satistying the conditions
(6.1)4y, (6.2),, (6.3),,, and (6.4),,,. The conditions (6.1), and (6.2),

imply that k= {ha, X, Yo(X)} and g= {h,*, Yo(X), X} are fundamental
sequences. It is clear that

(6.9) goh=ix, hog=iyx,

where 7, denotes, for every compactum 4 C E? the fundamental identity
sequence. It is obvious that (6.5) implies that Sh(X) = Sh(¥(X)).

§ 7. Main theorem. As we have shown, there exists for every com-
pactum X C E? a compactum Y(X)C ¥, satisfying the conditions (4.1)
and (4.2). Thus we have the following

(7.1) TEEOREM. There is in the plane E* a compactum Y, such that
every compactum X C E* has the same shape as a retract of Y,.

It is known ([2], p. 234) that for every retract 4, of any compactum A
the relation Sh(4,) < Sh(A4) holds true. Thus one gets from theorem (7.1)
the following

(7.2) CoroLLARY. There is in the plane E® -a compactum which is
a majorant for the shapes of all plane compacia.
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Let us add that by a slight modification of the construction of the

compactum Y, one can obtain a plane compactum. Y| of dimension |
such that every plane compactum X has the same shape as a retract
of Y. .
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On transfinite sequences of B-measurable functions
by
Tibor Salat (Bratislava)

Abstract. The notion of the convergence of transfinite sequences of real numbers
and functions was introduced by Professor W. Sierpifiski (Fund. Math. 1 (1920),
pp. 132-141). In this paper that notion is extended for metric spaces. A part of results
of the paper generalizes some earlier results of . Sierpifski and H. Malchair, further
the transfinite sequences of functions with closed graphs are investigated.

In paper [10] the notion of the limit of the transfinite sequence of
real numbers and the notion of the limit function of the transfinite se-
quence of real functions were introduced. The idea and some results of
paper [10] were developed in some further papers by H. Malchair and
M. M. Lavrentieff (see e.g. [31-[7]).

We shall generalize these notions and some results of the above-
mentioned papers to metric spaces and we shall prove one theorem. on
limit functions of transfinite sequences of functions with closed graphs
(see Theorem 4).

The following definitions generalize the above-mentioned notions.

DerinrroN 1. Let (X, o) be a metric space and let 2 denote the
first uncountable ordinal number. The transfinite sequence

1) {ag}e<a

of elements of the space X is said to be convergent and have a limit ¢ ¢ X
if for each ¢ >0 there exist an ordinal number a < Q such that for each
E,a << E< Q the inequality o(a, a)<C¢ holds. If (1) has the limit a, .
we write 1$i_>mpa5= a (or briefly a,—a).

DerINITION 2. Let X be a set and let (Y, p,) be a metric space. The
transfinite sequence

2) {fideca

of functions f;: X ¥ is said to be convergent and have a limit fﬁ.nction
f: XY if for each z ¢ X we have 15111!12]‘5(00) = f(z). If (2) has the limit

function f, we write léng fe=1f (or briefly f.—f).
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