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In the first case we get the categories K%, and K% introduced by 8. Mar-
deié and J. Segal in [3]. In the second case we geb g* and 8* used
here in § 5.
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k=0
In the last section we develop some properties of free relatively pseudo-complemented
semi-lattices with n free generators (n < oo). It is shown that these algebras are all
(distributive) lattices and that for # = 2 the free algebra is isomorphic with 2x 3x 3.

1. Preliminaries. The notation I7;8 (or simply II8) will be used to
denote the greatest lower bound of a non-empty subset § of a mee$
semi-lattice I; the greatest element of L, if it exists, is denoted by 1,(1).
If § = {x, y} then IIS = ay; it is convenient to define /T =1 when L has
a greatest element. The symbols X8, 0, z+y, and Z¢ are defined dually.
‘We will identify each integer n > 0 with the set {0, ..., n—1}. In Sections 2
and 3, the topic is pseudo-complemented semi-lattices and so the terms
“homomorphism”, “subalgebra®, ete. shonld be regarded in this context.
However, the meaning of these terms is suitably altered in Section 4,
where we discuss relatively psendo-complemented semi-lattices.

2. Pseudo-complemented semi-lattices. A pseudo-complemented semi-
lattice is an algebra <L; -, 0, * in which {L; -, 0’ is a meet semi-lattice
with 0 and such that for each xeL, there exists a largest y (denoted
by z*) such that xy = 0. It is well known that these algebras form an
equational class. Some of the elementary properties of these algebras
are listed below for easy reference (cf. [4]).

(*) This research was supported, in part, by a Summer Fellowship from tke »
TUniversity of Missouri-St. Louis.
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(i) zy =0z <y,
(ii) <a,

(iii) ™ = 2,
(v z<y=19"

LS ( y)
*

- ¥
KX,
*

(v) =y

(vi) @(2y)" = ay".

The elements of L which are of the form #* are called regular (also
known as skeletal or closed). We denote the set of regular elements by R(L).
More generally, for any §C L, write §* = {s*| s < 8}.

(vii) R(I)=L* = {wx e L} v = 2™}

We will need the following extension, due to Frink [4], of a theorem
of Glivenko on regular elements of a pseudo-complemented distributive
lattice.

THEOREM 2.1. Let L be a pseudo-complemented semi-lattice. Then
R(L) is a Boolean algebra in which the meet operation in L and R(L) are
the same, the zero and unit of L and R(L) are the same, the join operation
on R(L) is defined by u@vﬁ (w0 and the complement operation in
R(L) s defined by o’ = z*. Furthermore z—>x** is a homomorphism of L

onto R(L).
CoroLLARY 2.2. If X is a finite non-empty subset of a pseudo-comple-
mented semz-lattwe L then
[ [ms)(m(x ~8y[*=0.
Scx .

Proof. It is routine to prove that if X is a finite non-empty subset
of a Boolean algebra then

[] Z(8" v (X ~8) =

Scx

where 8 = {s'| se8}.

In the present case Theorem 2.1 implies that

IT [(HS)(H X8 =[] [zs™)(mx ~8)y)*
S’CX SCX
=[] ZawlS o @X~8"™1=0.
SCXRD)

'CORS)LLARY 2.3. Suppose X freely gemerates a pseudo-complemented
semi-lattice L. Then X** freely generates (as a Boolean algebra) the Boolean
algebra R(L).

Proof. Since X generates L, X™* generates R(L) as a pseudo-comple-
mented semi-lattice, and therefore also as a Boolean algebra.
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To conclude the proof, let B be a Boolean algebra and {a,},.x & se-
quence in B. Since B is a pseudo-complemented semi-lattice, there is
a homomorphism f: LB such that f(x)= a;. The required Boolean
homomorphism from R(L) to B is obtained by restricting f to (L)

3. Construction of P(n). Let n be a non-negative integer. For each
8 Cn, let Bg denote the lattice 25 of all subsets of S together with a new
zero, Og; that is, 0g<< T for every T e25. It is easy to see that Bg is
a pseudo-complemented semi-lattice and so L= X By has the same

propel‘ty Scn
For a subset R of n, define xp and by in L by
S~k i RCS
8)= . P
0g it RES

and

b= [([] =) ([ ] =0 ]

ieR

LeMMA 3.1, Suppose pen, TCn and R s a famzly of subsets
of n. Then

(i) Hi{zgl BeR}=ayz,
(i) 2p =1z,

[1ifR£S
(i) b= g o 5 2

(iv) (xpIT{bg| ReR})* = II{b;| TCV and V ¢ R},
(v) 2plI{byl Re R} <byoVeRor TLV,
(vi) 2pII{bg! Re R} K zpyerpel or {8Ca| T'C S}C.R

} for each S Cn,

Proof. (i) and (ii) are easily verified.
(iii) Let 8 C n. Since Og is meet irreducible in Bg, bg(8) is either 0
or 1. Moreover,
ba(8) =1

za®) (] a5(8)) = 0g = 24(8) = Og
iR ]
for some ieR or (z;(S))" = 0g for some j¢R <« i¢S for some ieR
or jeS for some j¢ R< 8 # R.
(iv) For each S C n, both sides of the stated equality, evaluated at S,

are in {0g, 1}. Moreover,
Iy TCT and V¢ R}(S) =1 < by(8)=1-

for all ¥ Cn such that TCT and V¢R<V #§ for all VCan such
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that TCV and ViR T E 8 or SeR=un(8)=0 or bp(8) =0
-~ for some ReR
< 2p(8) T {bp| B e R}(8) =0 < on(8)[I{by| E < RS =1.
(v) Since b,(8) = 1 exactly when V # 8§,
2pIT{bg| B e R} < by < ap(V)IT{bg| B eR}(V
But, again the meet irreducibility of 0, implies the result.
(vi) First suppose zplI{bp| E « R} < @y, bub that there exists SCn
such that 7C S and S ¢ R. Then bg(S) = 1 for all Re R 80 §~T = w,(8)
< @,(S). Since @,(8) > ¢, we infer that p ¢ S and that p e §C wyy(8) v T
= (§~{p}) w T; thus p ¢ T. Conversely, (i) implies the result if p ¢« T so0
assume {SCn| TCS}CR. Let VCn. Ift TCV then VeR and so
zpll{bg| R e R}V) < bp(V) = 0 < ay(V),
‘and it T ¢ V then
wpdT{bg| B e R}(V) < 2p(V) = 0 < 2(V) .

We now combine these results to prove the main theorem:

THEOREM 3.2. Let 0 < n< oo and I, the subalgebra of all elements
z € X By for which there exists a set T Cn such that for each 8 Cn:

Scn
1) ' #(8) ¢ {0g, S ~T}
and
(2) T ¢ 8 implies (8) =

Then Ly is the free pseudo-complemented semi-lattice with n free generators.

Proof. For n =0, L, == 2 which is the free pseudo-complemented
semi-lattice on 0 free generators. Now assume # = 1.
To show that I, is a subalgebra of X By suppose T,, T,Cn and
Scn -

@y, &, are members of X Bg which, togetherﬁwith T, and T,, respectively,

Scn

satisfy (1) and (2). It is easy to verify that z, satisfies (1) and (2) with
respect to the set T, v T, and that #] satisfies (1) and (2) with respect to ¢.

We will show that {w,| ien} freely generates L,. First, to prove
that this set generates L,, let ¢ I, and suppose T is a subset of # such
that z and T satisfy (1) and (2). Since xp = IT {zyl t e T} it is sufficient
to prove:

@ = gpIl{bg| z(R)= 0}.
Indeed, let SCn. If T ¢ S then by (2), #(S) = 0g and

2pIT{bg| ®(R) = 0}(8) <p(8)=0.
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Now suppose T C 8. If 2(8) = 0g then also 2,17 {bg] 2(R) = 0}(8) < bg(8)
= 0 and if z(8) # 0g then bg(8) =1 for all R such that 2(R)= 0z so
epIT{by| #(R) = 0}(8) = 24(8) = 8 ~T = (8).

In order to prove that {zy| ien} freely generates I,, let M be
a pseudo-complemented semi-lattice and {a;},., 2 sequence in M. To
simplify notation, let 4 (7T) = {a] t e T} and A*(T) = {a;| t ¢ T} whenever
T C n. Now define f: L;->M as follows. For z ¢ L, there exists T Cn and
R C2" such that = x,IT{bg| R e R}. Define

flz) = TA(T) [] [IT(4(R)© A" (n~R))[".
ReR

Our first step is to demonstrate that f is actually well defined. For
this it suffices to prove that if T;, T,Cn; Ry, R, C2" and

3) 2o JT{bg| R e84} < 2p,T{bp] Re Ro}
then
(4) ATy [JI(AR) © AXa~R)|* < IA(T)
ReRa
and
(5) ITA(T,) H [T(A(R) © A*(n~R))| ]_[ [T{4(R) v A (n~R))*.
ReRa ReRe

For (4), let te T,. Then by (3), 2y IT{bp| B e R} <y and so by
Lemma 3.1 (vi) either te ) or {SCn| T;C S} CR;. In the first case
a, € A(T;) so obviously

(6) ATy []1HA® © A a~R)|" <,
ReRi

In the second case, we can assume I, = n:

AT [] AR © £ n~R)*

ReRy

<A [[iIA®) o L m~8)

T,CSCn
—1r4(ry) [] (AT o V) o A (T o DI
T"‘n~T1 X
— ) [] [a(am)o 4 (n~ma~T)f
VEn~T1

0<a Dby Corollary 2.2

I

Hence (6) holds for all t e T, and establishes the validity of (4).
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To dispose of (5) let R, be any member of R,. Then , IT{by| R ¢ R,}
« by, implies B, eR, or T $ R,. The first case clearly implies
(M TAT) [[IT(A(R) © A*(n~R))|* < [[I{A(R,) © A*(n ~R,))*
ReRa '
and in the second case, selecting # ¢ 7, ~R,, we have
ITA(T)|I{A(Ry) v A*(n~R,))| < ay,-a; =0

and o
mA(Ty) [ [HA(R) o A*(n~R)||* < ITA(Ty) < [T(A(Ry) © A*(n~Ry)*.
Refa

Thus, (7) holds in both cases. This proves (5) and so f is well defined.
From the definition of f, it is trivial to check that f(z;)= a; for
all i<n and that f preserves products. f also preserves 0 since

Tnbn = (I {my| i e n}) (I {zyl i en})* =0
implies
F(0) = f(@nbn) = (ITA (n))(ITA(n)]* = 0 .
So it remains to prove that f preserves *. Let TCn and R C 2"
‘Since f preserves products and 0, we need only show that
(f(@rIT{bp| B e RY* < f((wpII{bp| B < R})).
In view of Lemma 3.1 (iv) this is equivalent to
8 {mar) [[im(a®) v A m~R)' < []lmam) o a*@~m)*.
ReR rcy
VER
Suppose TCV and V¢ R. Then for each R eR, either V g; R or

R _¢_ V. In the first case there exists v ¢ V~R 50 a, ¢ A (V) and ay € A¥n~R)
and therefore )

(9) II(A(V) v A*(n~V) v A(R) w A"(n~R)) < a,af = 0.

In the second case there exists 7 ¢ R~V and so a. ¢ A(R) and
-y e A ~V) and again (9) holds.
From (9},
mAV) o A~V {Ia(r) [[1T(A®) o An~B)T
ReR
=TII{A(V)w A*n ~V)}x

X {UA(T) [[IAE) © 4% V) © A(R) & 4% ~RB)I*}*
ReR
=AT) o A*m~V)IAT) [] [0]*}* = I[A(V) v AXn~ V) (T4 (T))*
ReR

< AV (ITA(T)* < ITA(T)ITA(T)* = 0.

®
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So for each ¥V Cn such that TCV and V¢ R:
{HA(T) T4 (R) v a*a~B)I*} < (TAT) v A m~T),
ReR.

which verifies (8) and completes the proof.

The free pseudb~complemented semi-lattice on two free generators z,y

COROLLARY 3.3. The number of elements in the free pseudo-complemented
semi-lattice with n free generators is

n
14+ M(F) e .
k=0
Proof. Let T Cn and let L, be the members of XX Bg which, together
- Scn
with T, satisfy conditions (1) and (2). For a given member z of-LT, there
are two possible values for #(S) if TC§ and only one possible value
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i T i . Since there are 2*~17) subsets S of # for which T C § we have
zn—lT]
[Dg| = &
Now for T, # Ty, Ly, ~ Ly, = {0}. Indeed it is obvious that 0 e L,
for all T and 1f @ € Ly, ~ Ly, but o # 0 then there is a set § such that
2(8) # 0. Since x ¢ Ly, we have #(8)=8~T; so S~T,=8~1T, and
also T,C 8, T,C 8. This implies the contradiction T, = T,.
Thus, L, has 22" _1 non zero members, and since there are (IZ’I}

7 o
subsets T C » with |T| elements, L has Z (Z) (2**_1) non-zero members.

=0
A golution to the word problem for pseudo-complemented semi-lattices

is given by the following finite procedure for determining whether or not

D@y eery Tpy) < q(Zgy -y ¥,_,) for arbitrary n-ary polynomials p, ¢ and
for free generators ®y, ..., &, ;.

Now p(&yy oy Bpn) = Ly~ oo '.’El-rpf(mo, ey Byg) e 'p:(wo, ey Byy)
where p,, ..., s are n-ary polynomials. Let X = {«x,, ..., z,_,} and for

each RC X, set By = [(ITR){II(X— R))|". Denote by L, the free psendo-
complemented semi-lattice generated by X.

Since the word problem is solved for Boolean algebras (c.f. [2], p. 61)
and {p}(%y, ..., %) j=1, ..., s} v {Bg| RCn}is a subset of the Boolean
algebra R(L), Corollary 2.3 implies that there is a finite procedure for
determining the set

R, = {EB] pl(% ey q) e ~p§(m0, vy By_q) < Bp}.
Note that pi(Zg, «oey Tuey) oo Da(@oy wors Ty_q) = IT{Bg| B € R,}. Similarly,
the set
Ro={B] G{(gy cory Byr1)® or Gl e *,_1) < Bg}
can also be determined where g, ..., g, are n-ary polynomlals and
Gy ey Byy) = By j,%(%’ oy By y) e Gy, vy Byg)
It follows from Lemma 3.1 (v), (vi) that p(ay, ..., 2,_;) < @@y, o) Zy)

if and only if the following conditions are both satisfied

(el) Bither {z;, ..., 2} C {2;, ..., z;} or
{TC gy ooy 2y {45 ey 7, } CTICR,.
(62) If ReR,~&, then {z,,..,x,} € R.

4. Free relatively pseudo-complemented semi-lattices. There are many
equational classes, closely related to pseudo-complemented semi-lattices,
in which the free algebras have not been determined. The pseudo-comple-
mented distributive lattices is an example. In fact, the lattice of equational
subclasses of pseudo-complemented distributive lattices form a chain
B_; CHCH C...CH, and only in the first three classes has the problem
been solved (c.f. [2], [1]).
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In another direction, there are the Heyting algebras (relatively
pseudo-complemented lattices) for which the problem is solved only for
n=1, [9]. Along these lines, we conclude with some results on relatively
psendo-complemented semi-lattices.

Theorem 3.2 provides a simple method for constructing free pseudo-
complemented semi-lattices but neither the statement nor the proof
indicate how the construction was motivated. In this section however,
we take the point of view that since we are dealing with an equational
class, the free algebras already exist and we are merely trying to determine
their properties.

A relalively psewdo-complemented semi-lattice (for brevity, implicative
semi-lattice) is an algebra (L; -, —> in which ¢L; -> is a meet semi-lattice
and for any pair of elements «, y € L there is a largest z (denoted by z—>¥)
such that zz < y. As stated above, these algebras form an equational
class. Most of the following identities can be found in {3].

1) 2y <
(ii) T—>p = 1,

R LY—>2,
(iii) 1>z =2,
(iv) z(z—>y) = 2y,
(V) 2(y—2) = 2(ay—»a2) = 2(3y —>2) = B(y>a2),
(Vi) z<y =2 <2y and y—z < x>z
(vil) @ (y>2) = 2y,
(viii) z—>yz = (v—>y)(x->2),
< (@~>y)—>y,
(x) ((z>y)»a)>y = 2y,
(=i) ((2—y) =) (y>)>y) = 2y.
We will restrict our attention to the proof of (xi):
2((y ) >y) = 2(z(y>2)>y) = s(@~>y) =
and so by (v)
(@) »2)((y>2)>y) = (@y—>y) »a)(y~2)>y)
= (1=>a)((y>2)—>y) = 2(y>w)>y) = 2y.
In what follows, 3(8) is the free implicative semi-lattice with S as
a finite non-empty set of free generators.

Leyna 4.1, Each element of 3(8) is a finite product of elements of the
form w—>s where ue3(8) and se 8.

(ix) (x—=y)—>zx

Proof. The set L of elements of the form described is obviously
closed under products. Also S C L since 1—+s = s for each s ¢ S. Suppose
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@,y eL and y= [] wi—>s; where u; ¢ 3(8) and s; ¢ S. Then

i<n

= 5> (= 84)) = (w-> (ui—s1)) n(wm»si
wry=ae([Joesil =[]
Thus, since S generates 3(8), L = 3(8).

TaroREM 4.2. 3(8) is a bounded distributive lattice. For p, ¢  3(8)

ptg= [] ((p—>s)(g—9)->3).
ses
Proof. By Lemma 4.1, it is evident that IS is the least mem-
ber of J(8). By (i) and (iv) p,¢< (p—+8)(g—s)—~>s for each seS so
w= []((p—$)(g—>$)—s) is an upper bound of p, ¢. Now assume p < g,

S .
Qé;eand m:H (u¢+84) where u; EJ(S), s; e 8. For each i< n, p< s
i<n
< Ug—> 85 5O Uy ép»sh Similarly %; < ¢—8:. Thus u; < (p-—>8:)(g—>s;) and
(p—>84)(q—>81) > 8¢ < ug—>$;. Hence
u= n((p—>8)(Q—>s)—>s) < H((p»si)(q—wf)»s, HW—M‘z -,

» ses i<n i~
Finally any implicative lattice is distributive.

Note that in 3(8),

Pyt Pm = n[(n(pi~>s))—>s].
se8  d<m
Levva 4.3. Let n = 1 and p, ¢ < n. Then in any imp licative semi-lattic
[(an>a0) [ [ (@001 0, = Uap—>ap) [ [ (@;>a,5)]>a,.
i<n i<n

Proof. From (iv) it is readily seen that wo n(w —®;41) = [] wi. Thus

<n

{(@,~> ay) ” (5> @5 40) (0, > a0) H (@3> @y4) > 4y}

i<n i<n
! ' 1 ' ’
= [(a’n‘_>'a0) (ai—}aﬂ-l)}a‘p = a’]’ < a,
T<n j<n

which implies the resuls.
It is well known that if S is a finite non-empty subset of a distrib-
utive lattice with 0, 1 and § has the property that XS =1 and st= 0

when s, ¢ are distinet in S, then L is isomorphic with X (s].
ses
. Returning to 3(8), we find it convenient to label the member of 8
Thus, let 8= {s;] i<n}. The element a = (s,->s,) [] (5;~$;4,) Dlays
i<n
a special roll in what follows. Lemma 4.3 asserts that a->8, = a5

for p,g<<n

e ©
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THEOREM 4.4, J(8) == (a] X (a8
Proof. Since a—s, a8, for all p < n, ala—>s5) < sy for all p.
Thus, a{e—>8,) < [] sp= 0. Next, we verify

p<n
(i) (sn—>89)+ (a—8) = 1 and
(ii) (8;=>8;.1)+(e—>8) =1 for i <n—1.
For (i), we start with the inequality « < su—s,. For each j < n,
(Sn—89)>8; < a—>85 = a—s,. So,

((8,,—>8&->8; ((a—>8,,)—->3_1)} < (a->so)((a—>sﬂ)—>85) < 8.
Thus
Su—>8y+ a—>8y = H [((sn»sa)»sj)((a——>sﬂ)—->3;)ﬂ>sj] =1.
i<n
The proof of (ii) is essentially the same as that of (i).
To complete the proof:

a+a—>8; = (8, &) n (8;= 829} Fa—5
i<n
= (82> s))+a—s5) [ [ (0802 + (a>s)) = 1.
i<n

The principal ideal (a] obviously contains the elements 0 and « and
these elements are distinet sinee this would be the case if § were a set
of free generators of a Boolean algebra. The following lemma is a useful
tool in determining whether one has been suceessfnl in finding all of
the elements of a principal ideal.

Lexynia 4.5, Suppose x<3(S) and T is a subset of (2] that satisfies

(i) xe T,
(ii) s € T for each se S,

(i) If t,, e T and t; & 1, then tit e T and x(t,>1,) e T.
Then T = {(x].

Proof. (z] is an implicative semi-lattice with the same meet as that
of 3(8), but relative complement = defined by u = v = 2(u—>v); also the
map u—>ur i3 2 homomorphism of J(S) onto (z]. Now (i)—(iii) imply that
T is a subalgebra of (] that contains {s} s ¢ S}. But, since S generates
J(8), {xs| s e 8} generates (x] so T = (z].

THEOREM 4.6. 3(S) == 2 X (a5

Proof. Let T = {0, a} and verify the hypothesis of Lemma +.{.

We have been unable to determine (a--s,] when n > 3. However,
when n = 2, the results arve surprising:

THEOREM 4.7. The free relatively pseudo-complemented semi-lattice on
tico free generators is 2% 3 % 3.
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Proof. Let 8= {z,y}.
By Lemma 4.3, u= (#—>y)—»>s and v= (y—>x)->y are members

of (a—>a].
Now,

(w—z) (v>2) (a—>T)

= [(z—>y)—a) ~a|[(( (y )+ y) x| [(2—>y) (y>)>2]

= [(z—>y)>a)>a][y >)[(@->y) (y>w)>2] by (x)
= [((@—>y)>a)>a]ly>a)[(o—>y)->2] by (v)
S by (xi).

So, a»z< (u—w)(v>2)>2z and by symmetry a—>w=a->y
< (u—>y)(v>vy)—>y and hence

wt+v < a»z < [(u—>a)(v>2)>2][(u—>¥) (v>y) > Y] = 0.

Combining this with «v = 0 (see (xi)) we obtain (a—&] = (%] X (v]. Finally
an application of Lemma 4.3 and the observation that 0 < # < (#—y)-w,
0<y< (Yy—»>z)—>y yields (a—>x]= 3% 3.

X)X ’

[((yx)~y) 'yJI(\(X‘U) B (v X ey

The free implicative semi-lattice on two free generators %,y
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