Table des matitres du tome LXXVIII, fascicule 1

Pages
W. Hodges, Models in which all long indiscernible sequences are indiscernible .
T 1
J. Truss, On successors in cardinal arithmetic . . . . . Cr e e e 7-21
S. A. Morris, Locally compact groups and B - varieties of topological groups 23-26
R. F. Dickman, Jr.,, Some mapping characterizations of unicoherence 27-35
R. J. O’'Malley, Strong essential cluster sets . . . . . . . . .. .. . 37-42
L. Pacholski, On countably universal Boolean algebras and compact
classes of models . . . . . . . .. .. ..., . 43-60
&. B. Gordh, Jr., Concerning closed quasi-orders on hereditarily uni-
coherent continma . . . . . . .. oo L0 L0 oL 000 L 61-73
T. M. Aarts and T. Nisbiura, Covering dimension modulo a class of
BPACeS . . 4 . . . . . . R T T S SN 75-97

[

Les FUNDAMENTA MATHEMATICAE publient, en langues des congrés

internationaux, des travaux consacrés & la Théorie des Ensembles, Topo-

logie, Fondements de Mathématiques, Fonctions Réelles, Algébre Abstraite
Chaque volume parait en 3 fascicules

Adresse de la Rédaction et de 1'Echange:
FUNDAMENTA MATHEMATICAE, Sniadeckich 8, 00-950 Warszawa 1 (Pologne)

Le prix de ce fascicule est 4.35 §

Tous les volumes sont & obtenir par I'intermédiaire de
ARS POLONA-—-RUCH. Krakowskie Przedmiefcie 7, 00-068 Warszawa 1 )

DRUKARNIA UNIWERSYTETU JAGIELLONSKIEGO W KRAKOWIE

icm

Models in which all long ihdiscernible sequences

are indiscernible sets
by
Wilfrid Hodges (London)

Abstract. If 7' is any first-order theory with infinite models, and ¢ a formula,
we construct models of T of all regular cardinalities » such that x+s ()2, in which all
¢-indiscernible sequences of order-type % are in fact g-indiscernible sets, i.e. @-in-
discernible under all oxderings. The restriction to regular « is essential, since if  is 5 sin-
gular strong limit number, we show that every model of Peano arithmetic of cardinality
» contains an increasing sequence of order-type . We show finally that if » is regular,
%+ (%);, % > |T| and there is a model of 7' of cardinality x which is elementarily embed-
dable in every model of T of cardinality x, then all models of T of cardinality 7' have
indiscernible sets of cardinality x.

Ve extend a theorem of Ehrenfeucht, 8o as to find models of all
regular non-weakly-compact cardinalities » in which all indiscernible
sequences of order-type x are in fact indiscernible sets. We show an
obstacle to extending the theorem to singular cardinals, Finally we apply
the theorem to prove that prime structures of certain cardinalities contain
large indiscernible sets (1). }

§ 1. Tet A be an L-structure with domain 4, ¢(v,, ..., v,_,) a formula
of I, and (X, <) a linearly ordered set with X CA. We call (X, <)
& g-indiscernible sequence it for any two n-tuples @ = (ag, ..., a,_,),

b= (b, ..., b,_;) of distinct elements of X in increasing order, and any
permutation = of {0,...,n—1},

A= PlAoys vos Gyl  iEE A = L0y s Bugn—ny] -

We call (XX, <) a @-indiscernible set if for every linear ordering < of X,
(X, <) is a p-indiscernible sequence. By indiscernible sequence (set) we
mean ¢-indiscernible sequence (set) for all formulae g. (See Shelah [4]
Defs. 5.1, 5.2 for this terminology.)

Let T be a complete first-order theory with infinite models. e seek
those models % of 7 in which for every formula ¢, there is no ¢-indis-

(*) This paper is related to work in the author’s D. Phil. thesis, written at Oxford
University under the kind supervision of John N. Crossley.
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cernible sequence of order-type || (= cardinality of %) which is not
also a @-indiscernible sebt. Let E(T) be the class of all cardinals » such
that there is such a model of cardinality x. A. Ehrenfeucht showed in
his classic paper [1] that if some model of T has an infinite ¢-indiscernible
sequence which is not also a p-indiscernible set, then E(T) contains :»}1
regular cardinals = > |T| which are not strong limit numbers. (This is
what Ehrenfeucht actually proved, though not what he said he proved.)
On the other hand if x»—-(x);, then clearly x ¢ E(T). This leaves a gap
to be bridged. Ehrenfeucht’s argument will not generalise to bridge it;
we present another argument which will (at least for regular cardinals) (*).

THEOREM 1. Let T be a theory with infinite models, and » a regular
cardinal > |T| such that x+>(%)2. Then T has a model W of cardinality » such
that if o is a formula and (X, <) is (in A) a @-indiscernible sequence of
order-type =, then (X, <) is in fact a @-indiscernible set. :

Proof. Skolemise I to get 7% with |7% = |T|. Since x> (x)2,
a theorem of Hanf [3] says that there is a linearly ordered set (¥, <)
of cardinality x in which neither » nor x»* can be order-embedded. Construct
a model of T™ in which (¥, <) is an indiscernible sequence. Let * be
the Skolem hull of Y in this model, and let %A be the reduet of A* to I's
language. We claim % works for the theorem. Clearly % has cardinality s.

Suppose then that (X, <) is, in A*, a ¢(2,, ..., v,_,)-indiscernible
sequence of order-type x. By regularity of x we can assume without loss
that there is a term (v, ..., ¥,,_;) such that each element of X has form
(@), where @ is in the set [Y]™ of strictly increasing m-tuples from
(¥, <). Choose BC[Y]™ so that v* maps B bijectively onto X. Since
« is regular, we can use standard tricks (cf. [1]) to find in B a subset B,
also of cardinality x, such that if @ e B and ¢ < m, then

for all b e B’
for all b e B'—{a} and all j <m.

either a; = by
or a; # by

Lexua 2. Bvery set Z C'Y of cardinality » is split into two sets Z,, 7,
both of cardinality = by some element z of Z; i.e. if 2, ¢ Z, and 2, € Z, then
5 <2 2.

Proof of lemma. Suppose not; then there is a set Z C ¥ of cardi-
nality » such that every element z of Z has either <x predecessors or
<% successors in Z. Put

P={zeZ: 2z has < predecessors in Z},
8= {zeZ: z has <x successors in Z}.

(*) A. Ehrenfeucht was aiming to show in [1] that if » is a transfinite cardinal

and T a countable complete theory categorical in power 2%, then any infinite ¢-in-

discernible sequence in a model of 7' is a ¢ -indiscernible set. This is still true; as Morley
chowed by a different proof in Trans. Amer. Math. Soc; 114 (1965), pp. 514-538.
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Since P 8 = Z, either P or 8 has cardinality x». If P has, then x is
order-embeddable in P; if § has, then »* is order-embeddable in S. Either
possibility contradicts the choice of (¥, <J). This proves the lemma.

The following lemma is easy.

Levma 8. If M, N are disjoint sels of cardinality x, and P, Q are-
disjoint sets of cardinality » such that M o N = P U Q, then either M ~ P
and N ~Q both have cardinality =, or M ~Q and N ~ P both have cardi-
nality z.

Suppose now that i, ..., i;_, are the ¢ < m such that if @ = b in B,
then a; 7 bs. Enumerate {iy, ..., 4;_;} X {iy, .., i1}, say as (K, ko), -ee
veey (Fja_yy Ko y). Split B’ into two disjoint parts Dy, D; both of cardi-
nality ». By Lemmas 2, 3 there are sets D, C Dy, D; C D;, both of cardi-
nality », and z,e ¥ such that

either @ e Dy, b Dy implies a;, < 2, < by,
or  @eDy, beD] implies b <2 <3 Ay -

Repeat j? times, to find D, D ... D Djand Dy D ... D Dj: all of cardinality ,
and 2y, ..., 22, € ¥, such that for all p < 72,

either @e Dy, be D}y implies o, <2z, < b, s

* -
) or @eDp, beDj, implies by < 2, < ay,.

This done, apply exactly the same process to D}, as we have just applied
to B', to get disjoint sets Dy, D}, both of cardinality x, both C D},
and %, ..., Zp_; ¢ ¥, such that the equivalent of (*) holds. Repeat the
process with f);g etc., until eventually we reach disjoint sets E, (= D),
B, (= D), ..., B,_,C B, all of cardinality », such that if a, 5% ¢ B, for
each 7 < n, then the two concatenated sequences @°" ... "a"~%, §°" .., "p"!
have their terms in the same relative order in (Y, <).

Suppose now that UA*|=g(c[@, ..., r[a*1]) for some @°,...,a"*
in B, and # is a permutation of {0,..,n—1}. Tf we can show that
A* =g (z[a™], ..., 7[@7™D]), then we have proved the theorem.

Ey, ..., B,_; all have cardinality x, so we can find 5° ¢ B, ..., 5" e E,_,
such that (8", ..., 7¥("1) stand in the same relative order in
(X, <) as do «™(@), ..., 7™ (@ !). By ¢-indiscernibility of (X, <), UA*
=@ (z[8%, ..., z[6"1]). But similarly we can find @ ¢ E,, ..., "' e H,_, 50
that *'(z°), ..., ?*(¢*"") stand in the same relative order in (X, <) as
do +" (@), ..., #*"(@®~Y). By choice of B, ..., B,_, and indiscernibility
of (¥, <) we have U* |=@(¢[¢°], ..., z[¢""*]). Hence by g-indiscernibility
of (X, <) we have %* |=p(z[@?], ..., z[a™V]), and we are home.

Theorem 4 below will show that Theorem 1 fails to generalise to
singular cardinals. :
1+
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THEOREM 4. Let T be any couniable complete ewiension of Peano
arithmetic, let = be a singular strong Limit number, and let A be & model of T
with cardinality . Then U contains an inoreasing sequence of order-type »
(in the natural ordering of the model).

Proof. Write 4 for the domain of 9. Let x4 be the cofinality of x,
and let x = 3 1,, where (A,>., is a strictly increasing sequence of cardi-

nals <. Byai{}‘rdﬁs and Rado [2] Theorem 39, we can find for each a < i
a map h,: A,—~A which iy either order-preserving or order-reversing.
TUsing subtraction, we can suppose all the &, are order-preserving. Pub
B= Jimh,.

a<

Caﬂse 1. For each ¢ ¢ A, |{b e B: b < ¢}| < ». A then has cofinality u,
and by taking appropriate pieces of the sets im A, we can put together
a set of order-type =x.

Case 2. For some ce A, |{eB: b <c}| =% e can then suppose
without loss that for all beB, b <c¢. Find an order-preserving . map
f: p—~A. Define B= {e.f(a)+h,(f): a<pu,p <A}, taking 4, . in the
sense of A If a <a', B <4, and B’ <A, then

e.f(a)+1o(B) < e{f(@)+1) < ef(a) < ef(a) +TalB) -
If 8, <4, then

e.f(a)+ ho(f) < e.f(a)+h,(B")

Hence B has order-type x. This concludes the proof.

e do not know: what happens to Theorem 1 if we replace x by
a singular cardinal which is not a strong limit number. Ehrenfeuch
claims it for all cardinals of form 2%, but in fact he uses regularity ([1
p. 244 top).

§2. Let T be a complete theory with infinite models. Let %A be
a model of T'. We call U a x-prime model if |A| = » and U is elementarily
embeddable in every model of 7 of cardinality ». We write Spec(T) for
the class of cardinaly » such that T" has a x-prime model.

THBOREM 5. Suppose x is regular, s+ (x)3, x > |T| and » e Spec(T),
Then every model of T' of cardinality x has an indiscernible set of cardinality »,

Proof. Skolemise T to get 7% with |T%} = |T|. Let 9% be a model
of T of cardinality ».

Now we have structure B, €, D%, D, all of cardinality x, as follows.
B is a z-prime model of T. € is a model of T, guaranteed by Theorem 1,
such that for every formula ¢, every (p indiscernible sequence in ¢ Of
order-type x is a p-indiscernible set. D* is a model of T* which is the
Skolem hull of an indiscernible sequence (Y, <) of order-type ». D is the
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reduct of D* to T°s language. We have then three elementary embeddings,
f: 8-, g: B-»C, h: B->D. Using the embedding & first, we shall show
that B has an indiscernible sequence of order-type x. Using g, we shall
show that this sequence is an indiscernible set. Finally we shall use f to
inject the set into 9.

Let h®B be the image of B in D* under %. 7B has cardinality =, which
is regular and > |T¥|. Therefore there is a term 7 (%, ..., ¥,y_y) Such that 2B
contains » elements of form (@), @ «[Y]™. Find a subset B of [¥Y]™
50 that |B] = » and 7°° maps B injeetively into 1%B. Proceeding much as
in the proof of Theorem 1, find a subset B’ of B, also of cardinality »,
and a number j < m, so that if @, b are distinct elements of B’ then a; = bs
for all ¢ <j, and

either Gy _, < b; or b, , <Ja;.
Let X De the set {h™'¢®'(@): @e B'}, and put an ordering < on X by
setting 27'7>"(@) < A~1®"() iff a; < by. Then (X, <) is an indiscernible
sequence of order-type x» in B.

Now ¢(X, <), the image of (X, <) in €, is an ordered set with order-
type x. Let ¢ be any formula of 7’s language. Then ¢(X, <) is a ¢-in-
discernible sequence, because g is elementary. By choice of €, g(X, <)
must then be a ¢@-indiscernible set. Hence (X, <) is an indiscernible
set in B. Finally f injeets (X, <) into ¥, and we are done.

We give a couple of examples. Let T, be the theory of infinite atomic
boolean algebras; let T be the theory of the structure {Z, R) where Z is
the integers and R = {<a,b, ¢): b lies strictly between e and ¢ in Z}.
Both T, and 7; are complete and have infinite models.

Now Spee(T,) consists of all strong limit numbers, since these are
precisely the cardinals x» such that every model of 7, has » atoms. (The
prime model in cardinality » is the finite-cofinite algebra with x» atoms.)
It follows by Theorem 3 that if x is a strong limit number and x-+ ()3,
then every model of T of cardinality » has an indiscernible set of cardi-
nality ». The set of atoms is such a set.

On the other hand it’s plain that no model of T, contains an infinite
indiscernible set. Hence by Theorem 3, no regular cardinal » such that
x> ()3 is in Spec(T,). Singular cardinals apart, this result is best possible;
it is easy to show that if »+s(x); then x e Spec(T;). As a matter of fact
no singular cardinal is in Spee(T)), but this may only be because 7 is
so simple.

Finally we mention a quantifier-free version of Theorem 5, which
gives a little new information. The proof is virtually the same.

THEOREM 6. Let T be a theory (not necessarily complete) with infinite
models. Suppose x is regular, w+(x)3, % > |T, and there is a model of T of
cardinality » is embeddable in every model of T of cardinality x. Then every
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model of T of cardinality = has a set of cardinality » which is @-indiscernible
for all quantifier-free formulae ¢.

Tt follows for instance that if » is regular and %+ (x)z, then there
is no model of Peano arithmetic of cardinality » which is embeddable
in all models of Peano arithmetic of cardinality ». One presumes the same
is true for all uncountable », but for » singular or weakly compact the
proof must be different.
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On successors in cardinal arithmetic
by
John Truss (Leeds)

Abstract. Properties of the three kinds of sueccessor of a cardinal number defined
by Tarski (Indagationes Mathematicae 16 (1954), pp. 26-32) are discussed. Let them
be 1, 2, 3-successors respectively. A Fraenkel-Mostowski model is given in which the
axiom of chojce fails, but every cardinal has a unique I-successor. It is proved that
if every cardinal has a 3-successor, then z infinite implies z = 2x. Models are given
containing cardinals «, y such that 2x iz a successor of z, and y* a successor of y, re-
spectively, and various other properties and characterizations of 3-successors are
mentioned. The positive results are based mainly on Tarski’s methods in cardinal
arithmetic (see Lindenbaum-Tarski, Communication sur les recherches de la Théorie
des Ensembles, C. R. Soc. Se. Varsovie, CL III 19 (1926), pp. 299-330), together with
some cofinality arguments.

§ 1. Introduction (*). In [8] Tarski defined three types of successor
of a cardinal number (henceforth called 1,2, 3-successors respectively)
and proved that “for all » (x has a 2-successor)” implies the axiom
of choice. (If « has a 2-successor, it is necessarily unique). We show
in § 3 that “for all # (x has a unique 1-successor)” does not imply
the axiom of choice (at least in a Fraenkel-Mostowski setting) nor
even that every Dedekind finite cardinal is finite. In § 4 we show
that “for all # (z has a 3-successor)” implies that for all infinite «, # = 2a.
‘We feel that probably neither of these assertions, nor even the former
with “unique” inserted, implies the axiom of choice, but no proofs of
any of these have yet been announced. For completeness we begin § 4
with a proof, pointed out to the author by Prof. A. Levy, that “for all
well-ordered « (x has a 2-successor)” implies the axiom of choice, and
conclude it with one or two characterizations of cardinals which can or
cannot be 3-successors.

§ 5 is devoted to a few special cases. Models are given in which there
are cardinals z, y such that 2 is a 3-successor of z and 72 is a 3-successor
of y. Of course it is known that 2% can be a 1-successor of x. We show
that whenever this happens, 2% is also a 3-successor of z. The same is

(*) In a letter, Professor Tarski informed the author that he had proved Theorem 3
independently some time ago. Lemma 2 and Theorem 7 (ii) were first announced in
Lindenbaum-Tarski, Communication sur les Recherches de lu Théorie .des Ensembles,

C. R. Soc. Se. Varsovie, Cl. III 19 (1926), pp. 299-330.
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