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predicate symbols be interpreted on |#| 50 as to malke fmdmissibl.e and f,
an isomorphism of #|L(4) and A\ L(A). Let By be 131.1@ umq,ue‘ equivalence
relation on (|| — p () X @ such that R, is isomorphic t? R, via f?. Ther} fo
induces an L (4) -isomorphism between (+ , By) and (4, ,.Ey). By the induction
hypothesis (&}, Bo) |- Ali;, ..., i] since (s, R) |- ALiy oy Bl Thu's some
extension of (4, R') forces A[i;, ..., &]. Since f~* induces an L(A)-isomor-
phism between (#', B') and (#, E), if some extension of (Jef,za') forces
Ali,, ..., ;] then some extension of (4, k) forces Aliy, ..., ix]. This completes
the proof of the lemma.

Using the lemma we can now prove thab B<H. We first observe

that if A e Sy(L) then $'(4)= T if and only if (s, By)|~-4 for some
new. Let 4e8,(L) and suppose that (#£, R)|—- A[e]. We define an ex-
tension (4, B') of (4, R) as follows. Let |#£'| = |4| v {a} where a = (n, m)
is chosen in w X w— |#| so that gm ¢ L(A). Let the predicate symbols be
interpreted on |#'| so that #' is admissible and so that f: |#|—[4] is
an automorphism of #'|L(4), where f(w)=a, f(a) = w, and f is the
identity on |4|—{a, »}. Let R’ be the least equivalence relation on
(|#'|—p(#4)) X @ which extends B and which is such that («,m) and
(w, m) are R'-equivalent for each m such that either the R-equivalence
class of (w, m) has power > 1 or g™ ¢ L(4). Now f induces an L(d)-auto-
morphism of (4, R’). It follows from the lemma that (', R')|~ A[i]
gince (4, R') |- A[o]. Thus if A[e] is true in B’ so is A[Z] for some
a # w. This demonstrates that B < %'
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An isomorphism theorem of the Hurewicz-type
in Borsuk’s theory of shape

by
Krystyna Kuperberg (Stockholm)

Introduction. Tn Hurewicz’s well-known paper [6] is a homo-
morphism ¢ defined from the nth homotopy group =,(X) into the nth
singular homology group H,(X) with integral coefficients, for any com-
pact, pathwise-connected space X, and it is proved there (for n > 2)
that if the space X is (n—1)-connected (that is, if 7 (X) m 5y (X) = ...
w. mv7, (X)) ~0), then the homomorphism ¢ is an isomorphism.

In this note an analogous homomorphism with similar properties
will be constructed on the ground of Borsuk’s theory of shape (introduced
in [1]).

The singular homology groups of a pointed compactum (X, @) will
be replaced by the Vietoris-Cech homology groups of (X, x,), denoted
by ﬁq(X » %), and the homotopy groups m,(X, #,) will be replaced by the
80 called fundamental groups =,(X, «,), defined by K. Borsuk (see also [1]).
In the general case, Hurewicz’s assumption of the (n—1)-connectednes
of X will be replaced by approximative ¢-connectedness (for ¢ =0,1,...
vy, n—1) of (X, x,) (see for instance [2], p. 266, or Definition 3.1
in this paper). But if the pointed compactum (X, #,) is connected and mov-
able (see [2], § 4) then the assumption of the approximative ¢-connec-
tedness (for ¢= 0,1, ..., n—1) is equivalent to (X, ) ~mms( X, 2) ~ ...
e R, (X, ).

§ 1 of this paper contains a modified definition of the homology
groups Hy(X , %) and a proof of the equivalence of this definition to
the original Vietoris definition. § 2 containsg a construction of a homo-
morphism  @: ma(X, #) > Hn(X, @), called the limit Hurewicz homo-
morphism. In § 3 the following theorem is proved:

If the pointed compactum (X, a,) is approximatively ¢-connected
for ¢=0,1,..,n—~1 (n > 2), then the limit Hurewicz homomorphism
® is an isomorphism.

§ 1. The groups I') (X, z,). Let @ denote the Hilbert-cube, X —a non-
empty closed subset of @ and #,— & point lying in X. For any positive
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real number &, the open neighbourhood of X consisting Of. all poénts rel)
with p(z, X) < ¢ will be denoted by U*. The term “mapping” Wwill always
denofe continnous mapping.

Tn this paper we will base ourselves on the definition of the singular
homology groups and all concepts related to this definition, described
in [3], c¢hapter VII. »

1.1. DEFINITION, A singular ¢-simplex T A, such that the set
T(4,) is contained in a set 4 C@Q is said to be lying in A I A= U,
then 7' is called an (e, g)-simplex. If A = {xz}, then T' iy said o be lying
at z,. Now, let a = f a;T; be a singular ¢-chain of ¢ (4;-integers, T'-sin-

=1
gular g-simplexes). The chain a is said to be lying in A (resp. at wy) if
éach T is lying in A (vesp. at #,); it is said to De an (¢, ¢)- chuin if each
T; is an (e, ¢)-simplex, and it is said to be smaller than § > 0 whenever
for each Ty, the image Ty(d,) is of diameter less than. d.

"1.2. DeFINTIION. Let 2 = {44} be a sequence of singular chains. The
sequence A is called an infinite singular q-chain of X if there exists
a sequence {5} of positive real humbers converging to zero such that A is
an (ex, g)-chain. The infinite singular ¢-chain 4= {1} is said to e lying
at z, if each A is lying at w,.

The addition of two infinite singular g-chaing 4 = {Az} and p == {us}
is defined by the formula A+ u = {Ax-+ux}; the set of all infinite
gingular ¢-chains with this operation is an Abelian group. ‘

If A= {4} is an infinite singular ¢-chain of X, then the sequence
{04} is an infinite singular (¢—1)-chain of X; this chain will be denoted
by 2. If 94 is lying at x,, then A will be called an infinite singular ¢-cycle
of the pair (X, x,).

An infinite singular ¢-cycle a of (X, x,) is said to be homologous fo
2eroin (X, m,) (written a ~0) if there exists an infinite singular (q'—H )-chain
A such that a—ol is lying at a,.

An infinite singular ¢-cycle a = {a;} of (X, a,) is called a fundamental
g-cycle of (X, z,) whenever the infinite singular cycle f == {a,— aj.} is
homologous to zero in (X, ). Fundamental cyeles of (X', m,) will be
denoted by underlined Greek letters, e.g. a = {az}. It is eusy to see, that
the set of all fundamental ¢-cycles of (X, @,) is a subgroup of the group
of all infinite singular ¢- chains; this subgroup will be denoted by Zg( Xy ).
The subgroup of Z,(X, x,) consisting of all infinite singular ¢-cycles of
(X, @) which are homologous to zero in (X, u,) will be denoted by
By X, @,). Liet Ty(X, z,) denote the factor group Zg(X, 2)/Bo( X, ).

The gth Vietoris homology group H,(X,x,) of the pointed com-
pactum (X, ;) with integers as the coefficients, is usually defined ay
follows (compare [3], ehap. 1T, § 3): :
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. Let ¢ be a positive number. A ¢-dimensional &-simplex Iying in X is
an ordered set of g-+1 points of X (called the vertices of the &-simplex)
with diameter less than e. An e-simplex is said to be lying at 7y, if any
vertex of it is equal to #,. A formal finite linear combination g = g‘bm

. . . . . =1
of ¢-dimensional e-simplexes o; with integral coefficients b; is called

a ¢-dimensional ¢-chain in X. If any e-simplex of this combination is
lying at @, then the ¢-chain o is said to be lying at =,.

For any two g-dimensional s-chains a = byoy+...+bmon and o
= bjoj+...+ b0y, define the sum a-f as the ¢-dimensional e-chain
by 01+ .+ b Om by ol ... + bof. This addition is a group operation on
the set of all ¢-dimensional e-chains. Equivalently, the group of all
q-dimensionale -chains can be defined as the free Abelian group generated
by the set of all ¢-dimensional ¢-simplexes. -

Let o = (v, 1, ..., %) be a ¢-dimensional ¢-simplex. The (g—1)-di-

. a .
mensional e-chain 80 = ' (—1)"(Dy, Oy, ey 0;_y, Vypry oory 7g) is called the

=0
boundary of o. Then one extends linearly the boundary-operation # on

m m
the whole group of ¢-dimensional ¢-chains, i.e. 8(3 bioy) = Y biday.
i=1 i=1

. 1

A sequence y = {yy} of ¢-dimensional e-chains, where e; converges
to zero, is called an infinite q-dimensional chain (in the Vietoris sense).
If each yy is lying at =,, then the infinite ¢- dimensional chain y is said
to be lying at @,. For any two infinite ¢-dimensional chains y = {yx}
and y = {y;} define the sum y-4y' as the infinite ¢-dimensional chain
{71+ vr}. The set of all infinite q-dimensional chains together with this
addition is an Abelian group.

For an infinite ¢-dimensional chain y = {y;}, the infinite (¢—1)-di-
mensional chain {y;} is called the boundary of y and denoted by dy. An
infinite q-dimensional chain y is said to be an nfinite .q-dimensional
cycle in (X, x), if @y is lying at z,. An infinite ¢-dimensional cycle y is
said to be homologous to zero in (X, m,), if there is an infinite (¢41)-di-
mensional chain » such that the infinite g-dimensional chain dx—y is
lying at @,. An infinite ¢-dimensional cycle y = y; in (X, z,) is called
a g-dimensional true cycle in (X, ), it the infinite cycle {y,—yr..} 18
homologous to zero in (X, x,).

Let Zy(X,x,) denotes the group of all ¢-dimensional true cycles
in (X, @) and B(X,x,) the group of all ¢-dimensional infinite cyecles
in (X, &), which are homologous to zero in (X, a). Certainly, By(X, z,)
is a subgroup of Z,X,x). The quotient group Z,(X, @)/ByX, 2,)
is denoted by HyX , ) and called the gth homology group (in the
Vietoris sense) of the pointed ecompactum (X, ,), with integers, as the
coefficients.
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1.3. TaEOREM. The groups IyX,z,) and flq(X ) @) are isomorphic.

Proof. Let p: QX be a (not necessary continuous) function such
that o(z, (%)) = (@, X) for each <@.

Let T: 4,~@Q be an (¥, r)-simplex of diameter less than fe and let
d & ...,d" denote the vertices of 4,. Ther the system

(p(7(@), p(T(@), -y (T (@)
is an r-dimensional &-simplex (in the Vietoris semse) lying in X, let it

m
be denoted by P(T). Now, if A= Y a/T; is an (}e,r)-chain smaller

t=1

m
than }e, then Y a;P(Ty) is an r-dimensional &-chain (in the Vietoris
=1

sense) lying in X; let it be denoted by P(A). Observe, thait P (A 2p)
= P(h)+P(,) and P(81) = 0P (). Observe also, that for any (}e, r)-ecycle
2 there exists an ({¢,r)-cycle 4 which is smaller than }e such that 1 and A/
are homologous in (U*3, m,) (for instance, A’ can be obtained as the result
of an iterated barycentric subdivision of A; comparée Theorem 8.2
in [4], chap. VII, p. 197).

Let a be a fundamental ¢-cycle in (X, s,). There exists an element
@' = {az} of the homology class [o] such that s is an (4s,, ¢)-cycle smaller
than }e, (where 0 < g0 for k= 1,2,...). For this element o'y define
P(a') = {P(ax)}. The sequence {P(a)} is an infinite cycle (in the Vietoris
sense) in (X, x). In order to prove, that it is a true cycle, observe, that
there exists an infinite singular (g-1)-chain p= {ur} such that
(ap— 1)~ 0px is lying ab @, sinee o = {ay} is & fundamental g-cycle
in (X, z,). Moreover, the sequence x can be assumed to be guch that pr 18
@ (30, ¢+1)-chain smaller than $d5, where 0 < 6z->0. Therefore P(ag)—
—P(0y41)— 8P (uz) is lying at x,, where P(u;) is & d-chain (in the Vietoris
sense), and the sequence {P(ax)} is a (Vietorian) true cycle. An analogous
argumentation shows, that the homology class [P(a")] does not depend
of the choice of ¢’ in the homology class [a]. Thus, the formula w([«])
= [B(a")] defines a homomorphism w: Iy(X, a0) >Hy(X, a) (¢ =0, 1, ...).

' Now, le’q 0= (1,0, ...,9,) be an r-dimengional (Vietorian) &-simplex
in X. The linear mapping 7: 4,-»¢ with T(d%) =w; for 0« g is

a singular (e, 7)-simplex such that P(T) = ¢. Denote this singular simplex
m

by F(o). It y-—«%’bwz is an r-dimensional (Vietorian) e-chain, then

m
Fy) =£ biF (04) is a singular (e, #)-chain such that P(F(y)) = y. Thus,

if %= {x;,}‘~ is an infinite (Vietorian) #-dimensional chain, then I'(x)
= {F (%)} is an infinite singular - chain such that P(F (%)) = x. Observe

that P(dx) = oF (x), and F(u'+ ") = F(«')+F(»"). This shows that
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if y is a true (Vietorian) ¢-dimensional cycle, then F(y) is a fundamental
g-cycle such that P(F(y)) = y. This proves that o is an epimorphism.

To prove that w is a monomorphism, suppose that a— g‘aﬂ’j is

=1
a singular (§¢, ¢)-cycle smaller than }e. Thén FP(a) is a singujar (e, q)-
cycle; moreover, the eycles o and FP(a) are homologous in (U z,). In

m
‘fact: FP(a) = }'a,T; where Tj: A;—Q is the linear map with Tj(a%y

f=1
= pTy{(d") for 0 <i < q and each 1 < j < m, and the cycle f ay(Tj—Ty) is
equal to the boundary of the (g-41)-dimensional prisnglllain (see [5],
chap. VII, § 6=7) DT =£’ 2;DT; where the mapping DTy: Ix 4, for
each j is defined by thézflormula
DTyt v) = 1 T5(0)+ (1—8) Tiv) for tel, vedy

(the sign -+ denotes here addition in the linear Hilbert space H D Q).
Therefore, if « is a fundamental ¢-cycle, then a and PP (a) are homologous
in (X, ) and, in particular, if P(a) is homologous to zero in (X, ),
then ¢ is also homologous to zero in (X, ), i.e. w is a monomorphism,
which completes the proof.

§ 2. The limit Hurewicz homomorphism. The fundamental groups
(X, 1) are defined by K. Borsuk ([1], pp. 246-252) as follows:

Let X denote, as before, a closed subset of the Hilbert-cube @ and
let @, ¢ X. The g-sphere will be denoted by 8% Let s, « 82 be a base-point
of 8% A sequence of pointed mappings &x: (8% 8)->(Q, ) (k=1,2,...)
will be called an approzimative map of (8% s,) towards (X, z,) whenever
for any neighbourhood U of X the pointed homotopy &x~&,,, in (U, 2,)
holds for almost all %. This approximative mayp is denoted by {£, (87 $;)
(X, 2,)} or, more briefly, by &.

Two approximative maps

E= {&, (8% s)>(X, %)} and &= {&s (8% 0)> (X5 @)}

are said to be homotopic (written £ ¢&') whenever for any neighbour-
hood U of X the pointed homotopy &, =& in (U, %) holds for almost
all %, i.e., whenever the “mixed” sequence {£,, &, &, &, ...} is an approxi-
mative map of (8% s,) towards (X, z,). The equivalence class of the ap-
proximative map £ under the relation = is called the homotopy class of &
or the approzimaiive class from (8% s,) towards (X, z,), represented by the
approximative map &.

Now, let [£] a,nd_[n] be approximative classes, where & = {&x, (8% s)
(X, @)} andi = {nx ’""(Sq’ 80) > (X, #,)}. Define [£]+[n] = {&x+ 7k, (8% )
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—(X, ,)}, where &+, is the homotopic sum (see [L], p. 250, the join
of maps) of the mappings & and #nx. The set of all approximative classes
from (8% s,) towards (X, #,) with the above addition is a group, called
the ¢-th fundamental group of the pointed compact space (X, xy) and de-
noted by my(X, @). )

To define the limit Hurewicz homomorphism ¢: my(X, mo)—>ﬁg(l’ s y)
(for ¢ > 1), let us take an approximative class [£] e my (X, u,) represented
by an approximative map &= {&, (8% 8))—>(X, )}. It follows by the
definition of the approximative maps that there exists a sequence e of
positive numbers which converges to zero and is such that &, ~&, , in
(U™, z,), where U™ denotes, as before, the s;-neighbourhood of X in @.
In particular, £(8%) C U and therefore & can be considersd as a mapping
of the pair (8% s,) into the pair (U*, @), et &z He(S, 89)-> Ho( U, uy)
denote the homomorphism of the singular homology groups, induced
by & and let ¢ be a fixed generator of the group H,(SY, s,). The element
&wle) e H( U™, my) i3 the homology class -of a singular g¢-dimensional
cycle ap in (U™, x,) (i.e. of a singular (e, q)-cycle ax). The cycles ag
and ¢, are homologous in (U, x,) since the homotopy &, &py holds
in (U*, o). Thus, the sequence {ox} is a fundamental q-cycle of (X ) %),

It is easy to see that the element [{az}] of the group Iy(X, a) does
not depend either on the choice of the element £ of the class [£] e ma (X, @)
or on the singular (e, g)-cycles ax representing the elemients E4(e),
k=1,2, .. Thus, the formula P[£] = [{os}] defines a function y: 7 (X, u,)
Iy (X, %). The function y is a homomorphism (observe the Wmmlog'y
between the. definition of ¢ and the classical definition of the Hurewicz
homomorphism ¢). The composed homomorphism ¢ = w op: my( X, 2,)
_—>H4(X , %) will be called the limit Hurewice ‘l;omomorphvigm (the
Isomorphism w: IyX, @) Hy(X, 2,) iy defined in §1)

§ 3. The main theorem.

3.1. DEFINITION. The pair (X, z,) is called approzimatively ¢-con-
?wcted ('q= 0,1,2,..), whenever for any neighbourhood U of X there
is a nelghpom'hood V of X such that each mapping S (8% 8) (V' @)
is Inessential in (U, x,) (see [2], p. 266).

3.2. THROREM. If the pointed compactum (X, @) is appromimatively
g-comwcted- Jor all g=0,1, woy =1 (0= 2), then the limit Hurewics
homomorphism o (X, ) >H (X, 2,) is an isomorphism,

' EF‘I}e proof of this theorem will be preceded by three lemmas and some
definitions. :

.A su?gula.r simplex T in (@, 2,) will be called reduced whenever each
s-dimensional f@ce pf T‘(for any s < n—1) lies at ,. A singular chain
(rfzsp. cycle) which is a linear combination of reduced singular simplexes
will be called a reduced singular chain (resp. cyele)
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Let us remember that the ith (¢—1)-dimensional face T of the
gingular ¢-dimensional simplex T 4,+@ (0 < 4 < ¢) is in [5] (chap. VII)
defined as the composition 7” = T o ¢}, where ¢ is the suitable simplicial
inclugion of 4,_, into 4,. Let us write A" = ¢i(4,_,) and A, = G 49,

For any subset U of @, the group of all ¢- dimensional singular 1e]gavins
lying in U will be denoted by Cy(TU).

Observe that for any homotopy h: Ix A->B (where I is the unit
interval [0, 1] and A, B are topological spaces) there is a (unique) corre-
sponding family of mappings h;: A—B (0 <t < 1) defined by the formula
hx) = h(t,®), we A, tel. Thus, the homotopy h will be sometimes
considered as the farily {h}.

3.3. LeMMA. If the pair (X, x,) is approximatively s-connected for all
s=0,1,..,n—1 (n > 2), then for any neighbourhood UD X there exists
a neighbourhood Uy D X such that to each singular q-simplex T: Ay—TU,
(g=10,1,2,..) can be assigned a homotopy hT: Ix Ag->U such that the
following conditions are satisfied:

(i) hg = T
(il) If T9 is the i-th face of T (0 <i < q), then hT" is the i-th face
of the simplew K for each te I, .e. KF® =1¥ o ¢l;

(iii) AT is & reduced singular simplex;

(iv) If T is a reduced singular simplex, then hf = T for each e L.

Proof. Observe first that approximative s-connectedness for all s
=0,1,..,n—1 implies that .

(x) there is a system of neighbourhoods U, Uy, ..., Un with XC U,
CU,C..CUy,= U such that each mapping f: (8% so) > (Ug, %) i3
inessential in (U,.,, @) for ¢=0,1,...,2—1.

The homotopy A% will be defined inductively with respect to the
dimension of the singular simplex 7.

1° Let 7 be a 0-dimensional singular simplex. If T maps 4, into ,
then let A7 be the constant map into #,. Otherwise, let h” be a homotopy
in U, (U, a8 defined in (x)) such that hf =T and h¥ is the constant map
into @, for any ¢e[1/n, 1].

2° Suppose that 1 ¢ n—1 and the homotopies KT are defined
for all singular simplexes 7' of dimension < ¢—1, 80 that the conditions
(i)~(iv) are satisfied and, moreover, it T' is of dimension g¢—1, then for
any {e[g/n, 1] Af is the constant map into .

Let T: A, U, be a g-dimensional singular simplex. If T is reduced,
then let 27 = T, for each ¢ I. Suppose now that T’ is not reduced. Let
T9: 4, T, and TP: 4,_,->U, denote respectively the ith and the jth
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face of T. Observe that if 7": 4, U, is a common face of 7 and 70,
i.e. if there are simplicial inclusions ¢': 4, ~>4,; and f': 4y, >4, _; such
that T' = T% o ¢’ = T o f’, then by (ii) the equality

® 7
B Irxertagn = B lzxpragn holds.

Thus, a continuous function
g: [0,/}—%] X dg v {0} X dg T,

is well defined by the following formula:

WOw). i o= ¢i(w) for some i and we A, ,
IGOD=\pw) i t=0.

Tt is easy to see that there iy a retraction

q -
r: [O,%]XAq—)[O,E]XAqu{O}qu;
let us write

W=rog: [o,-ﬂ X AgT, .

It follows by the inductive assumption that

v ({9 = e

and by (x) there exists a homotopy

1, q Q+1
R': [E,T]XAQ")UQ_H‘

such. that

" ’ m 1 . 1
B lgmxag = ¥lgimyxa, and b ([;%,g—:"—] X dg v {g—;}%} X Aq) = g} .

The homotopy %”: Ix dg—U,,,, defined by the following formula

Wi, 0)  for b [0, ;q.],
(2

Wt 0)=n"(t,v) for te[g,-qil],
n’ m
4 for ts[————-qn{—l,l],
n

.
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satisties the conditions (i)~(iv) and, moreover, A7(I x 45) C U,,, and hf(v)
g-+1

= Wy if é_t < 1.

3° Suppose now that ¢ = » and assume that the homotopy r%: Ix
X A4y~ U is defined for each (¢—1)- dimensional singular simplex T such
that the conditions (i)-(iv) hold. Now, let T: 4,7, be a ¢-dimensional
simplex. I 7' is reduced, then define h* by #f = T for each t ¢ I. Suppose
that 7' is not reduced. Then, as in 2°, the homotopies 4" (i = 0,1, ..., ¢)
together with. the mapping 7' yield a mapping g: Ix Ay {0} X 44T
which. can be extended to a mapping A7: I X 4,— T, since I x 4, v {0} x 4,
is a retract of I X 4,. The family {h*} of all homotopies obtained by this
method satigfies the required conditions.

3.4. LeMMA. If the pair (X, z,) is approximatively s-connected for all
s=0,1,..,n—1 (n=2), then for any neighbourhood U of X there is
a neighbourhood U, of X and for any ¢=10,1, .., n+1 there is a homo-
morphism vg: Oy Up) = Of(U) such that the following conditions are satisfied:

(a) for any A e Cy(U,) the singular chain tq(A) is reduced,

(b) if the chain A ¢ Cl(Uy) is reduced, then t,(4) = 2,

(€) 81g(A) = 7,1(04) for amy A e ClUy)y g=1,2,..,n41,

(Q) if the chain o e Cy(U,) is a cycle (moda,), then the cycles o and t,(a)
are homologous in (U, z,).

Proof. The set of all singular ¢-dimensional simplexes in U, is
a system of generators of the group Cy(U,); hence it is sufficient to define
the function 7, on any singular ¢-dimensional simplex T: 4,—U, and
then to extend it (linearly) to a homomorphism of the whole group Cg(U,).
Let k¥ be the homotopy obtained by Lemma 3.3. Define 7(T)= Kt
The singular simplex A7 lies in U; therefore 7,: CgUy)->Cg(U). The con-
ditions (a) and (b) are evidently satistied. To prove condition (e) it is
sufficient to verify it for the chain A = T, where T': 4, U, is a singular
¢-simplex. On-the one hand,

a
Oqto( T) = k¥ = D' (—1)'h{ o ¢j;
=0
on the other hand,
a [

taaOaT) = Ty (D (—1VT o ) = 7 Y (— 1))

=0 i=0

N ; i : iy, T

= M (=T = Y (—1)H".
=0 =0

Condition (i) of Temma 3.3 yields the equality A" = hf_’ o ¢i; therefore
807¢(T) = 7,_,(8,T). To verify condition (d), consider a singular ¢-cycle
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a= ) a;T;in (Ty, x,). For any j, the homotopy 1% is a (g--1) - dimensional
7
prism in U (see [5], chap. 7, § 6=7) and

2 et 4 o pt®
B(hP) = WFI—hfi— 3T (—1)H(IT)" = o Ty)— Ty— 3} (—1)h"7 .

=0 q=a

Therefore

o) ™) = r)—a— 3 ay ) (1yipz ,
7

7=

-3

which shows that 7,(a) and « are homologous in (U, ), since the prism-
chain Z’aqu‘ (—1) h'*";" lies at #,, and the proof iy complete.
7 =0

Consider now a mapping T,: 4,— 8" which maps the boundary 4,
of 4y onto s, and is 1—1 for all other points. 7, is a singular n-cyecle in
(8™, 8y); moreover, the homology class ¢ = [T,] of this cycle is a generator
of the nth singular homology group Hp(8™, s).
_ Let U be a subset of the Hilbert-cube @ with 2, ¢ U and let &: (8, s,)
-(U, @) be a mapping. The composition &o Ty: A4, is a reduced
singular n-simplex; let it be denoted by T,. Observe that the sihgul;xr
chain T, is an n-eycle in (U, ,) and £(e) = [T,], where &: Hyn(8", s,)
-Hn(U, #,) is the homomorphism indunced by &.

3.5. LEMMA. Let [£],[£], ..., [£™] e ma( U, @) (0= 2) be the homotopy
classes of the mappings &, &, ..., E™: (8%,) (U, my). If there exists a reduced

m n
(n+1)-dimensional chain % in U such that.od = Y asTyy, then D a7 = 0
=1 =1
in the group m,(U, x,) (compare [6], p. 527).

Proof. It is sufficient to prove the lemms under the as.&;umption
that =T (where I: 4,,,—~U is a reduced singular (n--1)-dimensional
simplex), since the group m,(U, &) is Abelian for . = 2. Then there exist
mappings Ca: (8% s0)>(U, @), §=0,1,..,n41, such that T, = T

N1
(since T is reduced); therefore 1= Y ( —1)'T,. Let AT denote the re-
i=0
striction T4,,,: dgy, U, and let (A1), m,(4,.,) =7 U, 2,) e the homo-
morphism of the homotopy groups induced by dT. There is a generator ¢’
. N1
of the group mu(d,.,)~Z% such that (AT (e) = 3 (—1)[t:] e m( U, ),

=0

since 7' is reduced. But the inclusion map j: 4,,,->4,., induces the
0-homomorphism j, (indeed, 4,41 i8 contractible) and (dT),(¢') = T,j,(¢)
=0, where T,: m,(4, +1)>7( U, %) is the homomorphism induced by T.
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Proof of Theorem 3.2. Since ¢ is defined as the composition
o oy and o is an isomorphism (see § 1), it is sufficient to show that v is
also an isomorphism.

Let U be a neighbourhood of X in . Observe that if T: 4,->T is
a reduced singular n-simplex, then there exists a mapping &: (87, 5,)
- (U, @) such that T = T,. Therefore, for any reduced singular n-cycle a
in (U, @,) there exists a mapping &,: (8", s9) > (U, ,) such that &.(e) = [a].

1° We will prove that v is an epimorphism.

Let o = {ax} be a fundamental n-cycle of (X, z,). Let {U™} be a se-
quence of neighbourhoods of X such that U%= = U% (see Lemma 3.4)
and 0 < ¢x~>0. There is an infinite singular (n-+1)-chain 12 = {iz} such
that 84p = ap— ;. (modx,), since o is fundamental. Suppose that‘ A
lies in U*. The generality of the proof is not reduced by this assumpmoz?,
since instead of o we can take a suitable subsequence a' of g, Whic]’l‘ is
always a fundam—xentzul n-cyecle homologous to a in (X, ) and which
satisties this assumption. Let fr = wa(ax) and xx = 7,,4(4x) (for 7f =2, 3,‘ )y
where 7;: Cg{ U**) = Oy U*2) (¢ = n,n+1) is the homomorphism defined
in 3.4. Clearly, the sequence 8 = {fs} is a fundamental n-cycle of (X, x),
since Oup = fr— Pp4q(moda,) and, moreover, f and a are homologous
in (X, ). .

The singular n-cycle fi in (U*7, 2) 18 reduced (for any k); hence
there exists a sequence of mappings {&}, &k (8% so)— (U™, o) S}lch
that &g(e) =[] (k=2,3,..). We wil now show that ghe mappufgs‘
Ep: (87 50)>(Q, %) forms an approximative map of (8", 8) ‘towald.s
(X, @) Liet (Ex— Eppy): (87, 80) = (U™, o) denote the hoglo’ngp'y difference
between &, and &, (k= 2,3,..). Cleatly, (& Eren)” (€)= [Br— Braal-
On the other hand, f,— fe4. is & boundary (in (U*7, 2,)) of 1_311(3 re(iueed
chain »z. This and Lemma 3.5 yield the homot.opy %‘k > & in (U, o).
Hence £ = {£x, (8% s)—=>(X, %)} is an a,.pproxu.natlve map. Moreover,
»([£1) 2,97 which, proves that ¢ is an epimorphism. ) ‘

2° Suppose now that w([£])= 0, where &= {£k, (51 , 8) > (X, wo)}:
There exists an infinite singular (#--1)-chain A= {4} of X such :ohgt /'L,g‘ is
a reduced chain in U%(ex—0) and 81y = Ty, and Lemma 8.5 11261)1198
that the mapping &: (8% ) (TU™*, ) i8 nuﬂ-ho%notoplc in (Uh,_aclg.
Thus, £ 0, that is [£]== 0, which proves that w is a monomorphism.

3.6. Remark. If the pointed compactum (X, ) is .movable, then
the condition mg(X, ) ~0 is equivalent to the assumpt;on of 1‘7he a};
proximative _q?eonnectedness of (X, ) (for ¢=20, 1,2,..) (see [2],
p. 271 and [4]). ‘

3.7. COROLLARY. If the pointed compactum (X ,a;o) i ’ﬂ"LO’l};Iblé anj
if ng(X, ) ~0 for ¢=0,1,.. n—1 (n>2), then the limit Hurewics

homomorphism @: an(X, )~ Hu( X , @) is an isomorphism.
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Spaces of ANR’s

by
B. J. Ball (Athens, Georgia) and Jo Ford (Auburn, Ala.)

1. Introduction. For o finite dimensional compactum X, let 25 de-
note the hyperspace of ANR’s lying in X, with the metric g, introduced
and studied by K. Borsuk [3]. Among many results estaplished by
Borsuk, we mention here that 2§ is complete and separable, and the
topology of 23 is characterized by homotopic convergence: 4 sequence {A}
converges to A in 2% if and only if (1) {4 converges to A in the Haus-
dortf sense and (2) for every e >0, there exists a 6> 0 such that for
each 4, every subset of 4, of diameter less than 8 is contractible to a point
in o subget of A; of diameter less than e Thus two ANR's in X which
are “close” relative to the metric g; have similar homotopy properties.
In particular, as was shown in [3], for each 4 « 2%, all ANR’s in X which
are sufficiently close to 4 in 2% are homotopically equivalent to 4.

The aim of the present paper is to investigate topotogical properties
of the space 2%, primarily for X = 8%

It is evident that the subspace Cx of 2¥ consisting of all connected
ANR’s in X is open and closed in 2%. Our attention will frequently be
directed to this (complete) subspace of 25 rather than to the whole space.
For notational convenience, Cg will be denoted simply by C.

We show that each pair of homotopically equivalent elements of C can
be joined by an arc in 2§, thus characterizing the components of C as
precisely the sets [0] = {4 25| A 22 (}, for (€. It is clear that 92 is
an isolated point of 25% since no ANR properly contained in 8? is homo-
topieally equivalent to §% bub there are no other isolated points in 25
In fact, 25 is infinite dimensional at every point of 28 {§%, and is not
locally compact at any point except 8%

As partial angwers t0 questions posed by Borsuk ([3], p. 201, [4],
P. 221), we show that the set of polyhedra properly contained in 8 is
dense in 2§* and is of the first (Baire) category. On the other hand, the
set of topological polyhedra in §* is of the second category (in fact,
residual) in 2§
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