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Now let o be such that for all y < g, 0’ is a @-prime. If 4 < @
and » < w®, there are § < g and M < w for which u < ®- M and » < o®- I,
Thus

i

a®f <o’ UMD’ M < ol
Consequently, «? is a @-prime.
COROLLARY. a) A sufficient condition for a natural sum @ io be continu-
ous s for every @-prime o be @ -irreducible.
b) Let 1 be a prime component. A sufficient, condition for a A-natural
sum @, to be continuous is for every @;-prime to be @,-irreducible.
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Some remarks on selectors (I)
by
B. Weglorz (Wroctaw)

The Axiom of Choice states that every family of pairwise disjoint
non-void sets X = (X;),.r has a selector, i.e. there i3 a set § such that
|8 ~ Xy =1 for every iel. The situation is quite different when we
consider non-disjoint families. In the present paper we will study the,
problem of the existence of selectors of the families which have large
subfamilies with selectors. (Of course the Axiom of Choice is assumed
throughout.) So our problem has rather a “compactness” character.

We say that a family. L = (X, )., has partial selectors if for every
B < x the family L = (X, >,.; has a selector. E(x, 2) (or respectively
F(x, 1) (*)) will denote the following statement: Hor every family
L= (X, Duc, of seis of powers <A (or= A respectively) if L has partial

selectors then X has a selector.

It is easy to see that for each infinite cardinal x, the statement
E(x, w,) is provable in ZFC. In [1], 2. Erdés and A. Hajnal ask:
Does E(w,, w,) hold? We give a partial answer (Corollary 4.6) to the
question. The main result is contained in § 4 (Theorem 4.4). It states
that under the assumption of GCH, the property E(x,x) is equivalent
to the weak compactness of »x.

The paper is arranged as follows: in § 0. we give some neccessary
definitions, and in § 1 we prove some simplest properties of the lstatfaments
E and F. In particular, from 1.1.5 it follows that the investigations of
the statement F can be reduced to E with respective parameters. In § 2,
we give the proof of a part of 4.3, namely that the weak compactness of
implies E(x, »). In § 3, we study connections between E(x, x) fmd the
tree property of x. From the results of §§ 3 and 4 it follows that if we d'o
not assume the strong inacecessibility of x, then the property E(x, %) is
a better approximation of the weak compactness than the tree propert_y
of x. Finally, in § 4, we prove two theorems which have rather a eombi-
natorial character.

() F(x,4) denotes S(x,1,2)~>B(2) in the terminology of [1}.
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The author is indebted to Dr Agnieszka Wojciechowska for her help
and many stimulating questions during the writing of this paper.

§ 0. Notation and terminology. We define some concepts used frequently
in the text. We always identify an ordinal with the set of previous ordinals
and a cardinal with the smallest ordinal having that cardinality. The
letters a, f, y, 9, v, o, & n, £ will be used for ordinals and the letters x, 2, U
for infinite cardinals. We write |X| for the cardinality of X and i+ for
the next cardinal after 1. A cardinal x is a limit cardinal if » == A+ for
each cardinal 7; otherwise » is a successor cardinal. Recall that cf(a) is
the smallest § such that there is a mapping of f onto a cofinal subset
of a. An infinite cardinal « is regular if cf(x) = %, and singular if ef(x) < .
Tt f is & function from a set I into X, then we use the notation f, <f(1)>, oI
and (fi>;; equally. If the values of a function X = (X;>,.; are sets,
then X is called a family of sels. We often identify X with the set {X:4el |3
I L= (X, and f<a, then L} = (X5, ,. The Cartesian product
of the sets X and ¥ is denoted by X X ¥ and the Cartesian product of
a family (X;);.; of sets is denoted by ] Xi. *Y denotes the set of all

iel
mappings from X to ¥. The cardinality of the set of all subsets of x will
be denoted by 2% similarly | = »* A cardinal » is weakly inaccessible
if it is regular and limit. x is strongly inaccessible if it is regular and
for each 1< » we have 2* < x.

GCH denotes the Generalized Continwum Hypothesis, i.e., the state-
ment (Vx)(2* = »¥). ZFC denotes- the Zermelo-Fraenkel Set Theory with
the Axiom of Choice.

A tree T is a partially ordered set T = (T , <> such that, for every
el the set No= {y e T: y < } is well-ordered by <. The order type
of N, is called the type of #, denoted by !(z), and the length of T is
U () +1: m ¢ T}; an x-tree is a tree of the power . The ath level of T
is the set U, of all elements of T whose typeis a,ie., U, = {ze T:1(2) = a}.
Tta is the union of all Uy, for f<a and Tta=<T} a, <~ (T a)?y.
Any maximal linearly ordered subset of a tree T is called a branch of T;

a subset of T with pairwise incomparable elements is called an anti-
chain of T. ‘

We deal with structures having relations, functions and congtants. -

A structure 9 is a family of sets whose domain I containg 0 and sueh
that if 4 is the image of 0, called the universum of U, then the image of
every other element of Iis an n-ary relation or an n-ary operation on A
for some natural number 7, or an element of A. The similarity type of
a structure 9 is a function p with domain. I —{0} which takes elements
of I—{0} into 2n+2, 2n 41 or 0, according as they determine an - ary
relation or an n-ary function or a constant in 4. To each similarity type o
there corresponds a first order langnage £(o) (or, if o is fixed, £) with
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equality which has an n-ary relation symbol for each i such that p(4)
= 2n-+2, an n-ary function symbol for each 4 € I such that p(i) = 2n +1,

.or a constant symbol if o(i) = 0, The variables of £ are v, n < w. If o is

the similarity type of 2, then L(o) will also be called the language of A.
If R is a relation symbol of £, then R¥ denotes the corresponding relation
in U; similarly for operation and constant symbols. The set of formulas
in £(g) is defined in the usnal;inductive way. For each cardinal » we
define an infinitary language €, which has the same relation, function
and constant symbols as £ but which allows conjunctions and (homo-
genuous) quantifier blocks of all the lengths <. The variables of €,
will be v,, a < x. We assume that the notion of satisfaction of a formula
from £(o) (or £,,(e)) in a structure A of the type ¢ is known. A<, B
meany that U is an elementary substructure of B in the sense of €.
Now, let £ be an expansion of £ by adding a new function symbol @ and
let ¥ be a structure for £. Then we can expand U to a structure for ¢’
in the following way: we choose a function g in A of the same arity as ¢
and define A’ = (A, @) where G = g.

A cardinal » is said to be weakly compact whenever the following
condition is satisfied:if X is a set of sentences in £, , having the power <x
and every subset of X' of the power <x has a model, then X has a model.

§ 1. Simplest properties of E and F. We give first a corollary which
follows immediately from the definitions infroduced above.

COROLLARY. 1.1. (1) If A< u then E(x, u) implies E(x, 1), and
E(%, u) implies F(x, A).

(.2) If there is an increasing sequence of ordinals {agyec; suc{z that
a, < for all £ <A and x=J {ag & <1}, then TF (%, A). In particular,
R (%, %) and TF(%, et (x)).

(.3) If A= then T1E(x, ).

(.4) For each A< u, F(x, u) implies F(x, 2).

(.5) For each A, E(x, A7) is equivalent to F(x, 1). 4

Proof. (.1) is obvious. (.3) follows from (.2) and (1), (.4) is algo
obvious. N

Proof of (.2). Let x= {J{ags & <A}, where (ag), satisfies the
hypothéses of (.2). We define the sets X,, for o < x, as follows:
[{97<Z:ay}>§} if o= a, for some £ <4,
"oy
We have |X. = A for all & < Observe that tpe family & = (1Xgif)<rx
has no selector since its subfamily (X,e.c; obviously has no,‘ segee< ;.
On the other hand, take an arbitrary § < x, then § <ag, for some & < A.

4 otherwise .
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Now, it is easy to see that {£} is a selector of the family X} g; thus X has
partial selectors. Consequently ~—1F(x; ). ‘

Proof of (.5). The implication E(x, 7")>F(x, 1) is a special cage
of (.1). It suffices to prove that F(x, 1) implies E(x, 2*). Asyume F(x, 2)
and suppose that a family & = (X >eer has partial selectors and, for
every a<u, we have |X <A We shall show that X has a selector.
Consider the family Y= ¢ Y. oc, Where ¥, = X, X 4, for all ¢ < s. Then
¥, =2 for all a < » It is easy to see that the family Y has partial
selectors. Since F(x, 1) holds, Y has a selector, say 7. Define

8= {o: (Ey)({z,y> e D)}.

We shall show that & is a selector of X. The fact that § ~ X, # 0 for
all @ < x is obvious. Suppose that for some « < % there are @, 2, ¢ § A X,
such that 2; + @,. Then for some y,,y, we have @y 415y {TayYo) € T,
and g, gy A Thus <z, 9,5, (%, %> € T A Y,, but $Zyy > # (&g, Yo
since #; + #,. So T is not a selector of Y, contrary to the previous ag-
sumption. Consequently S is a selector of X and E(x, A*) holds.

§2. A positive result. In this and the subsequent sections we ghall
study the property E(x, x). Tn this section we shall prove the following
Positive result: i

THEOREM 2.1. If x is weakly compact then E(x, x).

" Proof. Let £ — {XDucr e a family of sets satisfying the hypotheses
of E(x, »). Since U X a< x| < %, without losg of generality we can
assume that each X, is a subset of . Consider a first order language £
with two binary predicates < and F and with individual constants Coy
@< Let W= Co, <% FY o%,_ be a structure for £ in which <¥ is
the natural ordering of #, ¢ = a for all ¢ < and {zex: UA|= Fla, z)}
=X, Let T={pe Lo A= ¢} Observe that if B is a model of T, then,

"up to isomorphism, %A <, B. Moreover, if 8= (B, <®, F®, ¢5>.<, then
we have X, = {f ¢x: B |=F(c,, )} for all a < and if B |= F(c,, b)

for some b ¢ B, then there is 3 B <= such that ¢f = b.
Expand the language £ to £ by adding a new unary function symbol ¢
and consider the following set of sentences: I'=To X v 25, where
4= 1{Fle, G(c,): a < ).
L= {F(c,, G(05)) G () = G(e): a, p < n}.
We shall prove that every subset Ty C 7" of the bower <x has a model.
Indeed, since for each ¢ <% we have |X | < » putting D = {a < s: ¢,
oceurs in T}, we infer by the regularity of » that |D] < % and consequently
%= Sup{a: ac D} < Consider the model U = <, <L BV, B,
which is the reduct of 9[. Then ¥, is & model of T T,. Consider the

EY
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family Xt ap. Since X has partial selectors, L | a, has a selector; let § be
a selector of X} a,. Define a function gy: x—x by gol€) e 8 n X, for & < .
The function g, is well defined, since S is a selector. Consider the
structure (W, go). Then it is easy to see that (g, g,) is a model of T,.
Now |T'|= » and each subset T, of T’ of the power <x has a model.
Thus, it follows from the weak compactness of » that 7" has a model,
Let B' = (B, <® F¥, ¢, G%),, be a model of T". Then B which is the
reduct of B’ to £, is a model of 7. Let 8 C» be defined by § — {a < %
(B < %)B' |= G(¢p) = ¢,}. Since B’ is a model of X, for each < »
we have § ~ X, 0. Similarly, since B’ is a model of 2y, for each o < %
we have |8 ~ X, = 1. Thus 8 is a selector of the family & and E(x, »)

holds.

§ 3. Trees. In this section we shall prove a simple connection between
E(x, ») and the tree property of x. . N
Let » be a cardinal. Recall that a tree T is an Avonszajn w-tree 1f it
ig a x-tree the levels of which are of the power less than » and which

~ has no branch of the length x. A cardinal » has the tree property if and

only if there is no Aronszajn x-tree (in symbols » e TP). '
The following theorem explains the simplest properties of the
class TP. '
TurorEM 3.1. (1) There is an Aronseajn w,-iree.
(:2) (GCH) For every regular cardinal » there is an Aronszajn x*-tree.
(.3) If x» is a singular cardinal then. » ¢ TP.
(.4) If % is strongly inaccessible then % ¢ TP if and only if % is-weakly

compact. ‘ -
Proof. (.1) and (.2) are well known, see e.g., [5]. (.3) is easy to check.
For (.4) see e.g., [3].

TeEOREM. 3.2. E(x, ) implies » < TP, -

Proof. Firgt of all, remark that E(x, ») implies that » is regular.
Indeed, if cf(x) = A < x, then by 1.1.2, we have ~1F(x, 1); hence, by 1.1.1,

ave algo TVE(x, ). '
s hS‘LO let b; & i‘eé'ul)ar cardinal and let T'= (T, <) be a »-tree. Using
E(x, ») we shall construet a x-branch in 7.

( ’Si)nce % is regular, I has the length » and for eac?h a<xwe ha:]?
|7} a| < 3. Let ¢U,<, be the family of all levels of T, i.e., U, is the at
level of T for all a < ». By the hypotheses, we have |U,| < » for cjzl<b,z.
For every two incomparable elements a,be T, such that I(a) 7=h(' il,
fix a maximal antichain in T}y (where y = max((a),(b)}+1) W IC‘
contains a and b. Denote this antichain by A(a, b). We have |4 (a, %iﬁ
because of A(a,b)C Tty. Now, let &= (X, D.e, be the famjlon (b)
subsets of 7' such that X, is either a level of T or a set of the form 4 (a,


Artur


300 B. Weglorz

for some a, b ¢ T. By the regularity of x, for every § < » there is a Y <
such that X, C Tty for all a < 8. Thus for every § < » there is a selector
of (X ... I—ndeed, choose -an arbitrary e U, and consider the get
S8={yeT: y<a} Since § is linearly ordered and each X, is an anti-
chain, we have |8 ~ X | <1 for all a < f. We shall show that for q < B
we have 8§ n X, = 0. It is easy to see that this is true if X, is alevel of T.
Suppose that A(a,b) = X, and let 6 = max(l(a), 1(b)). Take y < § ~ U,.
Then yeTh(6+1). If yeA(a,b) then S~ X, 0. Suppose that
y ¢ A(a, b). By the maximality of 4 (a, b) in T} (6 +1), thereis a 2 € 4 (a, b)
which is comparable with . Tf I(2) = I(y) then y and 2 lie on the same
level and 50 are equal, which is impossible since # € A (@, 0) and y ¢ A(a, b).
The case I(2) > (y) = 6 is excluded since I(z) <sup{l(?): ted(a, b))} =
So we have I(2) < I(y) as the only possibility. But using the comparability
of z and y, we have 2 < y; hence z ¢ § and consequently A (a,b) ~ 8 0,
which means that [X, ~ 8| = 1. In other words, weé have shown that I
has partial selectors; thus X satisties all the hypotheses of E(x, »). N ow,
by E(x, ), T has a selector, say S. We shall show that then S will be
& %-branch in T. To prove this, we shall show that every two elements
of § are comparable. Suppose, on the contrary, that there are two in-
comparable elements a, b in §. It l(a) = 1(b), then @ and b are on the
same level, and so |8 ~ Ty, > 1, which is impossible. Let 1(a) # 1(b).
Then the set A(a, b) belongs to X and a, b e 4(a, b). Thus |4 (a, b) ~
N~ 8| > 1, which is a contradiction. Thus § ig linearly ordered and since §
intersects each level of T, § is a branch of T of the length s». Thug T is
not an Aronszajn x-tree. This finishes the proof of 3.2.

§ 4. Some negative results. Since, as the author knows, the problem
of the existence of Aronszajn »*-trees for singular » iy still open (some
special cases have been partially solved by Prikry [2]), the results of § 3
do not give the answer to the question whether E(x, x) holds for each. x.
Now we shall prove two negative results which solve thig question (under
the assumption of GCH) completely.

THEOREM 4.1. For every cardinal %, we have T1E(2¥, »t),

Proof. We shall construct the required family of sets. Let fer

and let F(f) = {(f, &): &< x}. Obviously [F(f)| = %. Define the family
of sets 4£(f) as follows: ’

ﬂ%(f)z{F(f)}U{A§;:>5,C<z}, where
(1) 1 4L = (P(H)—(f, Y (s, 8,¢, n):n<w}for ££¢ and
AL = (F(f)~{(f, ANV, 8, & m): n<wx and 77 f(£)}.

It i3 easy to see that for every X ¢ A(f) we have |X] = % and for f 5= ¢
we have A(f) ~ £(g) = 0. '
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We claim that the family #(f) has a selector, and every selector of
the family #(f) is of the form:

[S’-: {(f, E)}U{((fy 5),C,9(¢))= C<%}, Where

@) g €™ I8 such that g(&) #= f(&).

Indeed, any set § of the form (2) is o selector. Namely: §~F(f)
= {(f; f)}y 8 f\_Aé,cx {(f’ 5)} for & # & and § f\Aé‘;: {((fy 5)7 579(5))}
(For { = & this holds since g(£) == f(¢).)

Conversely, suppose that 8 is a selector of 4(f). (Without loss of
generality we can assume that 8 CUJ#A(f). Then 8§~ F(f) has one
element, say (f, £) « 8. Since (f, £) ¢ AL, for & - £ no triple ((f, &), ¢, 7)
belongs to 8. Next, for each ¢ < # (fy€) e AL, and so for each f<un
there is precisely one triple (( fré),¢, 17) in 8. Thus we can define a function
g€z by:

g(&) = n if and only if ((f, &,¢, 77) efS.
Finally, remark that ((f, &), &, f(£)) ¢ AL; hence also ((f,8),878)¢8
and consequently g(£) = f(£), which ends the proof of our elaim.

Now, let f,he* be given. From (2) it follows that each selector
of A(f)ou #£(k) is of the form:

®) (s &), (hy &Y o {((f, &), ¢, aul0)): C<.%} ARy &), 8, gal0): ¢ <
where gy, gy € *x and gy(&) # (&) and gu(£) - h(&,).

We shall define a new family of sets $B(f, h) such that each selector of
#(f) v £(h) v B(f, 1) will be of the form (3) with the additional property
that g, = ¢g,. The family B(f, k) is defined as follows:
%) {f]&(f, h) = {Bg: &, n<x} where
B, = {((f, ), &, 17): {<u}u {((h,é‘),f,w): {yv<x%and v 9}

It is easy to see that for each X ¢ B( fy ) we have | X| = «. Let § be a set
of the form (3) with g = g, = gs- We will show that § is a selector of the
family #(f) o 6(h) v B(f, h). Obviously 8, being of the form (3), is
a selector of s£(f)w s£(h). We wish to show that § is also a selector of
B(f, B). We have two cases: (I) if (&) = 7, then

8 By = {((f, &), &, 9(9))
or (IT) if y(&) # », then

8~ Bg,, == {((h; &)y &, 9(5))} .
Thus § iy a selector of B(Ff, h). , ‘

Conversely, suppose that § is a selector of the family £(f) v #£(h) v

v B(f, k). Then, since S is a selector of £(f) v #(h), § has the form (3).
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We will show that g1 = g,. Suppose the contrary. Then for some ¢ <,
we have n = g,(£) # g,(£). Thus

8 By, = {((f, &), &, 0:(8)), (B, &), &, (O} 5

hence 8 is not a selector of 4(f)w #4(g) v B(f, k), which is a contra-
diction, )

Having the families of the form #4(f) and % (f, h) we can construct
a family which realizes T1E(2% »T). For this purpose let us remark that
[#(F)] = 1B(f, k)] = ». Copsider the family X = [J{#A(f): fe*s}u
U UB(f, h): fhe*s and fz 1}, We claim that L has no selector.
Suppose, on the contrary, that § is a selector of X. In particular, § is
& selector of | J{#(f): f<*«}, and so, by (2), 8 has the form:

8= {{f, é—;f)t fen}o U{{((f; ff); ¢, gj(t)): £ << %}: fe"x} ,

where g;¢"x and for each fe*x,f(£) = g/{&). Moreover, for every
Jisfo €™ with f, 5= f,, 8 is a selector of B(f, f,); thus 9y, # 0y, and con-
sequently there is a function ge*x such that g= g, for all f e*~. But
this is impossible since it would give g= 9, and g(&,) #7g,(&,), which
gives a contradiction. So X has no selector.

Finally, we shall prove that X has partial selectors. Let Z be a proper
subset of *x and let us consider the family

Ly = U{A(f): feZ} o UB(Sf, b): f,heZ and f#h}.
We claim that X, has a selector. Indeed, since *x—Z -« 0, there is

3 g e "«—Z. For each f ¢ Z, choose & < x in such a way that F(&) # g(&).
Then it is clear that the set o

S§=UF8): FeZyo U4, )8, 0(0): C <n}: feZ)

is a selector of %Z. Now, since » < 2%, we can enumerate the family X in
such away that L = (X,>, .« and for each B < 2* there exists a proper
subset Z of “x such that Xt § C X,. Thus the family X hag partial selectors.
Since X has no selector, 1E(2% »*) holds and our proof is complete.

For singular cardinals we ean obtain a better result:

THEOREM 4.2. If of(x) = 1 < «, then TTE(, x).

Proof. We shall construct, as before, the sets £(f) and B(f,h)
using some other set of functions instead of *.

Leb {o;: & <A} De a set of cardinals less than %, such that the set
P——-!las has the power »". Define F(f) = {(f, &): & < A} for feP. Then

[B(f)] = 2 < %. Next, define the family 4(f) as follows:
A(f) = {F(f)}v {4]: £,6< 1}, where

W) 1 4E= (PO~ ) (1, 8,8, m): n<a) for £2¢  and
A= (FE =1L, )« {(F,8), &, m): 1< ap and 7 2 7(&)}.
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As Dbefore, we have:
(i) for each X e #(f), |X| < x;
(ii) it f, g P and f s£ g then #(f) A 4(g) = 0;
(iii) each selector of the family #(f) is of the form § — {(f, & v

(£, 8,8, 9(2)): £ < 4}, where ge P and g(£) - f(&).
Suppose f, h € P, f 7 h. Then we define the family $(f, h) as follows:

B(fyh) = {By: §<2and g<ag}, where
By = {{(£,0), & m): £< 2} o {{(h, ), &,%): £ <A and v e(ag—{n}).

Then, as before, we have:
(iv) for each X e B(f, h), |X| < x;
(v) each selector of 4£(f)u #£(h) U B(f, k) is of the form:

{7, &5 (b, &3y {((, &), ¢, 9(0): <2} o {0, &), C,g(éj): r<)

where ge P and f(4) % g(&) and (&) = g(&). '
Taking, as before,

%= U{A(f): fe Py o ULB(f, h): f, he P and f = B}

we see that |L|= »* and for each X ¢ XL we have |X| < % The proof
that X has no selector but has partial selectors, using the same argumen-
tation as the proof of Theorem 4.1, follows by the facts (i)—(v). Thus,
we get "1E(x, %) as required.

COROTLARY 4.3. (.1) For each %, we have T1E(2% 2%).

(.2) For each » with 1= cf(x) < x we have T1E(+, 4.

Proof. (.1) is a consequence of Theorem 4.1 and 1.1.1, since 2* > »*
(.2) is a consequence of Theorem 4.2 and 1.1.1, since »* > x.

TreeOREM 4.4. (GCH). E(x, %) if and only if » is weakly compact.

Proof. The part “if” (even without using GCH) is the assertion of
Theorem 2.1, and so we wish to prove the part “only if”. Assume E(x, %).
Then, by 1.1.1, and 1.1.2, % cannot be singular. Using GCH, we see,
by 4.3.1, that x is not a successor. So x is weakly inaccessible. By GCH
again, » is strongly inaccessible. Finally, by Theorem 3.2, » has the tree
property, and so, by 3.1.4, » is weakly compact.

COROLLARY 4.5. If the theory ZFC + “there is a weakly compact cardi-
nal” is consistent, then also the theory IFC + “there exists a cardinal x
having the tree property and “1E(x, %) is consistent.

This means that the converse to Theorem 3.2 is unprovable in ZFC.

Proof. In [4], Silver proved that if ZFC - “there is a weakly compact
cardinal” then ZFC 4 2% = 2°'= @, “w, has the tree property” is
congistent. But, by 4.3.1, TE(w;, »,) is a theorem of the last theory.
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Thus, the theory ZFC + TIE(wy, w,)+“w, has the tree property” ig
congsistent.

The next corollary is a partial answer to the question of Erdés ang
Hajnal stated in the Introduction.

CorOLLARY 4.6. E(w,, w,) s unprovable in IFC.

Proof. By Theorem 4.1, E(e,, w,) does not hold in any model of
IFC in which 2% = @,. : , ’ :
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