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A property of stable theories
by
A. H. Lachlan (Burnaby, B. C.)

In this paper is proved the following theorem about models #, B
of a countable stable theory. Let p be a unary predicate symbol, If 4 is
an elementary submodel of & (written 4 < B Dbelow), 4 = &, and p(+#)
= p(%$), then there exists C such that <€, B+ €, and p(#) = p(C).
We also construct a counterexample to show that the theorem fails in
general for unstable countable theories even if we make the additional
assumption that 4 and $ are countable. :

Vaught has proved [5], p. 55 that under the hypotheses of our
theorem, without the requirement of stability, there exists G = # such
that |G|, p(C) have cardinalities w,,, respectively. This paper was
motivated by the question as to how far Vaught's theorem admits
& naive proof. The main idea of our proof, namely using a definition of
rank based on only a finite number of formulas comes from Shelah 6]
a8 indeed does the notion of stable theory. The study of stable theories
arose from a generalization of the work of Morley [4] on ‘totally tran-
scendental theories. Morley used the concept of a totally transcendental
theory in his proof of the 0§ conjecture. Recently, Shelah has used the
notion of stability to prove the F.o§ conjecture for uncountable langnages
as well as many other striking theorems. The reader will find Shelah [7]
an invaluable source of further information.

The plan of the paper is as follows. In the first section we give some
definitions and the necessary background material concerning the ranks
of formulas in first order theories. In the second section we prove the
main theorem and in the third section we construct the counterexample.

1. Preliminaries. We use the notation and terminology of Shoen-
field [8] with some exceptions which are noted below. When a, b, ¢ are
members of the universe of a structure their names will be i, j, k re-
spectively and similarly “when a, b, ¢ have superscripts or subscripts
attached to them. We shall assume that the underlying first order
language is I, and that I is countable except at the end of § 2 where we
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discuss the possibility of extending the main theorem to un.countable
languages. The set of L-formulas is denoted by 8. The Vzurla!olfas are
24, Za, - and for neow, S, denotes the set of L-formulas containing at
most z, ..., Zn free. By 8(X) we mean the set of L(X)-formulas W]}elje
L(X) is obtained by adjoining to L names for the members of X; A?’n(_l) is
defined similarly. If 4 is a structure and 4 is a formula, }oy an S -instance
of A we mean any formula obtained from A by substituting names of
members of || for variables. If A4 e 8,(|#|) then A() denotes the sgﬁ
of a < || such that A[i] is true; o) is abbreviated to p(#) when p is
a unary predicate symbol. Finally Th (%, X), where X Q]JE{, d.enotesl
the theory of the structure obtained from s by adjoining the names of
the members of X. ' : .

We require the following generalization of Morley’s notion of tran-
scendental rank. This kind of generalization was first considered in
Shelah [6]. For an arbitrary subset 4 of § define A¥(X) to consist of those
formulas in §;(X) which can be obtained from the formlﬂas in 4 by a finite
number of applications of the .operations of conjunction, disjonction,
negation, and substitution of the name of a member of X for a variable.
Tt A e8,({B]) and I'= {Cy, ..., Cu} C 8,(|B]) then I' is gaid to partition A
i C,V...vCypV 714 is true in B, C; & G- > 14 is true in $ for all ¢ and j
with © == j, and for all § Hz,(4 & C;) is trae in B.

TFor every structure + and ordinal o we define 8%, 4) and Tr%(#, 4)
as follows. Firstly let §%(st, 4) consist of all 4 in §,(|#|) such that Hz4
is true in #. If §4%, 4) has been defined for all B let 4 e Tr*(4, 4) if
and only if A ¢ 8%, 4) and there exists & ¢ w such that for any % &
and any finite I"C 4°(|%]) which partitions 4 we have 4 & C ¢ 8438, 4)
for at most & members C of I". (If 4  Tr*(st, 4) then the least such % is
called the A-degree of A in s, while a is called the A-rank of 4 in #.)
To complete the definition let 8“7 (A, A) = 8%, A4)-Tr%#, 4) and if a is
a limit ordinal let 8%, 4) = M §(#, 4).

B<a

Tt is quite easy to show that if I"is a 1-type in Th(, |4|) its Morley
rank is the least o such that I'~'Tr%, S) = @, and its Morley degree
is the minimum of the §-degrees of the formulay in I'~ Tr%«€, S). We
say that A is minimal in Tre(#£, 4) if 4 e Tr(, 4) and there is no £-in-
stance D of a member of 4 such that 4 & D and A & 7).D are both in
Tre(£, 4).

Since the main result of this paper was discovered the author has
received a preprint of [7]. For several of the lemmas in thig section there
are similar results in [7] which will be noted. The latter part of the paper
is concerned only with 4-rank where 4 is finite. However, to provide
a wider perspective we have included in this section some results con-
cerning A-rank which hold for arbitrary 4. From these it follows thatb
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if I'is a 1-type in Th(#, |4|) which has a Morley rank then the Morley
degree of I' is 1. This answers a question which as far as we know was
first raised by Lenore Blum. The following lemma lists some of the more
obvious properties of rank: '

Lmwwa 1. () If 4, B are in 8,(]#]), A(#£) C B(#), and A4 8%+, 4)
then B e 8%, 4).

(i) If A eBy#) and B> 4, then A8k, 4) if and only if
A e 8B, 4).

(1) If‘ Ay Ay and A are in 8,(|4)), (AovA,)(#£)D A(£), and A
< 8%, A) then one of Ay and Ay is in 8%, 4).

The proof is by induetion on a and is straightforward so we omit it.
We call I'C 8(|#4|) satisfiable in # if there is a substitution of names for
the variables which transtorms every member of I' into a formula true
in £ We call I'C 8(|#]) weakly satisfiable in # if no finite disjunction
of negations of formulas in I" is valid in #. Clearly I is weakly satisfiable
in # if and only if I' is satisfiable in some B> #. For any AC S let
4~ consist of the negations of the formulas in 4.

LeMMA 2. Let A e 84, 4). Let I' consist of all those formulas which
can be obtained by substituting variables for variables in the members of
{d}y v A A~. There exisis I™ C I" weakly satisfiable in #£ such that if B is
a structure, B e 8,(|B)), and I'¥ is weakly satisfiable in B, where I'F s ob-
tained from I™ by replacing each instance of A by the corresponding instance
of B, then Be8%%B, 4).

Proof. For convenience we suppose that 4 contains no names and
that Bis A so that I ig I'™*. The lemma is certainly true for « = 0. Suppose
the lemma is true for all a < § where f> 0, and let A e 8%(#, 4). Let
us firgt consider the case in which f is a limit ordinal. By the induction
hypothesis for each y < § there exists I), C.I' weakly satisfiable in #
such that if B is any structure such that A e §,(|%B|) and I, is weakly
satistiable in B then A ¢ 8(B, 4). Further if y, 6 < f and y # d, we may
suppose that 7, and Iy have no variable in common. To obtain the con-

_clusion of the lemma with a = § we take I™ = | {I’)| y < B}. Now suppose

that f == y-+1. From the definition of S+, 4) and Lemma 1 it is easy
to see that there exists f/&é # and a sequence (4| 7 ew) of members
of A%B) such that (Am & As)(B) = @ whenever m # n and such that
A& Ay ¢ (B, A). Let’ I'™ consist of those formuilas obtainable from
members of {4 & Ay} v 4w A~ by substituting variables for variables.
By the induction hypothesis there exists I'y C I™ weakly satisfiable in %
such that if 4 & Ay € Sy(|C|) and Il is weakly satistiable in C then 4 & A4y
€ 8%(C, 4). Without loss we may suppose that 4,, 4y, ... have been chosen
such that “|dmv 74, is a tautology whenever m = n, and such that
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for each n, 4, is a conjunction of instances of formulas in 4w 4=, This
last simplification is possible by Lemma 1 (iii). We may also assume
that no variable appears in both I'y and I' if m % n, and that there* are
infinitely many variables which do not oceur in any I . No_w let Iy be
obtained from I, by substituting for each name i appearing in An_a, new
variable unique to i and independent of n. Let mcr bg _equw?dlent
to | {Th| n € o). Tt is clear that I exists and is weakly satistiable in s.
Suppose that I'™ is weakly satisfiable in a structure B such that 4 ¢ S:,:( [BI)
we have to show that 4 ¢ 83, 4). There exists 3305% B such that I™ iy
gatisfiable in ®,. By an appropriate interpretation of the names oceurring
in Ay in |®,] we have I, satisfiable in B, for each # ¢, whence 4 & Ay,
€ &¥(By, 4). Tt follows that A e 8By, 4) whence A e SHB, A4y by
Lemms 1 (ii).

When A4 is finite we have the following stronger result. Let I' he
defined as in the statement of Lemma 2.

Tmunma 3. Let n € o, 4 be finite, and A be o formula in 8(X) containing
at most z, free and possibly some names for the elements of the universe of
a model. There ewists I™ C 8(X) depending only on n, A, and A such thai
for any #, if A € 8y(|#]), then A € 8*(#, 4) if and only if I'™ is weally satis-
fied im .

Proof. The proof is by induction. For n = 0 the conclusion ig clear.
Suppose the result is true for # = m where m > 0. For B e 8™ (%, 4)
let @(B) consist of all D in 4 A~ such that B & D' « §™(%H’, 4) and
B& D' « 8™, 4) for some B’ S B and some %H'-instance D' of D.
Given A e 8™t(#,4) choose B 4 and BeS™YH, 4) such that B
implies 4 and @(B) is minimal. Let D ¢ 6 (B) then we can form sequences
(B i ey and (D] i ¢ w) such that for all i e o, By, > B, B, D, is
a B;-instance of D,B& Dy & ... & D; e S™(B,, 4), and B& Dy & ...
w & D, & 1D; e 8™(PBi, ). Let I'y be the clags of formulas corre-
sponding to A& Dy & ... & D,_, & 71D, under the induction hypothesis.
Adjoin infinitely many names for each member of | J {|B,| | ¢ € w}. Without
loss suppose that for each ¢ € w no name oceurs twice in Dy, that no name
occurring in Dj; occurs in A or in Dy for § 4, and that if ¢ £ 7 then [%
and Iy have no variable in common. Next we substitute new variables
for the names in Dy, D, ... choosing different variables for different
names. This converts I'; to I for each iew. Notice thai the names
originating in A4 are left unchanged. Now let I™(D) be | {I'}] ¢ ¢ w} and
notice that I™(D) is unique to within an isomorphism of the set of vaxi-
ables occurring in its members. Given any sets ITf,..,I1% we can con-
struct I™ such that I™ will be weakly satistiable if and only if one of
Iy, .., Iy is weakly satisfiable. Since Dedu A~ and 4 is finite the
lemma follows.
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The above lemma iz analogous to Lemma 2.7 of [7]. An important
application is:

LmmA 4., Let A be finite, n e w, and let A e Ti™(#, A) have A -degree 1.
For each Be(dw A7) ~ 8y, there exists C e Si(|4]) such that if B> 4
then A & B[z, jiy -y Jul € TYB, A) if and only if Cljy, ..., ju] s true in B
where by, ..., bx are arbitrary in |B|.

Proof. Let I™ be the set of formulas corresponding to

A& TVBlzyy juy ey Ji

by Lemma 3. Consider the set of all ordered pairs (%, Cbyy oy brd) such
that %é_ Ay byy .y be e |Bl, and ™ is not weakly satisfiable in $. For
every such pair some particular finite subset of I™* is not satisfiable in 9.
It follows that there is a finite subset I of I™ such that for any of the
pairs considered I™ is not satistiable in %. Otherwise by the compactness
theorem for somé B> and by, ..., b e |B| we should have both
A& B2y, )iy -y ju] and A & B[z, ji, oy ji] in %S, 4) which would
contradict 4 having A-degree 1. Let Ce Sy(|#|) be chosen such that
Cljiy -y Jr] is true if and only if I is not satisfiable in $.

Shelah observed in [6] that when 4 was a singleton the A4-rank of
a 1-type could only be finite; in [7], Temma 2.8 this is proved for arbi-
trary finite 4. It is easily shown by induction that our A-rank is less
than Shelah’s, which yields:

LeMMA B. If A is finite then Tr*{#4,4) = @ if a> w.

Another way of looking at this lemma is to see it as an analogue

 of the result proved in [3] which says that Tr*(#, S)=@ if a > w,. Let

A € 8,(]4]), we say that A is 4-stable in #£if 4 has a 4-rank in #, and 4 is
stable in s if A is A-gstable in # for every finite 4. Let 4 € §; then A4 is
called stable in the complete theory T if 4 is stable in some and hence
every model of 7. A complete theory 7' is called stadle if z, = z, is stable
in T;a thorough discussion of stability can be found in[7]. The next lemma
is equivalent to Theorem 3.1 of [7]; we came on this result via a similar
one of Baldwin [1], Theorem 12.

Lemyma 6. Let Jeﬁ B, A be a formula in 8y(|-]) which is A-stable,
B« A(B), then there ewists C in Sy(|#]|) such that A(4) ~ B(B)= C(#).

LaMmMA 7. If A is minimal in Tr(#, S) then the S-degree of A
18 1.

Proof. Suppose for contradiction that 4 is minimal in Ti%(#£, §)
but that the §-degree of 4 in # is >1. Then there exists B 4 and
D e 8 guch that for some B-instance D’ of D, A& D' and A & 71D’ are
both in 8%, 8). Since 4 has an §-rank it is certainly stable in # whence
by Lemma 6 there exists Be 8([#|) such that B(#) = A(#£) ~D'(H).
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Now one of B, A & ~1B has §-rank <a in 4. ‘Without losglz suppose that B
bas §-rank < a, then we can replace ADby A & 7B to obtain (4 & D') () ~
A |#4| = @. Suppose that D’ is D[y, fus s Ju] Where by, ..., by € [B] and
without loss suppose that by, ..., b ¢ [#]. Let I'™ be the set of formulas
corresponding to 4 & D' by Lemma 2. TFor m e w let D™ be D[z, Ji* -y inl
where b™, ..., b™ are elements of a model yet to be fomd. Let 4™ De
A& D& D™ &... & "1 D where A° is A & D". Let I'* be obtained
from I'™ by first replacing every substitution instance of 4 & D’ by the
corresponding substitution instance of A™, and then substituting 2%, 23, ...
for 2, Z, .. respectively. The variables zJ* are chosen 80 that no two of
them are the same.

We claim that it is consistent to suppose that there is an elementary
extension B* of 4 such that b, ..., b7 ¢ |B*| for each m e w and such
that | J{I™| m e o} is satistiable in $*. If not, then by the compactness
theorem, for some k ¢ » and some finite I C ™ it is impossible to choose
B0, ey O, oy DETY, L, BETY in |B] such that J{I%] m <k} is satisfiable
in B, where I, is formed from I in exactly the same way a8 I is formed
from I'™*. Fix I and consider the least such k. Now I'y is weakly satistiable
in B with 5 = by, .., b}, = by because A° is 4 & D°. Thus k> 1, say
%= 1-+1. Since B0, .., B2, ..., b7 ..., b5* can be chosen in || such that
U {I%| m < T} is satistiable in , it follows that b, ..., bny ey Bt L, B
can be chosen in |#4| such that | {I'%] m < 1} is satistiable in 4. Call this
latter choice the “#-choice” and let a7* denote the value of b7 Let I, be
obtained from I'%, by replacing each instance of 4™ by the corresponding in-
stance of A™ & ~ D’ and substituting 7Y, 7747, ... for %, 73", ... respective-
ly. Since (48 D')(B)~ |#| =@, for the #-choice | J{I%,|m <1} is satistiable
in B, whence I'w | {I%,| m < 1}is satisfiable in . Notice that substituting
jotor j, and j7t for ji, for 1 < i << mand m <1, transforms v | {7 Tl m< U}
into I0w U {I%,,| m<1}. Thus if B8 =b,,.., b} ="b, and 07" = a7,
U{T] m < 1-1} is satistiable in $. Thig contiradicts the choice of I and
shows that $* S # exists such that for a suitableé choice of b7 e 1B¥],
1<i<nand m< o, |J{I%] m< o} is satisfiable in $* From Lemma 2
A&D', A& D'& 1D, ... are all in §%(B* K), whence A e8P, 8)
Since this contradicts the assumption that A e Tr*(st, 8) the lemma is
proved.

.In Morley’s terminology the last lemma says that all transcendental
points in the Stone space of a model have degree 1. We now derive the
corresponding result for 4 -rank. The analogous result in [7] is Theorem. 3.3

LuuMna 8. If A is finite and A is minimal in Te™(#, 4) then the A -degree
of A in A is 1.

Proof. Suppose for contradiction that 4 is minimal in Te®(s, 4)
but that the A-degree of 4 in 4 is >1. To simplify the argument we
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suppose that in fact the 4-degree of A is 2. Then there exists B> A
and D e 4 such that for some %-ingtance D’ of D, A&D and 4 & :]D’
both ha,ve A-rank n and A-degree 1. Since A is A-gtable in 4 we can
apply Lemma 6 obtaining Be S,(|#|) such that B(#A) = A(#) ~ D'(B)
It either A & B& D" or A& 7TB& 71D’ has A-rank <n we can amgué
a8 in Lemma 7. Thus we assume that A & B& D’ and 4 & 1B& 1D’
both have 4 -rank n. Let D ¢ 8,,,,. From Lemma 4 there exist formulas C
and C~ in 8,(|#|) such that for any B'> £ and by, ..., by € ||, 4 & B &
& D[zi) jus ++-5 jm] has A-rank n if and only if C[j,, ..., jn] is true in %,
while 4 & T1B& 71 D[zy,ji, .1 jm] has d-rank n i and only if
C[jyy vy Jm] i8 true. Since A& B& D' and 4 & "1B& ~1D’ both have
d-rank n, Wz ... Hz(C & C7) is true in $ and hence in 4. Hence for
some st-instance D'’ of D we have A &B& D" and 4 & B& ~1D"”
both with 4-rank » which contradicts 4 being minimal in Tr™(+, 4).

2. The model extension theorem. We now prove the main result of the
paper:

TaEOREM. Let £, B be models of a countable stable theory and suppose
that || = | B, £ ﬁ_ B, and p(£) = p(B) where p is a unary predicate symbol.
There ewists Co= % such that |G| 5= |B| and p(C) = p(%B).

Proof. We firgt prove that there exists Goéﬂs and ¢ e |Gy|— |B]
such that for any A e 8;(]B|w {c}) if Tz,(4 & pz,) is true in G, then so
is A[i] for some a € p(+t). The remainder of the proof is concerned with
extending the subset |B| v {¢} to the universe of a model €S> % such
that p(C) = p(%). o

Let 4y, 4,, ... be a strictly increasing sequence of finite subsets of S
whose union iy 8. Such-a sequénce ean be found because the language
in question is countable. Choose b e |B|—|#|. For each new choose
An € 8;(]#t]) such that 4, has minimal 4,-rank subject to A,[j] being
true in B and such that the 4,-degree of 4, is 1. From Lemma 8 this
choice iy possible. Let the A,-rank of A, be an. We define I'C 8,(|B)
as follows: let B e S, y, by, ..., bu € [B], and m be chosen such that B e dm,

© then Bz, jis -, ju] € I'if and only if B[z, ji, ..., jn] & An has Am-rank om.

We want to demonstrate both that I"is well defined and that I"is weakly
satisfiable in $. If not, there exist BY, ..., B' ¢ 8,.,, and b}, b}, ..., bf < ||
such that for each ¢ in 1 < ¢ < k&, B® ¢ Am, and Bz, ji, ..., i1 & Am, has
Ap-rank am,, and such that ‘
—][’IZ](AnH &... & Amk &Bl[zl,ji, ;]qlz]& &Bk[zujfa :]ﬂ)
is true in $. For notational convenience suppose that n=1 and let C*
be the formula corresponding to A, and Bf by Lemma 4. It follows that
Uz, Wz ... Ty 12y (A, & oo & Ay & B 21, 2] & .
’ W& Bk[Z1, zlg+1] & Cl[zz] &.. & Ck[zk—}-l])
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is true in % and hence in . Thus we may suppose ‘nhat_ f’beYe, b, b;,
wey bE € |#]. Since Am[j] is true for 1 \<J‘§ k there exists i?, su_c;h th@t
BTj,ji] is false whence both Am, &B’[zl,‘Jf] and Am, & T1BY zf’Jf"] have
Ap,-rank om, the latter because otherWLSfa there W'ouldwbe a formuly
containing b whose Am,-rank is < om,. This eon’or.a,dmtﬂ the dm,-degree
of Am, being 1. Thus I" is well defined and congistent. Le{’n Gy B .be
chosen and ¢ ¢ |G| be chosen such that ¢ realizes I, then ¢ ¢ |B|. We claim
that if A e 8(|B| v {¢}) and Tz,(4 & pz;) is true in Go'then A[E] is true
in C, for some a € p(#). If not, let 4 be Bk, %, j1, -, jn] Where I)'L, veey by
‘¢ |3], and let m be chosen such that B and E[za(.B & pz?g) are hoth in A?” ~
~ 8,4, Then by assumption ®z,(Blzi, Zayfis - » Jnl 8?1”:’2) & Am  has
Am-1ank an while for each a e p(#£), Am & B[y, Ly jsy ey Jnl ?wf; Am-rank
< am. Liet C) € 8,,,,(|#]) be the formula corresponding 10 A and QL@(B & pzy)
by Lemma 4, and let C ¢ 8,,,(|#|) be the formula corresponding t0 Ay
and B by Lemma 4, then '

Hz,... [*[znﬂ(ﬁzlcu & Vz(pz~> —TCI))

is true in $ and hence in #. Again we may suppose that by, ..., by e |4/,
From the way Anm was chosen Hzy(B[J, Zay j1y «ryJul & pzp) is true in B
whence for some a in p(#£), B[j, i, ji, ..., Ju) is true in B. But since 4, &
& B[Zy, i, Juy ey jn) DAS Am-rank <am, T1B[j,i,Ji, -y Jn] i8 frue in B.
From this contradiction the claim follows. ‘

If B is countable we can obtain the desired elementary extension G
of B by applying Ehrenfeucht’s theorem ([8], p. 90) to Th(C,, |B| U {c}).
In the general case we can proceed as follows. #We construct a trangfinite
sequence {(C,, X,)>,<; such that X,=|Bfv {c}, G, €, and X,
=X, v {}CIC,, for each y<§, and C= |J{G| y <4} and X,
= |J{X,| y < 8} for each limit ordinal § < §. Further, for each y, (€, X,)
is to have the property that has already been established for y = 0, that
is, for any A  8,(X,) if Hzy(4 & pz;) is true in G, then so is A[i] for some
@ € p(st). Further onr construction will be such that for each y < § there
exists 4 ¢ 8,(X,) such that Hz 4 is true in G,, A[i] is not true for any
aeX,, and A[k] is true in G,,.

Suppose that (C,, X,) has been defined without any of the con-
ditions stipulated above being violated. Ohoose 4 e 8,(X,) such that Mz
is true in C, but such that A[i] is not true for any 4 « X,. (Tf no such 4 can
be found the construction ceases.) We now define formulas Ayy Ayy oo
in §,(X,) as follows. Let 4, be A4 and suppose that 4, has been defined
such that Hz, 4y is true in C,. Choose B e (Am)b(_/l’y) such that Uz, (4n & B)
is true in G, and there is no partition of 4, & B by formulas from (A (X,).
Such a B can certainly be found because Th(C,) = Th(«) iy stable by
hypothesis. Let 4,,,, be 4n & B. We let C,+1 be any elementary extension
-of G, containing an element ¢, such. that 4n[k,] is true in G, , for every m.
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Such an elementary extension of C, clearly exists and certainly A[k ]
is true in C,.,. As stated above we let X=X, {¢,}. It only remains
to show that if A’ e 8y(X,1,) and Hz,(4' & pz;) is true in € +1 then so i
A'li]for some a € p(+4). If not let 4’ be ATk, 2, K ..., K™ Wﬁere A" el
and ¢, ..., ¢ e X,. Tet m be chosen such that 4 and Tz (4
both in Ap. From the choice of B we see that

Am+1—" sz(A”[zn Z, K, ey KM & pz,)
is valid in C, and

. n+2
& pz;) are

Ay T1d" gy, i, K, ..., B
ig valid in G, for every @ in p(#). But now letting A% be

Uz Amial2] & A" (23, 7, K, ..., k™)

we have ®z,(4™ & pz,) true in C, and 4%[7] false in C, for every 4 in p(#).
This contradiets our hypothesis, hence (Cpy1s X, 41) does satisfy the con-
ditions set out above.

If (Gy, Xy), (G, Xi), ... are now generated in the manner prescribed
we shall eventually reach (G, X,) such. that for any 4 in 8y(X,), if Hzy A is
true in C, then A[i] is true in C, for some a ¢ X,. (This is obvious when
one regards the union of the sets X, as being the Skolem closure of X,.)
We let 8 be the first such y. It is clear that the substructure C of G defined
by |G = X, is an elementary submodel of Gs, and that p(C)= p(+)
This completes the proof of the theorem.

Shelah has isolated the principle used to form € from the pair
(Cyy X,) in [6], § 0, and his discovery of it was independent of the present
work. A slightly different rendering is the following where we call a theory
essentially countable if the set of nonlogical symbols which are not con-
stants is countable.

Levva 9. If T is an essentially countable stable theory T has a model #
with the following property. If a e |#| and A € 8, (T) there exists B e 8,(T)
such that B[i] is true in 4 and such that for any constants ¢y, ..., en of L(T),
Aliy eqy .oy el is true in £ only if [~ B—>AlzZ, ¢y ..., Cnl.

The proof of this lemma should be clear from the proof of the theorem.
Unfortunately this lemma is false in general for uneountable stable
theories and even for uncountable superstable theories. A counter-
example for the case of stable theories is as follows. The language L con-
sists of unary function symbols Jyy ¥ < @, and congtants Com 3 ¥ < 0
and 7 < w. For any X C w,;, X of power y,, let

L= {fl yeX}o{c,, y<X &n<w}.
Let #Ax be the structure for Ly such that

© & g injective},
BU
AY.Y4

‘ [#x] = (X x ) v {glg:
2 ~— Fundamenta Mathematicae, T. LXXVIT
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(v, ») is the interpretation of ¢, , and the interpretation f, of /1, is defined
by £,((8,n)) = (6, n) and f,(g) = (y, g(y)). It is easy to show that there
is a complete theory T for L such that for every X of the kind considered
Th(Ax%) C T. If A4 is z; # z, then the conclusion of the lemma fails, because
for any model # of T and ¥ € w; there exists @ in rngf, which is not the
interpretation of any ¢,,. For such an ¢ there is no corresponding B,

Another negative result which is pertinent here is the fact that in
general Ehrenfeucht’s theorem fails for essentially countable theories
even for those which are superstahle.

3. A counterexample. It is easy to find 4, % such that h =3 B,
|#] 7 1B], p(#) = p(B) and no € exists satisfying the conclusion of our
theorem. For example let %] be the real numbers, pg be the rationals.
Let the only other nonlogical symbol be a binary predicate symbol ¢
and let gq = {(z,9)| 2¢|B|,y ¢ p(B), and 2 < y}. Let o be any proper
elementary submodel of % such that p(#) = p(B). (In fact we can make 4
countable if we wish.)

However counterexamples in which |B] is countable seem to he
scarce and we had to go to some pains to find the one which ig presented
below. Let the language I consist of a ternary predicate symbol ¢, binary
predicate symbols ¢° g%, .., a unary predicate symbol p, constants
©,0,1,... naming o, 0, 1, ... respectively, and m, naming (m,n) for
each (m,n)ewX w. A structure # is called admissible if its universe is
the union of w v {w} and a finite subset F of o x w, the language of 4
being L with the names of the members of o X o— F omitted and if the
following conditions are satisfied:

(i) the following formulas are valid in s

0nn& st > Ta=0u8n=158& Tp S ph & Tz,
N6 =2& Tpz, & Tpzy > Uz gz 2024,
and g @ m ny for each (n,m) e 7, ' ‘

(ii) pg =@ and for each n e w, g% = {(m, (m, )| (m, n) e 7).

An admissible pair is an ordered pair (4, R) where 4 iy an admissible
structure and R is an equivalence relation on (F'w {®}) X o such that all the
equivalence classes under B are finite and at most a finite number have
cardinality >1, and such that if (@, n) and (a’; n') are R-equivalent
then ging,(#) = ¢i'n'z,(#).

An admissible pair (#', B') is said to be an extension of an admissible
pair (4, R) if £ is an extension of 4 and if R-equivalence implies
R'-equivalence. Let (#, B) be an admissible Pair and 4 ¢ 8y(L) be inter-
preted in &, we define (4, R) forces A, written (4, R)|- 4 by induction
on the length of 4 agy follows. If 4 ig quantifier free, (#, R) |- 4 if 4 (A4)
=T. Also (#, R)|~ 714 if there is no extension (#', R') of (#, R) such
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thatt (&, R) |- A; (£, B) |- AV dy it (4, B)|~ 4y or (4, E)|-dy; and
(¢, B) |- Hzd if (#£, R) |- A[c] for some constant ¢ in L. It is easy to see
that this -definition is consistent. It is €asy to prove that if (4, R) -4
and (4, &').is an extension of (4, R) then (#, B')|—~4, and that for
any admissible (#, &) and A e8,(L) there is an extension (4, R') of
(, 1) such that either (&, R')|-4 or (#,R)|- 714 Let (4, R,),
(¢4, Bn), ... be chosen so that each pair is extended by its successor, and
such that for each 4 e §,(L) there exists n such that (#n, Ry) forces either 4
or 714. Let L' have the same predicate symbols as I but no constants
and let B’ = (| {#s] n € 0})|I'. Let B be the substructure of 3’ whose
universe i |B'|—{o} = 0 U (0 X o). :

Suppose for contradiction that B is a proper elementary extension
of &’ and that p($') = p(B"). Let b ¢ |3"|— |B'|. From (1) above which
must hold of &' with F = o X o we see that for some m in o we have
gomj true in $'. Also from (i) and (ii) the formulas

qomz,—~> U207 225 & pL) , 400 & §7 00 > 2 = 2,

are valid in each #,, and hence in %’, and hence in $". Thus for some
7 € w, §"nj i3 true, whence b = (n, m) since q"nny is also true. Thus B’
has no proper elementary extension B such that P(B) = p(R").

It only remains to show that % < %'. For this we need some more
definitions. Let A be in Syx(L). We associate with "4 the language L(A4)
which has predicate symbols p, ¢, together with those ¢"™’s which occur
in 4, all the constants which oceur in 4 and also each n such that T
occurs in 4. Let (#, R), (#', R') be admissible pairs with L(#) and L(#')
both extending L(d) then a bijective map i || —|#'| is said to induce
an L(A)-isomorphism of (#£, R) and (4, R") if

(i) f is an isomorphism between #|L(A4) and A'|L(4),

(ii) f induces an isomorphism between R and R, and

(ili) (@, n) is R'-equivalent to (f(w),n) for each n such that g" is
in L(A).

Lemuma 10. Let A be in Si(L) and f: |#|—|#'| induce an L(A)-iso-
morphism of (#, R) and (A, R'). If flay) = a, for 1<n<k, then
(%, B) |- Ald,, ..., ] if and only if (&, )| A[E], ..., ]

Proof. Weproceed by induction on 4. The only step which is not obvi-
ous consists in showing that some extension of (#£, R) forces Al ey k]
if and only if some extension of (4, R’) forces A[il,...,i,]. Suppose
that (4, E,) is an extension of (4, R) such that (s, Ry)|- A[F, ..., ic].
We extend f to an injective mapping f, with domain |#)| as
follows. If a, e |#y|— || let m Dbe the unique member of » such that
(fHw), m, ay) ¢ g, If g™ e L(4) and a, is (n, m) then we define Fulao)
= (f (n), m). Otherwise, that is, if g™ ¢ L(4)we let fy(a,) be any pair
(n', f(m)) subject to f, being injective. Liet |#4;| be the range of f, and let the

o%
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predicate symbols be interpreted on |#| 50 as to malke fmdmissibl.e and f,
an isomorphism of #|L(4) and A\ L(A). Let By be 131.1@ umq,ue‘ equivalence
relation on (|| — p () X @ such that R, is isomorphic t? R, via f?. Ther} fo
induces an L (4) -isomorphism between (+ , By) and (4, ,.Ey). By the induction
hypothesis (&}, Bo) |- Ali;, ..., i] since (s, R) |- ALiy oy Bl Thu's some
extension of (4, R') forces A[i;, ..., &]. Since f~* induces an L(A)-isomor-
phism between (#', B') and (#, E), if some extension of (Jef,za') forces
Ali,, ..., ;] then some extension of (4, k) forces Aliy, ..., ix]. This completes
the proof of the lemma.

Using the lemma we can now prove thab B<H. We first observe

that if A e Sy(L) then $'(4)= T if and only if (s, By)|~-4 for some
new. Let 4e8,(L) and suppose that (#£, R)|—- A[e]. We define an ex-
tension (4, B') of (4, R) as follows. Let |#£'| = |4| v {a} where a = (n, m)
is chosen in w X w— |#| so that gm ¢ L(A). Let the predicate symbols be
interpreted on |#'| so that #' is admissible and so that f: |#|—[4] is
an automorphism of #'|L(4), where f(w)=a, f(a) = w, and f is the
identity on |4|—{a, »}. Let R’ be the least equivalence relation on
(|#'|—p(#4)) X @ which extends B and which is such that («,m) and
(w, m) are R'-equivalent for each m such that either the R-equivalence
class of (w, m) has power > 1 or g™ ¢ L(4). Now f induces an L(d)-auto-
morphism of (4, R’). It follows from the lemma that (', R')|~ A[i]
gince (4, R') |- A[o]. Thus if A[e] is true in B’ so is A[Z] for some
a # w. This demonstrates that B < %'
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An isomorphism theorem of the Hurewicz-type
in Borsuk’s theory of shape

by
Krystyna Kuperberg (Stockholm)

Introduction. Tn Hurewicz’s well-known paper [6] is a homo-
morphism ¢ defined from the nth homotopy group =,(X) into the nth
singular homology group H,(X) with integral coefficients, for any com-
pact, pathwise-connected space X, and it is proved there (for n > 2)
that if the space X is (n—1)-connected (that is, if 7 (X) m 5y (X) = ...
w. mv7, (X)) ~0), then the homomorphism ¢ is an isomorphism.

In this note an analogous homomorphism with similar properties
will be constructed on the ground of Borsuk’s theory of shape (introduced
in [1]).

The singular homology groups of a pointed compactum (X, @) will
be replaced by the Vietoris-Cech homology groups of (X, x,), denoted
by ﬁq(X » %), and the homotopy groups m,(X, #,) will be replaced by the
80 called fundamental groups =,(X, «,), defined by K. Borsuk (see also [1]).
In the general case, Hurewicz’s assumption of the (n—1)-connectednes
of X will be replaced by approximative ¢-connectedness (for ¢ =0,1,...
vy, n—1) of (X, x,) (see for instance [2], p. 266, or Definition 3.1
in this paper). But if the pointed compactum (X, #,) is connected and mov-
able (see [2], § 4) then the assumption of the approximative ¢-connec-
tedness (for ¢= 0,1, ..., n—1) is equivalent to (X, ) ~mms( X, 2) ~ ...
e R, (X, ).

§ 1 of this paper contains a modified definition of the homology
groups Hy(X , %) and a proof of the equivalence of this definition to
the original Vietoris definition. § 2 containsg a construction of a homo-
morphism  @: ma(X, #) > Hn(X, @), called the limit Hurewicz homo-
morphism. In § 3 the following theorem is proved:

If the pointed compactum (X, a,) is approximatively ¢-connected
for ¢=0,1,..,n—~1 (n > 2), then the limit Hurewicz homomorphism
® is an isomorphism.

§ 1. The groups I') (X, z,). Let @ denote the Hilbert-cube, X —a non-
empty closed subset of @ and #,— & point lying in X. For any positive
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