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Recursions with uniquely determined topologies
by
C. F. Kelemen (*) (Ithaca, N. Y.)

Let (X, 7) be a topological space and C(X,) the set of all continuous
functions from X into X which are confinuous with respect to 7. In
a recent paper [6] J. C. Warndof treated the question: if +; and 7, are both
topologies for the same set X, when does O(X,)= C(X,) imply that
7, = 7,. We wish to consider two analogous problems. Following Wal-
lace [5] we_define a recursion to be a continuous function u: §x XX
such that both S and X are nonvoid Hausdorff spaces. It is the purpose
of this paper to find conditions on §, X, and x such that the topology
of § is uniquely determined or the topology of X is uniquely determined.
Note that u: §x XX is a recursion whenever X is locally compact,
8 is a subspace of O(X) with the compact-open topology, and u is the
evaluation mayp. This is a special case of an act. An act is a recursion
u 8% XX where in addition § is a topological semigroup and u(st, )
= uls, u(t, m)) for all s,%¢ 8 and # ¢ X. The second half of this paper is
concerned with showing that under certain conditions if u: Sx XX
is an act then § and X can be embedded in a topological semigroup 8’
such that [u(s, )]’ = s'-@' where 3’ is the element of §' identified with
yeSvw X and - is the multiplication in §'.

Definitions and notation. Let u: 8§ X XX be a recursion. We will
generally write sw for u(s,z) and call X the state space. p is said to be
effective if sz = ta for all » ¢ X implies s = . Note that if u is effective,
there is a natural embedding of the set § into C(X) by mapping s into ¢s
where g;: XX is defined by ps(#) = sz. If {ya} is a net in a topological
space ¥, we say limy, = oo if {y,} has no convergent subnets. A function
u: SX X—~X, where § and X are topological spaces, is said to be IP
(infindty preserving) on wx, ¢ X it whenever {s,} is a net in § such that
lims, = oothen lims,x, = oo. u i3 said to be IP if it is TP on wfor all z x.
It is said to be weakly IP if whenever {s,} is a net in § with lims, = oo,
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there is some z e X such that lims, o = co. Our definition of IP varies
slightly from that given for group actions in [3]. A function that satisfies
the definition of an act except for the topological criteria will be called
an algebraic act. It p: § X XX is an act, we often say § acts on X. It §
and T are topological semigroups and h: §—>T is a homeomorphism’ thas
is in addition an algebraie isomorphism, % is called an diseomorphism.
All topological spaces in this paper are assumed to be “Hawnsdorff,

1. Unique topologies.
1.1. THROREM. Let u: SX XX be a weakly IP, effective recursion.

Then 8 is homeomorphic to the subspace {ps: X —~X| se 8} C O(X) where

C(X) has the compact open topology and @s: ©—u(s, x).

Proof: Let T = {ps| s <8} Since ¢s = uligyx, ¢s is continuons and
thus T'C ¢(X). Let h: 8—T be defined by %(s) = ¢s for all s e8. We
will show that % is a homeomorphism. % is clearly onte T and if h(s)
= h(sy), then ;2 = s,@ for all ¢ X which implies that s, = s, since u is
effective. Thus % is a bijection. S

The notation (K,V)= {f<C(X)] f(K)CV} where K is compact
and V is open is used to denote a subbasic open set of the compact open
topology. We next show that % is continumous. Let h(s) e (K,V)nT
a subbasic open set in T. Then sK C V. Choose U, open in § and V, open
in X such that s € Uy, K CV, and U,V, CV. This can be done since K is
compact and u is continmous. Let ¢e U,, then tK C UV, CV implies
€ (K,V) which in turn implies A(U,) C(K,V)~ T and since se T,
this means % is continuous. 4

To complete the proof, we now show that % is open. Let 0C S be
open and let ¢s e 1(0), If we can find (A) K, K,, ..., K, compact in X
and Uy, ..., Uy open in X such that gse () {(&:, Us)| i=1,..,0} "
AT Ch(0) then we are finished. Suppose the desired sets don’t exist.
Let F be the set of all finite intersections of subbasic open sets of T' that
contain gs. Thus if F e F then ;e F and F = "\ {(Ki, U)| i=1,...,n}
for some n where each K; is compact and each U; is open in X. Let D be
an index. set for ¥ and if a, ¢ D, define a < § if #,CF,.Since F,,FzeF
implies that F,~FyeF, it follows that (D, <) is a directed set. For
each a e D, choose s, such that g, ¢ F, but s, ¢ 0. Since (A) does-not oceur,
we can always make this choice. :

Now {s,} is a net in S. We first show that lims, = co. Suppose {55}
were a subnet of {s,} which converged to s,. Then s, € A0 since {s,} € S\0
wh}eh is closed. Thus s, = s since s e 0. By the effectiveness of u, there
exist @ ¢ X such that s,z 52 sw. Choose U, V open in X such that s,z e U,
szeV and UnV =g and then select U’ open in S such that sy e U’
and U'zCT. Finally let 6eD be such that F,= (z,V). Then a > é
implies gs, € F; which means s, 2 ¢ V and thus s, ¢ U'. But this contradicts
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the fact that a subnet of {s,} converges to s, ¢ U'. Therefore {s.} has no
convergent subnets, i.e. lims, = oo.

We now show that lims, = co contradicts the fact that § is weakly
TP on X. Let # ¢ X and V' any open set in X with # < V. Choose § so that

‘Fy = (x, V) then for a > 8, s, € Iy which implies s, ¢ V. Thus lims,z =

for all # e X which contradicts the fact that S is weakly TP on X. There-
fore (A) may not be denied which means that h is an open map and hence
is 2 homeomorphism.

We can now solve the firgt problem. posed in the introduction.

1.2. CoroLLARY. Let 8 be a set, X a topological space and p: S X X —+X
a function such that u(s,®) = u(t, @) for all © ¢ X implies s = 1. Suppose 7,
and 7, are both lopologies for 8 such that when 8 is endowed with either
topology 1 becomes a weakly TP recursion. Then 7, = z,.

1.3. COROLLARY. Let 8, X and u be as above and suppose ©, and
are both compact topologies for 8 such that when S s endowed with either
topology p is & recursion. Then 7 = 7,.

Proof. Since every net in a compact space has a convergent subnet,
u is IP when § is endowed with either topology. o

The following example illustrates the fact that Theorem 1.1 is not
in general true without the hypothesis that u is weakly IP, even in the
case of semigrouyp actions with strong restrictions on u. Let p: SX XX
be an act. x is said to be transitive if o= X for all # ¢ X. A semigroup
is said to have left sero multiplication if xy = o for all &,y 8.

1.4. Exampie. Let I be the unit interval with left zero multipli-
cation and define u: Ix I—I by p(i,j)= 4. Then p is a transitive and
effective algebraic act. Let z; be the nsual topology for I and B a base
for 7,. Let 7, be the topology on I generated by Bw {{0}, {1}}. Both 7
and 7, are locally compact topologies for I and both u: (I, )X (I, 7)
(I, 1) and u: (I, ) X (I, 7,)~(I, ,) are continuous. But v 5 7.

‘We now turn to the similar question for the state space of a recursion.
That is, if 7, and 7, ave two topologies for X, what restrictions on 8, X
and w imply 7, = 7,% From the vesults above, one might guess that if 8
was & compact semigroup and z,, 7, were both compact topologies for X
such that w: §x (X, 7)-+(X,r) and p: §X (X, 7o) (X, ) were both
continuous effective acty with 8X = X, then 7, = 7,. This is not true,
as the following example demonsirates.

1.5. Bxamerm. Let I = [0, 1] with the usual topology and multi-
plication. Let A, = [-—1, 0] with the usual topology and 4,=[—1,0] -
with a different compact Hausdorff topology than 4,. Let X' =[—1,1]
and define 7, = {UC X: U~ I is open in I and U ~ 4¢ is open in A}
fori=1,2. Then (X, r;) and (X, 7,) are both compact Hausdorff spaces.
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Define u: Ix X—X by: pli,2)=2 if ve[—1,0] and u(i, z) = the
usual product in I of 4 and @ if  €[0,1]. ulrpy I8 continmous because
it is just multiplication in the semigroup I. uiry (¢ I8 clearly continuons
from ity definition no matter which topology is used on [-—1, 0], 4 ig
effective since p(i, 1) = 4. Thus, I is a compact connected abelian semi-
group that acts effectively on both (X, 7;) and (X, 5); yet 7 # 7.

The preceding example indicates that for the state space some
restriction in addition to IP and effective is needed on the recursion.

1.6. THEOREM. Let S be a topological space, X a set, and u: 8 X X +X
o function such that u(8 X {#,}) = X for some w, e X. Let 7, and =, be two
topologies for X such that when X is endowed with either topology, u is TP
on 2y ond plgygy 18 continuous. Then 7= 1.

Proof. We use nets and the notation gim, ,lim, Jim to indicate
limits taken in 8, (X, ;) and (X, 1,) respectively. Suppose that the set
FC X is closed in 7, but not in v,. Then there is a net {x,} C ¥ such that
Jimz, = 2, e X —F. For each a, choose s, eS8 such that s,z =z, and
note that Jim (s,%,) = #;, which implies glims, s co becaunse w is IP on ,.
Thus, there is a convergent subnet {s;} of {s,}. Let glims; = s, and observe
that 8, = (glimsg)a, = Jim(s,x,) = olim (s,2,) = Jlimz, = @, since {s;z,}
is a subnet of {s,m,} and wlgyry: S X {#}—>(X, 7,) is continumous. Let
@y = 85w, for each f. Then the continmity of plguizy: 8 X {@}—(X, 7}
implies that @ = §,@, = (glimsy)m, = Jlim(sp2) = ,limw; and {z,} C1
converges to s; in 7;. But F is closed in 7; and 2, ¢ X — ¥ i3 a contradiction
Thus, every set that is closed in 7, is closed in 7,. Similarly, every se.
closed in 7, is closed in 7, so that 7, = 1,.

When restricted to an action by a compact semigroup, we obtain
the following coroilary:

1.7. CorOLLARY. Let 8 be a compact semigroup and p: SX X X be
an algebraic act such that Sxy= X for some xy ¢ X. Let v, and T, be two
topologies for X such that when X is endowed with either topology u is
continuous. Then v, = t,.

Proof. Since § is compact, there is no net in § such that lims, = co.
Therefore § is TP on X with any topology for X and the result follows
from Theorem 1.6.

To see that some condition like TP is necessary in Theorem 1.6 even

‘when the recursion is a transitive and effective act, consider the following
example.

1.8. Exmm_ Let 8 =1[0,1] with the discrete topology and left
zero m?ltlpheation. Let 7, and v, be two different compact, Hausdortf
topologu?s for X =[0,1]. Define u: 8x (X, w) (X, ) by p(s,i)=s.
Then, p is clearly a continuous transitive effective act for 4 = 1, 2 and 8 is
locally compact, but 7,  7,. ’
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2. Embedding actions in semigroups. Let u: SX X —X and »: Tx ¥ Y
be acts. Let : § — T be an iseomorphism and y: X Y a homeomorphism
such that the following diagram commutes.

SxX-tsx

'P><'/‘l. lv:

Then the triple (8, X, u) is said to be equivalent to (T, ¥, ) and u is
said to be equivalent to ». Let (8, X', u) be an action triple as above and T
a topological semigroup with multiplication M: TX T'—T. Let ¢ be an
iseomorphism from § into T’ and h a homeomorphism from X into T’ such
that the diagram below commutes. ‘

Sx X-tsX

mi ln

TXT?T

Then we say the triple (8, X, u) is embedded in the semigroup T.

A well known embedding theorem due independently to Stadt-
lander [4] and Day and Wallace [1] is the following: ’

2.1. THEOREM. Let 8 be a compact abelian semigroup acting effectively
on & space X so that Swy= X for some x, e X. Then X is homeomorphic
o 8 and the action of 8 on X is equivalent to multiplication in 8.

In this seetion, we prove a generalization of Theorem 2.1 and then
go on to show that if (8, X, u) is an action triple with § and X both
compact, we can construct a compact semigroup T such that X is homeo-
morphic to K (7T), the minimal ideal of T, and (8, X, x) is embedded in T.

2.2. THEOREM. Let S be an abelian topological semigroup that acts on
the space X such that the action is IP on w, and effective and. 8z, = X for
some Ty e X. Then X is homeomorphic to 8 and the action of 8 on X is
equivalent to multiplication in S.

Proof. Let m represent the multiplication in § and define h: §—>X
by k(s) = sw,. b is clearly contimuous and onto. Now h(s;) = h(s,) means
8%, = 8,0, and since any x e X is of the form sz, we have

81 == 8y 8y = 8 (8 Wy) == 8 (8pi) == $,8%y = S &

for all & ¢ X which implies that s, = s, since the action is effective. To see
that & is a homeomorphism, we have only to show it is open. Let O be
an arbitrary open set in § and sz, an arbitrary element of h(0), then se O
since  is injective. We need (B) a U open in X such that sz e UC F(0).
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Suppose no such U exists and let F be the collection of all open neighbor-
hoods of sz, with D as an index set for &. Thus F = {F,| a e D} where
each I is an open neighborhood of s. Define the relation < on D by
a < f it FyCF,, then as in the proof of (1.1), (D, <) is a directed set.
Tor each aeD choose s, €8 such that s, eI, but s,@, ¢ f(0). This is
possible since we are assuming (B) does not oceur. Now {s,%} is a net
in X and lim(s, @) = 8%, hence the net {s,} has a convergent subnet,
{s,} in. 8 because the action was IP. Let s = limsg, then since {sg} C S\0

a closed set, we have 8; ¢ S\O which implies §; % s. But
818 = (limsg) @y = Lim (s520) = lim (s, %) = 8%,

which contradicts the fact that h is one to one. Therefore h is an open
map and hence a homeomorphism. The commutativity of the following
diagram shows that the action of § on X is equivalent to multiplication in §:

IxX-Lts X

ix k1 l lh’l

xS —8
m

Tet (8, X,u) be an action triple such that X i locally compact
and p is TP and effective. It is well known that O(X) with the compact-
open topology and composition for multiplication is a topological semi-
group. We will now exhibit an embedding of (8, X, u) into a subsemi-
group, T, of O(X) such that if ¢: S—T and h: X—T are the embedding
fanctions then T = ¢(8) v k(X)) and E(T) = h(X).

Tet ¢: §—~C(X) be defined by ¢(s) = ¢s where @s(®) = sw, then as
in (L.1) @ is & homeomorphism into 0(X). It is also a homomorphism since

P(818:) (4) = Pas(®) = (8182) @ = 8,(8,%) = [ (81) ° @(8e)]o

for all © ¢ X. Thus ¢(8) is a subsemigroup of C(X) iseomorphic to 8.
Tor each g € X, let ¢y: X—>X be defined by cy(x) =y for all we X and
define h: X ((X) by h(z) = ¢, then h is a homeomorphism of X into
C(X) [2]. Let T = ¢(8) v h{X). We will show that T is a subsemigroup
of O(X). Let t,, %, ¢ T. If t,, 1, e p(8) then ¢, o f, e (), if #;, 1, € h(X) then
ti=Cyy to=¢y, and Hoty=cy oy, =0y T if 1, cp(8) and %e h(X)
then i, = @5, T = ¢y, and

ty o (@) = s [0y, (@) = @s,(¥s) = $1Yz = Co0,(®)

for all @ ¢ X, thus #, o t, = ¢sy, ¢ T. Finally if ¢, ¢ h(X) and 1, ¢ p(8) then
ti=cy, t=0s, and b oty = oy o s, =y, ¢ T. Therefore T is a sub-
semigroup of (/(X). We also see that if keh(X) then kot eh(X) and
tokeh(X) for any ¢ T making %(X) an ideal of 7. A(X) is the minimal
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ideal of T because kot=Fk for all keh(X) and all {¢T. To see that

(8, X, p) is embedded in T congider the following diagram:

Ix X-Lsx

ml lh

TXTT’%T

Since 7 (s%) = Csz and @s o ¢z = €y, W see that the diagram commutes.
Much more can be said about this construction in special cases. For
example, if § and X are hoth compact then T is compact; if 8 has identity 1
and 8X = X, then (1) is an identity for T; and if § and X are both
connected and some element of 8 acts as a constant (there exists s, e 8
such that s,X is a point) then T is connected. We summarize a special
case of the above in the following theorem.

9.3. TrmorEM. Let (S, X, u) be an action triple with 8 and X compact.
Then there exists a compact semigroup T with (8, X, u) embedded in T and
such that if 8 is the subsemigroup of T' identified with 8 and X' the sub-
space identified with X, we have 8'v X' =T and X’ = K(T).
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