

Recursions with uniquely determined topologies

bv

C. F. Kelemen (*) (Ithaca, N. Y.)

Let (X,τ) be a topological space and $C(X_{\tau})$ the set of all continuous functions from X into X which are continuous with respect to τ . In a recent paper [6] J. C. Warndof treated the question: if τ_1 and τ_2 are both topologies for the same set X, when does $C(X_{\tau_0}) = C(X_{\tau_0})$ imply that $\tau_1 = \tau_2$. We wish to consider two analogous problems. Following Wallace [5] we define a recursion to be a continuous function $\mu: S \times X \to X$ such that both S and X are nonvoid Hausdorff spaces. It is the purpose of this paper to find conditions on S, X, and μ such that the topology of S is uniquely determined or the topology of X is uniquely determined. Note that $\mu: S \times X \to X$ is a recursion whenever X is locally compact, S is a subspace of C(X) with the compact-open topology, and μ is the evaluation map. This is a special case of an act. An act is a recursion $\mu: S \times X \to X$ where in addition S is a topological semigroup and $\mu(st, x)$ $=\mu(s,\mu(t,x))$ for all $s,t\in S$ and $x\in X$. The second half of this paper is concerned with showing that under certain conditions if $\mu: S \times X \to X$ is an act then S and X can be embedded in a topological semigroup S' such that $[\mu(s,x)]' = s' \cdot x'$ where y' is the element of S' identified with $y \in S \cup X$ and \cdot is the multiplication in S'.

Definitions and notation. Let $\mu: S \times X \to X$ be a recursion. We will generally write sx for $\mu(s,x)$ and call X the state space. μ is said to be effective if sx = tx for all $x \in X$ implies s = t. Note that if μ is effective, there is a natural embedding of the set S into C(X) by mapping s into φ_s where $\varphi_s: X \to X$ is defined by $\varphi_s(x) = sx$. If $\{y_n\}$ is a net in a topological space Y, we say $\lim y_n = \infty$ if $\{y_n\}$ has no convergent subnets. A function $\mu: S \times X \to X$, where S and X are topological spaces, is said to be IP (infinity preserving) on $x_0 \in X$ if whenever $\{s_a\}$ is a net in S such that $\lim s_a = \infty$ then $\lim s_a x_0 = \infty$. μ is said to be IP if it is IP on x for all $x \in X$. It is said to be x weakly IP if whenever $\{s_a\}$ is a net in S with x

^(*) A portion of the research for this paper was supported by a grant to Ithaca College from the General Electric corporation. The author wishes to thank Professor L. W. Anderson for his suggestions and advice.

there is some $x \in X$ such that $\limsup_a x = \infty$. Our definition of IP varies slightly from that given for group actions in [3]. A function that satisfies the definition of an act except for the topological criteria will be called an algebraic act. If $\mu \colon S \times X \to X$ is an act, we often say S acts on X. If S and T are topological semigroups and $h \colon S \to T$ is a homeomorphism that is in addition an algebraic isomorphism, h is called an isomorphism. All topological spaces in this paper are assumed to be Hausdorff.

1. Unique topologies.

1.1. THEOREM. Let $\mu: S \times X \to X$ be a weakly IP, effective recursion. Then S is homeomorphic to the subspace $\{\varphi_s\colon X \to X | s \in S\} \subset C(X)$ where C(X) has the compact open topology and $\varphi_s\colon x \to \mu(s,x)$.

Proof: Let $T = \{\varphi_s | s \in S\}$. Since $\varphi_s = \mu|_{\{s\} \times X}$, φ_s is continuous and thus $T \subset C(X)$. Let $h \colon S \to T$ be defined by $h(s) = \varphi_s$ for all $s \in S$. We will show that h is a homeomorphism. h is clearly onto T and if $h(s_1) = h(s_2)$, then $s_1x = s_2x$ for all $x \in X$ which implies that $s_1 = s_2$ since μ is effective. Thus h is a bijection.

The notation $(K,V)=\{f\in C(X)|\ f(K)\subset V\}$ where K is compact and V is open is used to denote a subbasic open set of the compact open topology. We next show that h is continuous. Let $h(s)\in (K,V)\cap T$ a subbasic open set in T. Then $sK\subset V$. Choose U_0 open in S and V_0 open in X such that $s\in U_0$, $K\subset V_0$ and $U_0V_0\subset V$. This can be done since K is compact and μ is continuous. Let $t\in U_0$, then $tK\subset U_0V_0\subset V$ implies $\psi_t\in (K,V)$ which in turn implies $h(U_0)\subset (K,V)\cap T$ and since $s\in U_0$ this means h is continuous.

To complete the proof, we now show that h is open. Let $0 \subset S$ be open and let $\varphi_s \in h(0)$. If we can find (A) K_1, K_2, \ldots, K_n compact in X and U_1, \ldots, U_n open in X such that $\varphi_s \in \bigcap \{(K_i, U_i) | i = 1, \ldots, n\} \cap T \subset h(0)$ then we are finished. Suppose the desired sets don't exist. Let \mathcal{F} be the set of all finite intersections of subbasic open sets of T that contain φ_s . Thus if $F \in \mathcal{F}$ then $\varphi_s \in F$ and $F = \bigcap \{(K_i, U_i) | i = 1, \ldots, n\}$ for some n where each K_i is compact and each U_i is open in X. Let D be an index set for \mathcal{F} and if $\alpha, \beta \in D$, define $\alpha < \beta$ if $F_\beta \subset F_\alpha$. Since $F_\alpha, F_\beta \in \mathcal{F}$ implies that $F_\alpha \cap F_\beta \in \mathcal{F}$, it follows that (D, <) is a directed set. For each $\alpha \in D$, choose s_α such that $\varphi_{s_\alpha} \in F_\alpha$ but $s_\alpha \notin 0$. Since (A) does-not occur, we can always make this choice.

Now $\{s_a\}$ is a net in S. We first show that $\lim s_a = \infty$. Suppose $\{s_{\beta}\}$ were a subnet of $\{s_a\}$ which converged to s_0 . Then $s_0 \in S \setminus 0$ since $\{s_a\} \in S \setminus 0$ which is closed. Thus $s_0 \neq s$ since $s \in 0$. By the effectiveness of μ , there exist $x \in X$ such that $s_0 x \neq sx$. Choose U, V open in X such that $s_0 x \in U$, $sx \in V$ and $U \cap V = \varphi$ and then select U' open in S such that $s_0 \in U'$ and $U'x \subseteq U$. Finally let $\delta \in D$ be such that $F_{\delta} = (x, V)$. Then $\alpha > \delta$ implies $\varphi_{s_\alpha} \in F_{\delta}$ which means $s_\alpha x \in V$ and thus $s_\alpha \notin U'$. But this contradicts

the fact that a subnet of $\{s_a\}$ converges to $s_0 \in U'$. Therefore $\{s_a\}$ has no convergent subnets, i.e. $\lim s_a = \infty$.

We now show that $\lim s_a = \infty$ contradicts the fact that S is weakly IP on X. Let $x \in X$ and V any open set in X with $x \in V$. Choose δ so that $F_{\delta} = (x, V)$ then for $\alpha > \delta$, $\varphi_{\delta a} \in F_{\delta}$ which implies $s_a x \in V$. Thus $\lim s_a x = x$ for all $x \in X$ which contradicts the fact that S is weakly IP on X. Therefore (A) may not be denied which means that h is an open map and hence is a homeomorphism.

We can now solve the first problem posed in the introduction.

- 1.2. COROLLARY. Let S be a set, X a topological space and $\mu \colon S \times X \to X$ a function such that $\mu(s,x) = \mu(t,x)$ for all $x \in X$ implies s = t. Suppose τ_1 and τ_2 are both topologies for S such that when S is endowed with either topology μ becomes a weakly IP recursion. Then $\tau_1 = \tau_2$.
- 1.3. COROLLARY. Let S, X and μ be as above and suppose τ_1 and τ_2 are both compact topologies for S such that when S is endowed with either topology μ is a recursion. Then $\tau_1 = \tau_2$.

Proof. Since every net in a compact space has a convergent subnet, μ is IP when S is endowed with either topology.

The following example illustrates the fact that Theorem 1.1 is not in general true without the hypothesis that μ is weakly IP, even in the case of semigroup actions with strong restrictions on μ . Let $\mu \colon S \times X \to X$ be an act. μ is said to be transitive if Sx = X for all $x \in X$. A semigroup is said to have left zero multiplication if xy = x for all $x, y \in S$.

1.4. Example. Let I be the unit interval with left zero multiplication and define $\mu\colon I\times I\to I$ by $\mu(i,j)=i$. Then μ is a transitive and effective algebraic act. Let τ_1 be the usual topology for I and B a base for τ_1 . Let τ_2 be the topology on I generated by $B \cup \{\{0\}, \{1\}\}$. Both τ_1 and τ_2 are locally compact topologies for I and both $\mu\colon (I,\tau_1)\times (I,\tau_1)\to (I,\tau_1)$ and $\mu\colon (I,\tau_2)\times (I,\tau_1)\to (I,\tau_1)$ are continuous. But $\tau_1\neq \tau_2$.

We now turn to the similar question for the state space of a recursion. That is, if τ_1 and τ_2 are two topologies for X, what restrictions on S, X and μ imply $\tau_1 = \tau_2$? From the results above, one might guess that if S was a compact semigroup and τ_1 , τ_2 were both compact topologies for X such that $\mu: S \times (X, \tau_1) \to (X, \tau_1)$ and $\mu: S \times (X, \tau_2) \to (X, \tau_2)$ were both continuous effective acts with SX = X, then $\tau_1 = \tau_2$. This is not true, as the following example demonstrates.

1.5. EXAMPLE. Let I = [0, 1] with the usual topology and multiplication. Let $A_1 = [-1, 0]$ with the usual topology and $A_2 = [-1, 0]$ with a different compact Hausdorff topology than A_1 . Let X = [-1, 1] and define $\tau_i = \{U \subset X: U \cap I \text{ is open in } I \text{ and } U \cap A_i \text{ is open in } A_i\}$ for i = 1, 2. Then (X, τ_1) and (X, τ_2) are both compact Hausdorff spaces.

Define $\mu\colon I\times X\to X$ by: $\mu(i,x)=x$ if $x\in[-1,0]$ and $\mu(i,x)=$ the usual product in I of i and x if $x\in[0,1]$. $\mu|_{I\times[0,1]}$ is continuous because it is just multiplication in the semigroup I. $\mu|_{I\times[-1,0]}$ is clearly continuous from its definition no matter which topology is used on [-1,0]. μ is effective since $\mu(i,1)=i$. Thus, I is a compact connected abelian semigroup that acts effectively on both (X,τ_1) and (X,τ_2) ; yet $\tau_1\neq\tau_2$.

The preceding example indicates that for the state space some restriction in addition to IP and effective is needed on the recursion.

1.6. THEOREM. Let S be a topological space, X a set, and $\mu: S \times X \to X$ a function such that $\mu(S \times \{x_0\}) = X$ for some $x_0 \in X$. Let τ_1 and τ_2 be two topologies for X such that when X is endowed with either topology, μ is IP on x_0 and $\mu|_{S \times \{x_0\}}$ is continuous. Then $\tau_1 = \tau_2$.

Proof. We use nets and the notation $_{S}$ lim, $_{1}$ lim, $_{2}$ lim to indicate limits taken in S, (X, τ_{1}) and (X, τ_{2}) respectively. Suppose that the set $F \subset X$ is closed in τ_{1} but not in τ_{2} . Then there is a net $\{x_{a}\} \subset F$ such that $_{2}$ lim $x_{a} = x_{1} \in X - F$. For each a, choose $s_{a} \in S$ such that $s_{a}x_{0} = x_{a}$ and note that $_{2}$ lim $(s_{a}x_{0}) = x_{1}$, which implies $_{3}$ lim $s_{a} \neq \infty$ because μ is IP on x_{0} . Thus, there is a convergent subnet $\{s_{\beta}\}$ of $\{s_{a}\}$. Let $_{3}$ lim $s_{\beta} = s_{1}$ and observe that $s_{1}x_{0} = (_{3}$ lim $s_{\beta})x_{0} = _{2}$ lim $(s_{\beta}x_{0}) = _{2}$ lim $(s_{\alpha}x_{0}) = _{2}$ lim $x_{\alpha} = x_{1}$ since $\{s_{\beta}x_{0}\}$ is a subnet of $\{s_{\alpha}x_{0}\}$ and $\mu_{|S \times \{x_{0}\}} : S \times \{x_{0}\} \to (X, \tau_{2})$ is continuous. Let $x_{\beta} = s_{\beta}x_{0}$ for each β . Then the continuity of $\mu_{|S \times \{x_{0}\}} : S \times \{x_{0}\} \to (X, \tau_{1})$ implies that $x_{1} = s_{1}x_{0} = (_{3}$ lim $s_{\beta})x_{0} = _{1}$ lim $(s_{\beta}x_{0}) = _{1}$ lim x_{β} and $\{x_{\beta}\} \subset 1$ converges to s_{1} in τ_{1} . But F is closed in τ_{1} and $x_{1} \in X - F$ is a contradiction Thus, every set that is closed in τ_{1} is closed in τ_{2} . Similarly, every seconds of τ_{2} is closed in τ_{1} so that $\tau_{1} = \tau_{2}$.

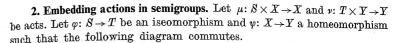
When restricted to an action by a compact semigroup, we obtain the following corollary:

1.7. COROLLARY. Let S be a compact semigroup and $\mu\colon S\times X\to X$ be an algebraic act such that $Sx_0=X$ for some $x_0\in X$. Let τ_1 and τ_2 be two topologies for X such that when X is endowed with either topology μ is continuous. Then $\tau_1=\tau_2$.

Proof. Since S is compact, there is no net in S such that $\lim s_a = \infty$. Therefore S is IP on X with any topology for X and the result follows from Theorem 1.6.

To see that some condition like IP is necessary in Theorem 1.6 even when the recursion is a transitive and effective act, consider the following example.

1.8. Example. Let $\mathcal{S} = [0,1]$ with the discrete topology and left zero multiplication. Let τ_1 and τ_2 be two different compact, Hausdorff topologies for X = [0,1]. Define $\mu \colon \mathcal{S} \times (X,\tau_i) \to (X,\tau_i)$ by $\mu(s,i) = s$. Then, μ is clearly a continuous transitive effective act for i=1,2 and \mathcal{S} is locally compact, but $\tau_1 \neq \tau_2$.



$$S \times X \xrightarrow{\mu} X$$

$$\downarrow^{\varphi \times \psi} \downarrow \qquad \qquad \downarrow^{\psi}$$

$$T \times Y \longrightarrow Y$$

Then the triple (S, X, μ) is said to be equivalent to (T, Y, ν) and μ is said to be equivalent to ν . Let (S, X, μ) be an action triple as above and T a topological semigroup with multiplication $M\colon T\times T\to T$. Let φ be an iseomorphism from S into T and h a homeomorphism from X into T such that the diagram below commutes.

$$\begin{array}{c} S \times X \stackrel{\mu}{\longrightarrow} X \\ \downarrow {}_{q \times h} \downarrow \qquad \qquad \downarrow h \\ T \times T \stackrel{\mu}{\longrightarrow} T \end{array}$$

Then we say the triple (S, X, μ) is embedded in the semigroup T.

A well known embedding theorem due independently to Stadtlander [4] and Day and Wallace [1] is the following:

2.1. THEOREM. Let S be a compact abelian semigroup acting effectively on a space X so that $Sx_0 = X$ for some $x_0 \in X$. Then X is homeomorphic to S and the action of S on X is equivalent to multiplication in S.

In this section, we prove a generalization of Theorem 2.1 and then go on to show that if (S, X, μ) is an action triple with S and X both compact, we can construct a compact semigroup T such that X is homeomorphic to K(T), the minimal ideal of T, and (S, X, μ) is embedded in T.

2.2. THEOREM. Let S be an abelian topological semigroup that acts on the space X such that the action is IP on x_0 and effective and $Sx_0 = X$ for some $x_0 \in X$. Then X is homeomorphic to S and the action of S on X is equivalent to multiplication in S.

Proof. Let m represent the multiplication in S and define $h: S \to X$ by $h(s) = sx_0$. h is clearly continuous and onto. Now $h(s_1) = h(s_2)$ means $s_1x_0 = s_2x_0$ and since any $x \in X$ is of the form sx_0 , we have

$$s_1 x = s_1 s x_0 = s(s_1 x_0) = s(s_2 x_0) = s_2 s x_0 = s_2 x_0$$

for all $x \in X$ which implies that $s_1 = s_2$ since the action is effective. To see that h is a homeomorphism, we have only to show it is open. Let O be an arbitrary open set in S and sx_0 an arbitrary element of h(O), then $s \in O$ since h is injective. We need (B) a U open in X such that $sx_0 \in U \subset f(O)$.

Suppose no such U exists and let $\mathcal F$ be the collection of all open neighborhoods of sx_0 with D as an index set for $\mathcal F$. Thus $\mathcal F=\{F_a|\ \alpha\in D\}$ where each F_a is an open neighborhood of sx_0 . Define the relation < on D by $\alpha<\beta$ if $F_\beta\subset F_a$, then as in the proof of (1.1), (D,<) is a directed set. For each $\alpha\in D$ choose $s_\alpha\in S$ such that $s_\alpha x_0\in F_a$ but $s_\alpha x_0\notin f(O)$. This is possible since we are assuming (B) does not occur. Now $\{s_\alpha x_0\}$ is a net in X and $\lim(s_\alpha x_0)=sx_0$ hence the net $\{s_\alpha\}$ has a convergent subnet, $\{s_\beta\}$ in S because the action was IP. Let $s_1=\lim s_\beta$, then since $\{s_\beta\}\subset S\setminus O$ a closed set, we have $s_1\in S\setminus O$ which implies $s_1\neq s$. But

$$s_1 x_0 = (\lim s_\beta) x_0 = \lim (s_\beta x_0) = \lim (s_\alpha x_0) = s x_0$$

which contradicts the fact that h is one to one. Therefore h is an open map and hence a homeomorphism. The commutativity of the following diagram shows that the action of S on X is equivalent to multiplication in S:

$$S \times X \xrightarrow{\mu} X$$

$$i \times h^{-1} \downarrow \qquad \qquad \downarrow h^{-1}$$

$$S \times S \xrightarrow{m} S$$

Let (S,X,μ) be an action triple such that X is locally compact and μ is IP and effective. It is well known that C(X) with the compact-open topology and composition for multiplication is a topological semigroup. We will now exhibit an embedding of (S,X,μ) into a subsemigroup, T, of C(X) such that if $\varphi\colon S\to T$ and $h\colon X\to T$ are the embedding functions then $T=\varphi(S)\cup h(X)$ and K(T)=h(X).

Let $\varphi: S \to C(X)$ be defined by $\varphi(s) = \varphi_s$ where $\varphi_s(x) = sx$, then as in (1.1) φ is a homeomorphism into C(X). It is also a homomorphism since

$$\varphi(s_1s_2)(x) = \varphi_{s_1s_2}(x) = (s_1s_2)x = s_1(s_2x) = [\varphi(s_1) \circ \varphi(s_2)]x$$

for all $x \in X$. Thus $\varphi(S)$ is a subsemigroup of C(X) iseomorphic to S. For each $y \in X$, let $c_y \colon X \to X$ be defined by $c_y(x) = y$ for all $x \in X$ and define $h \colon X \to C(X)$ by $h(x) = c_x$ then h is a homeomorphism of X into C(X) [2]. Let $T = \varphi(S) \cup h(X)$. We will show that T is a subsemigroup of C(X). Let $t_1, t_2 \in T$. If $t_1, t_2 \in \varphi(S)$ then $t_1 \circ t_2 \in \varphi(S)$, if $t_1, t_2 \in h(X)$ then $t_1 = c_{y_1}, t_2 = c_{y_2}$ and $t_1 \circ t_2 = c_{y_1} \circ c_{y_2} = c_{y_1} \in T$ if $t_1 \in \varphi(S)$ and $t_2 \in h(X)$ then $t_1 = \varphi_s, t_2 = c_{y_s}$ and

$$t_1 \circ t_2(x) = \varphi_{s_1}(c_{y_2}(x)) = \varphi_{s_1}(y_2) = s_1 y_2 = c_{s_1 y_2}(x)$$

for all $x \in X$, thus $t_1 \circ t_2 = c_{s_1 y_2} \in T$. Finally if $t_1 \in h(X)$ and $t_2 \in \varphi(S)$ then $t_1 = c_{y_1}$, $t_2 = \varphi_{s_2}$ and $t_1 \circ t_2 = c_{y_1} \circ \varphi_{s_2} = c_{y_1} \in T$. Therefore T is a subsemigroup of C(X). We also see that if $k \in h(X)$ then $k \circ t \in h(X)$ and $t \circ k \in h(X)$ for any $t \in T$ making h(X) an ideal of T. h(X) is the minimal

ideal of T because $k \circ t = k$ for all $k \in h(X)$ and all $t \in T$. To see that (S, X, μ) is embedded in T consider the following diagram:

$$\begin{array}{c}
S \times X \xrightarrow{\mu} X \\
\downarrow \mu \\
T \times T \xrightarrow{\Omega} T
\end{array}$$

Since $h(sx) = c_{sx}$ and $\varphi_s \circ c_x = c_{sx}$, we see that the diagram commutes. Much more can be said about this construction in special cases. For example, if S and X are both compact then T is compact; if S has identity 1 and SX = X, then $\varphi(1)$ is an identity for T; and if S and S are both connected and some element of S acts as a constant (there exists $S_0 \in S$ such that $S_0 \in S$ is a point) then S is connected. We summarize a special case of the above in the following theorem.

2.3. THEOREM. Let (S, X, μ) be an action triple with S and X compact. Then there exists a compact semigroup T with (S, X, μ) embedded in T and such that if S' is the subsemigroup of T identified with S and X' the subspace identified with X, we have $S' \cup X' = T$ and X' = K(T).

References

 J. M. Day and A. D. Wallace, Multiplication induced in the state space of an act, Math. Systems Theory 1 (1968), pp. 305-314.

[2] J. Dugundji, Topology, 1966.

3] T. H. McH. Hanson, Actions that fiber and vector semigroups, to appear.

[4] D. P. Stadtlander, Semigroup Actions on Topological Spaces, Dissertation, Pennsylvania State University 1966.

 [5] A. D. Wallace, Recursions with semigroup state spaces, Revue Romaine de Math. Pure et App. 12 (1967), pp. 1411-1415.

[6] J. C. Warndof, Topologies uniquely determined by their continuous self maps, Fund. Math. 66 (1969), pp. 25-43.

ITHACA COLLEGE Ithaca, New York

Reçu par la Rédaction le 18. 5. 1971