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A short proof of Hausdorff’s theorem
on extending metrics

by
H. Toruhczyk (Warszawa)

The aim of this paper is to give a short proof of the following
theorem:

TreorREM. Let X be a metrizable topological space and let A C X be
a closed set. Then, for every metric p on A which induces the relative topology
on A., there is a métric o on X which is an extension of o and is compatible
with the topology of X. If moreover X is complete-metrizable and o is ¢ com-
plete metric on A, then the extension g above can be obtained to be a complete
metric on X.

The first part of the theorem was proved by F. Hausdortf [5] in 1930
(cf. also [6]) and independently by R. H. Bing ([3], Theorem 5) in 1947,
whereas the remark concerning the “complete” case was made-by P. Ba-
con [2] in 1968. Let us note that R. Arens ([1], Theorem 3.3) gave in 1952
a relatively simple proof of Hausdorff’s theorem; his arguments were
based on a close examination of “Dugundji’s retraction”.

The proof we are going to present involves (besides other well-known
facts) the mse of the following lemma of V. L. Klee ([7], pp- 36).

TEyya. Let B and F be normed linear spaces and let ECEx{0}
and L C {0} X F be closed subsets of B X F. Then, for every homeomorphism

b . - . - t
f: K =5 L, there is an extension of | to a homeomorphism f: ExFESExF.

Proof. Denote by py and py the natural projections of B x F onto E
and ¥, respectively. Since ' is an ANR(I) ([4], Theorem 4.1), the func-
tion ppof: K-+F can Dbe oxtended to It Bx {0}—F. We put fi(a,p)
= (o, B-+Ma, 0)), (e, f) e EXF; f, is then a homeomorphism of B x F
onto itself satistying fula, f) = (a, pp o fla, B)) for (a, p) e K. Similarly,
there is a homeomorphism fp: BExXF "% ExF such that fia,p)
= (pg o fa, B); ) for (a, p) e L. WWe then have f; < fla, B) = fila, B) for
(a, B) € K, whence f= f;*of, is the desired extengion of f.

Now we pass to the proof of the theorein; Bacon’s remark will be
considered in Dbrackets. :
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Proof of the theorem. By [8], (4, ¢) ¢an be isometrically
imbedded as a closed subset of a [complete] normed linear space (¥, |,);
let hy: A —F bethe embedding (*). Similarly, thereis a topologiea,lhembeddjng
g;: X—E of X onto a closed subset of a [complete] normed linear space
(B, llp). We put (e, ) = lelzg+IBlz for (a,B) e EXF and we set
g=goX 0: X>Ex {0}, h=0xhy A->{0}xF, K j;tg(A) and L = h(A).
By the Lemma, the homeomorphism f = % o ¢ K — L can be extended

onto

to a homeomorphism f: B xF —> E X F. Obviously, % = f < g is a topolo-
gical embedding of X onto a closed subset of ExF and, since h(4)
C{0}x F, the restriction u,,=h is an isometric embedding of (4, o)
into the [complete] normed linear space (EXF,| ). The metrie

olmyy ) = [lu(a) —u(@), @i, e X,

is the extension of ¢ we have been looking for.
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