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Degrees of indeterminacy of games
by
Andreas Blass (Ann Arbor, Mich.)

We propose to detine a pre-ordering of the class of all infinite two-
person zero-sum. games with perfect information and two-valued payoff
function . (henceforth simply called games) by placing one game below
another if the latter is easier for player 1 to win than the former. (We
use 0 and 1 as names for the two players.) Thus, A < B means that there
is a “strategy” by means of which 1 can win B if he is permitted to consult
an “oracle” capable of winning 4 as player 1. A game for which 1 has
a winning strategy is at the top of the ordering, because he can simply
use this strategy and ignore the oracle. A game for which 0 has a winning
strategy is at the bottom of the ordering, for there can be no oracle for
swch a game. The undetermined games, those for which neither player
has a winning strategy, are distributed between these extremes.

Tt is, of course necessary to replace this talk about oracles with
a precise mathematical definition of the ordering. We ghall give two de-
finitions, corresponding to two conventions as to how player 1 is to
interrogate the oracle. For one ordering (the strong one), he interrogates
the oracle by acting as player 0 in & play of A against the oracle, occasion-
ally interrupting this game to make a move in B, using what he has
learned from the oracle to select this move. For the weak ordering, he
proceeds similarly except that he may, from time to time, abandon a play
of A and start over, agking the oracle about a different opening in 4.

“He may later return to a previously abandoned play of A and continue it.

The oracle is obliged to play consistently in that, as long as it is con-
fronted with the same moves in two of the plays of 4, it answers the
same way in both plays. .

Tt is clear, even from this informal description, that the weak
ordering will require a more complex definition than the strong one.
Also, the weak ordering lacks the following-symmetry property enjoyed
Dby the strong ordering: If B is easier for player 1 than A, then A is easier
for 0 than B.

“On the other hand, the weak ordering yields (if we identify equivalent
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games) Brouwerian lattices, while the lattices obtained from the strong
ordering are not even modular. More importantly, the weak ordering
seems to correspond more acerately than the strong one to the intuitive
concept “easier to win”,

1. Games. We use the msual conventions that an ordinal is the set
of smaller ordinals and & cardinal is an initial ordinal; in particular,
@ = 8, is the set of natural numbers. For any set X, the set of infinite
sequences of elements of X igz ®X, while the set of finite sequences is
Fin(X). The set °X v Fin (X) of all sequences (_of length <w) from X is
Seq(X). If s e Seq(X) and i < length(s), then (i) is the initial segment
(8(0), <oy S(E—1)> oF 8 of length 4.

A game on a set X is & function A from Seq(X) to {0, 1} = 2. For
nonempty X, we think of a game A on X as being played as follows.
There are two players, 0 and 1. The moves occur in an o-sequence, and
at each move one of the players selects an element of X. Thus, an s ¢“X
is. produced. At move 7, the sequence 5(n) has already been produced
and is known to both players; s(n) is chosen by player A(E(n)). When
the play s is completed, player A (s) is the loser. Note that the function 4
serves a ual purpose. On finite sequences, it indicates who is to move
next; on infinite sequences, it indicates who has lost the play. It wil
be convenient to have a single function playing both roles. Let us also
agree that, if A is a game on X, if s is a sequence some of whose terms
are not in X, and if s(%) is the first such term, then 4 (s) means A(E(k)).
This convention may be interpreted as saying: If one of the players
selects something outside X, then it remains his move forever, and he
loses.

Tet A be a game on X. A strategy for player ¢ in A is a function o
from Fin(X) ~ A~Ys) into X. It is a winning strategy if

(1) Vs ¢ °X[Vn e o[4(5(n)) = i—>s(n) = s(s(n)) >4 (s) # 4.

A strategy o for i should be thought of as a set of instructions for player i,
telling him, if the sequence ? has already been played and A(t) =1, to
play o(f) next. The condition (1) for a Wwinning gtrategy says that if ¢
Tollows these instructions then he wins. If one of the players has a winning
strategy in & game, then that game is said to be determined and to be
a win for that player. Clearly, no game can be a win for both players.
Gale and Stewart [2] have given an example of an undetermined game
on {0,1}. (Although we shall always assume the axiom of choice, 1pon
which the Gale-Stewart construction depends, one can prove withous
+this axiom that there is an undetermined game on &,; see [3], page
217).

Our definitions of game and strategy make senge even when X is
‘empty, although such games cannot be played since neither player has
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2 move. As Seq(0) consists of just the empty sequence ¢ ), there are
exactly two games, O and I on 0, defined by

0K MN=1, IK?)=0.

According to our definitions, O is a win for 0, while I is a win for 1, and,
in either case, the empty function is a winning strategy.

We shall define several operations on games. The first of these is
just to interchange the roles of the two players. For any game A, we
define the game ~A on the same set by

(~A)(s) =1—A(s).

Clearly, ~~A = A, and ~A is a win for one player iff 4 is a win for
the other.

Our second operation, which will give the greatest lower bound in
the orderings to be defined later, acts on an indexed family {44 ieI}
of games and yields a new game /\ A; played as follows. Player 0 begins

i€l

€
by choosing an ¢ ¢ I, and, from then on, the players play 4;. Formally,
A\ A is the game on ITw | X; defined by

g€l - tel
0 if =1,
(_/\Az)(S)= 0 it s(0)¢l,
el Aqt) it el and s= i)t

{(where x means concatenation). Tn this definition, the first clause says 0
moves first, and the second says, in effect, that he must choose an i€ I,
for otherwise he loses. Once 0 has chosen i I, both players must choose
moves in X;, for the first player to move outside Xy loses. Finally, ac-
cording to the third clause, the rest of the game proceeds just like A;.
Tt is easy to check that A\ A; is a win for 0 (resp. 1) iff one (vesp. each)

. i€l
of the A;’s is. . ‘
There is an operation \/, dual o /\, which will give the least upper
bound in our orderings. \/ 4: is just like /\ A; except that the first
i iel

iel .
move, the choice of which 4, to play, belongs to 1 rather than 0. Formally,
\/ -A-'i = N/\ N-A-‘l .

i€l el
Then \/ 4, is a win for 0 (resp. 1) iff each (resp. one) of the Ay's is.
iel
We shall define one more operation in this section, the tensor product.
Tt will be used in the definitions of the orderings of games. The tensor
product @ A; of the indexed family {4 i eI} if played as follows.

iel
Player 0 begins by choosing an ¢ ¢ I, and the players sta;rt? to play Ai.
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However,' at any of his moves, 0 may abandon 4; and choose another
index i’ ¢ I. Then both players start to play A, until 0 again changes
games. He may change games as often as he likes, and may also return
to a previously abandoned game; that game is then resumed at the point
where it was abandoned (not at the beginning). Player 0 wins if at least
one of the A;’s is finished (i.e. infinitely many moves are made in A4;)
and won by 0; otherwise 1 wins. Turning to a formal definition of ® 4,

el
we assume that 4, is on X; and that I is disjoint from | X,. (Otherwise,
iel
replace I by another index set.) Then @ A; is a game on Iv (JX,.
iel iel
Given a sequence s of moves in ® 4., it will be necessary to extract the
i€l
subsequence of moves in a particular A;. In general, if seSeq(luJ)
where .I and J are disjoint, and if ¢ eI, then s; eSeq(J) is the sub-
sequence of s consisting of those terms of s in J which are preceded by
a term in I and whose last predecessor in I is 4. (Strictly speaking,
s; depends not only on s and 4 but also on the decomposition of 7w J
into I and J.) Note that s; may be finife even if s is infinite. Now we
can define

1 if (8k <length(s)) (s(k) el and (& A:)(5(k))=1),

(@40 =11 it (@ielnRange(s)) Ads)=1,

0  otherwise.

(This is a definition by induction on the length of s.) The first clause,
in effect, prevents 1 from choosing elements of I, for once he makes such
a choice he loges. Let us restrict omr attention to sequence s to which
this clause does not apply. As long as no element of I appears in s, it
is 0’s move (in particular, 0 moves first); if 0 never gets around to choosing
an element of I, he loses. If s is finite and 7 « I appears in s but is not the
last element of I in s (game 4; was started, but, after s, the players are
in another A;), then 4(s;) = 0. For, if s(k) is the first element of I to
appear in s after the last occurrence of 4, then, since clause 1 doesn’t
apply, (® A:)(5(k)) = 0. By clause 2, Ay(3(k)s) = 0, but F(k); = 8¢, 80

iel .
Ay(ss) = 0. Hence, for finite s, clause 2 will apply iff 4,(s;) = 1 where j is
the last element of I in s. Clauses 2 and 3 say that, after s is played, the
next move in @ 4 belongs to whoever has the next move in A, after sy 18

iel
played. If s is infinite, ¢ ¢ I appears in s, and s; is finite, then, by an
argument like the one above, 44(s;) = 0. Thus, the only ¢’s which are relevant
in clause 2 are those for which s; is infinite. By clauses 2 and 3, then,
0 wins the play s of ®r 4; iff, for some i ¢ I, s; is infinite and 0 wins the
i€

play s; of A;.
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It is not hard to see that @ A;is a win for 1 iff all the A4’ are. In
. i€l
+this respect, ® resembles A. However, it is possible for ® 4 to be a win
iel

for 0 even if none of the A, are. We conclude this section by constructing
an example of this phenomenon.

Let D be a non-principal ultrafilter on w. For any strictly increasing
sequence § € “w, let

BEs)={weow| (Hnew) s(2n—1) <z < s(2n)}

(where s(—1) means 0). If we think of » as partitioned into the segments
with endpoints s(n), then E(s) is the union of the even-numbered segments.
Define a game 4 en o by :

A(5(k)), if & is the least number with s(k) < s(k—1),
length (s) modulo 2, if there is no such k and s is finite,
1, if there is no such %, s is infinite, and E(s)e D,
0, otherwise .

A(s) =

The first clause forces the players to prodmee a strictly increasing se-
quence s; let us restrict our attention to such plays. By the second clause,
the players move alternately, with 0 moving first. If we imagine that,
by playing s(n), a player “takes” the integers from s(n—1) to s(n)-1
(inclusive), then the last two clauses say that whoever takes almost all
(with respect to .D) integers wins.

Let 4 and j be two indices not in w, and let A; and 4; both be A.
Then & Ai(= Ai®@A;= AR A)isa winfor 0 by means of the follow-

keli,f} . )
ing strategy. Begin by choosing ¢ and choosing 1 in A;. From now on,

whatever move your opponent makes in A; or 4;, immediately switch
to the other game and make the same move there. If 0 follows this
strategy, then F(s;) and H(s;) are complements of each other (except
that 0 is in both), so one of them is in D, and 0 wins. :

An analogous strategy shows that (~A)® (~A4) is also 2 win for 0.
If either A or ~A were a win for 0, the other would be a win for 1, and
its tensor product with itself would also be a win for 1, contrary to what
we have shown. So 4 is undetermined, even though A®4 is & win for 0.

2. The strong ordering. The intended meaning of the strong ordering
relation 4 < B was indicated in the intreduction. Tn terms of the ope-
rations introduced in § 1, we have the following reformulation of the
informal description. There is a strategy o for 0 in A® ~B such that,
if 0 uses this strategy, and if the moves of 1 in A ave made' by an f)ra:cle
for 4, then 0 wins the play of ~B. (The player 0 in this description
corresponds to player 1 of B in the introduction.) To eliminate the refer-
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ence to an oracle, we observe that the only objective criterion for whether
the moves of 1 in A were made by an oracle is that 1 wins the play of 4 it
it i finished. The description thus becomes: If 0 uses o and the play
of A is unfinished or won by 1, then 0 wing the play of ~B. Equivalently,
o is o winning strategy for 0 in A® ~B. Therefore, we' define

A<B iff A®~Bis a win for 0.

TEROREM 1. The relation < is a pre-ordering (i.e. veflewive and transitive),

Proof. Reflexivity: The game A® ~A4 consists of two games
of A. Player 0 acts as 0 in the first but as 1 in the second, and he ig free

to change games at any of his moves. Suppose he uses the following

“mimicking” strategy. Start by choosing the game where your opponent
moves first. Whenever it’s your move thereafter, switch games, and do
in the new game what your opponent just did in the other one. The result
of this strategy is that the two plays of A are identical. As 0 plays opposite
roles in the two games, he wins one (and loses the other), thereby winning
AR ~A.

Transitivity: Let ¢ and v be winning strategies for 0 in A® ~B
and B® ~ 0, respectively, and let 0 play A® ~C according to the follow-
ing strategy. Imagine, in addition to the games of A and C actually being
played, a fictitions game of B. Begin by playing o as long as it dictates
moves (of 0) in A; your opponent must, of course, reply in A. If ¢ ever
dictates a switch to ~B, make any move dictated by o (for 1) in the
fictitious B, and begin playing = as long as it dictates moves (of 1) in C.
When 7 dictates a switch to B, make whatever moves 7 dictates (for 0)
-in the fictitious B. Continue playing B, using o (resp. 7) to determine 1’s
(resp. 0°s) moves until ¢ or v dictates a switch to A or ~C (respectively); then
make the indicated move in the actual game. (Thus, you use o and ©
against your opponent in 4 and €, and against each other in B.)

If you do not finish and win the play of 4 (as 0), then, since ¢ Wins
A® ~B, the fictitions play of B is finished and won by 1. But then,
since 7 wins B® ~ ¢, you must finish and win the play of O (as 1). There-
fore, this strategy is a winning strategy for 0 in A@~C. B

We associate an equivalence relation = with the pre-ordering < in
the msual way:

A=B if A<Band B A.
The equivalence classes are partially ordered by (a relation induced
by) <.

If f is a bijection from X to ¥, then any game A on Y is equivalent
to the game B on X defined by ‘

B(s)=A(fo5).
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Player 0 wins A® ~B and B® ~A by means of mimicking strategies
as in the proof of Theorem 1; the only difference is that, before copying
his opponent’s move in twe other game, he must “transiate” it via f.
Therefore, when studying properties of games that are invariant under
equivalence, we may confine our attention to games on cardinals.

In fact, we may usually confine our attention to games on infinite
cardinals. Notice first that games on 0 or 1 are determined, hence usnally
uninteresting. And any game on o is equivalent to a game on 2, for the
choice of an 7 € w can be coded as n choices of 1 followed by a 0. We leave
to the reader the task of explicitly writing out the game B on 2 corre-
gponding to a game A on w and proving that 4 = B.

In the next theorem we collect several elementary properties of the
strong ordering and the operations defined in § 1.

THEOREM 2.
(a) ~B< ~A iff A<B.

(b) A 4Ai is a greatest lower bound, and \/ 4; is a least upper bound,

iel - el )
of {di| eI} ‘
(e) If {J4| i eI} is a disjoint partition of K,then @ (® 45) = ® Ai.
iel fedi keK

The same is true with /\ or \/ in place of @, even if the Jy are not
disjoint. ‘
(@) If ICJ, then ® A; < ® Ai. The same is true with )\ in place
- jeJ iel
of ®, but with \/ the inequality is reversed.

(6) If I = {0}, then /\ Ai = \/ A= ®IA¢ = -AO'
i€l i€l - i€

() If As < By for all i eI, then @ 4:< ® By, and the same is true
i€l i€l

with \ or \/ in place of ®, and also with = in place of <.

(8) O < A<LI for all games A.

(h) A =0 (resp. A=1I)iff Aisa win for 0 (resp. 1).

0) @ A< A\ 4.

iel i€l

The proofs of all these assertions are straightforward and left to
the reader. (Note that the assertions about /\ and \/ in (e) through (f)
all follow from (b) and that (i) follows from (b), (@), and (e).)

We -could deduce from Theorem 2 that the equivalenfze.clasx_ses form
a complete lattice if were not for two set-theoretical dlﬁlCI?ltles. The
lesser of these is that the equivalence classes are not sets. This problem

. can be overcome by standard devices, guch as choosing representatives,

it. The more serious difficulty is that

and we shall say no more about
say is that we have

there are too many equivalence clagses. All we can
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a complebe “lattice” 8, i.e. a partially ordered class in which every
subset has a greatest lower bound and a least upper bound.

To illustrate the problems camsed by the fact that S is not a set
we recall that A 4; is a win for 0 iff one of the 44’ is. In view of

Theorem 2, 1',his1 glea;ns that the greatest lower bound of a set of non-zero
elements of § is non-zero. In a complete lattice, this property would imply
the existence of a unique atom, namely the greatest lower bound of all
the non-zero elements. Because of the excessive size of 8, this argument
is not applicable, and in fact § has no atoms.

THEOREM 3. For every undetermined game A, there is a game B in-
comparable with A.

Proof. Let A be given, and assume, without loss of generality,
that A is on a cardinal » such that »® = 2% (There are arbitrarily large
guch »'s, and if 4 is on 1 < then 4 is equivalent to a game on » in which
the first player to move outside A loses.) B will also be on x, and, for
s e Fin(z),

B(s) = length(s)modulo2 ,

so the players move alternately in B. Thus, (A® ~B)(s) and (BQ ~4)(s)
are already defined for all finite s, and the set of strategies for 0 in A® ~B
-and B® ~A is thereby defined. As both of these games are on. sets of cardi-
nality », there are 2* such strategies. Enumerate them in a sequence
{s,| @ < 2. To complete the definition of B, we shall define an increasing
sequence {B,| a <2*} of partial functions from “x into 2, and then let
B}z be any total extension of |/ B,. The B/s will be defined by in-

a<2k
duction on « in such a way that B, has cardinality at most a. Begin by

setting B, = 0. For limit ordinals «, set B,= |JB;. Suppose a= f+1

<a
and B has been defined. Suppose also that o is a,ﬁstrategy for 0 in BR ~A.
(The case that o, is a strategy in A® ~B is handled similarly.) We shall
define B, so as to gnarantee that op is not winning. -

For each s € “x, let §'(n) = s(2n+1), so ¢’ is the sequence of moves
of 1 in the play s of B. As B, has cardinality <o < 2* and “» has cardi-
nality »° = 2%, we can find an f € “» such that f == s’ for all s e Domain (Bj).
Consider the plays t of B® ~A that result when 0 uses strategy op, 1 plays
f(n) at his nth move in B, but 1 plays arbitrarily in A. For any sucht,

let 15 and ?. 4, be the subsequences of ¢ consisting of the moves in B and
in ~A4, respectively.

Case 1. For every such #, the play ¢, of ~a4 is finished and won
by 0 Then 0 wins ~A4 by means of the following strategy. Imagine, in
addition to the actial game of ~A, a fictitions game of B; use strategy opy
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and imagine that your opponent is playing f in B. Thus, ~A4 is a win
for 0, contrary to the hypothesis that 4 is undetermined.

Case 2. For one such 1, the play ¢_ 4 is unfinished or won by 1. Notice
that tp is not in the domain of By, for t5 = f 5= &' for all s in that domain.
Therefore, we may define B, to be the extension of B; which also maps tp
to 0. Then the play ¢ of B® ~A4 is won by 1 even though 0 used g, 8O
g is not winning.

Since every possible strategy for 0 in A® ~B and B® ~A4 is ap for
gome f, we conclude that B is incomparable with 4. m

COROLLARY 3a. Hwery undetermined game is < another undetermined
game. Bvery undetermined game is the first element of m-bitmrily long in-
creasing well-ordered sequences in 8.

Proof. For the first claim, take the least upper bound of the given
game and one incomparable with it. (Recall that \/ A; is undetermined

iel
if all the A4; are.) The second claim follows by transfinite iteration of the
first, using the completeness of § at limit stages. m

COROLLARY 3Db. Given 2% or fewer undetermined games on x, there is
a game on % incomparable with them all,. provided »* = 2*. In particular,
for every set of undetermined games, there is a game incomparable with
them all.

The proof is a trivial modification of the proof of Theorem 3.

We define $(x) to be the sublattice of 8 consisting of the equivalence
classes that contain games on x. Unlike §, §(x) is a seb; its cardinality
is <206, 8(x) is not complete, but every subset of power <x has
a greatest lower bound and a least upper bound.

COROLLARY 3c. If 2* = «°, then 8(x) includes chains of order type »*
and antichains of cardinality (29)%.

The first assertion is proved like Corollary 3a, and the second follows
from Corollary 3b.

Our next theorem will imply that every partially ordered set can
be order-isomorphically embedded in § and every free lattice can be
Iattice-isomorphically embedded in 8. Let (P, <) be any partially ordered
set. By a term, we will mean an expression built up from elements of P
by means of the (formal) lattice operations A and v. Whenever P is
mapped into a lattice I, every term denotes an element of L, and every
inequality, § < T, between such terms becomes either true or false. We
define inductively the notion of a necessary inequality between terms.

(a) ¥ p< g in P, then p <
(b) It 8 < T and § < U are necessary, so is § < TAT.
(¢) ¥ S < U and T < U are necessary, so is SvT < U.

10 — Fundamenta Mathematicae, T. LXXVII

q is necessary.
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(d) It 8 < U is necessary, 50 are S<TvU and 8 < UVT.

(e) If 8§ < U is necessary, $o are SAT < U and TAS U.
" An inequality is necessary only if its being so follows from. (a)~(e).
If P is mapped into a lattice in an order-preserving way, then all necessary
inequalities clearly become true. _

TrmorEM 4. Assume P has cardinality <2= %®. Then P can be
order-isomorphically embedded in $(x) in such o way. that no unnecessary
imequalities become true. '

Before proving this theorem we point out a few consequernces. TP
is embedded in () in the prescribed way, then the sublattice P of 8(x)
generated by P is completely free on P. This means that any order-
preserving map of P to any lattice extends uniquely to P; it follows
immediately from the theorem. If we take P to be an antichain, then
T is a free lattice. Thus, every partially ordered set (resp. free lattice)
can be order-(resp. lattice-) isomorphically embedded in S. As another
corollary, we obtain the theorem of Whitman [4] that the only inequalities
between terms, that hold in the completely free latice on P, arve the
Necessary omnes. '

Proof of Theorem 4. We shall define, for each p ¢ I, a game, also
called p, on x. In each of these games,

p(s) = length(s)modulo2, if seFin(x).

Ag in the proof of Theorem 3, pt “» will be defined by an induction of
length 2% At each step, we consider a strategy that threatens to make
an unnecessary inequality true, and we make sure that it doesn’t work,
Also, if p < ¢ in P, then whenever we define p(s) =0 for some s, we
also define g(s) = 0 for the same s (at the same stage of the induction),
and whenever we define ¢(s) = 1, we also define p(s) = 1. Thig ensures
that p® ~q is a win for 0 (by means of a mimicking strategy) so p <¢
in §(x). At each stage of the induction, only one or two new sequences s
will be added to | Domain(p). !

peP
Clearly, there are only 2% terms and therefore only 2* unnecessary
inequalities § < 7. For each of these, there are only 2* strategies for 0 in
the corresponding game S® ~T, so there are enough steps in the in-
duction to make sure that each of these strategies can be defeated.
Suppose we are at a particular stage of the induction, at which the
strategy o for 0 in 8@ ~T is under consideration. (§ < 7' is unnecessary).

There are fewer than 2*= »° sequences s e | JDomain(p), so we can
. i per

choose an f « “x which doesn’t occur as the sequence of moves of either 0

or 1 in any such s.

A play of 8® ~T consists of two phases. In phase 1, the plaiyers
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are deciding which of the subterms of 8 and 7 to play.
if § is XA Y, then 0’s choice of X or ¥ belongs to phg,;yl.thlie:eX alﬁ)li};:
continue until S and T have been reduced to atomic terms P, qeP. Then
the players are essentially playing p® ~g; this is phase 2. (In fact the
phases may overlap. Once 8 is reduced to p, the players may start to
play p before finishing the reduction of 7.)

Consider the following play of S® ~T. Player 0 uses strategy o.
At a phase 1 move of player 1, if § and T have been reduced to X and ¥
with X < ¥ unnecessary, he moves so that the resulting reduction still
corresponds to an unnecessary inequality. He ean do this because of l
clauses (b) and (c) in the definition of necessary. Furthermore, 0’s phage
1 moves cannot produce necessary inequalities from unmecessary ones,
by clauses (d) and (e). Thus, the reduced games X® ~¥ correspond to
unnecessary inequalities X < ¥. At his phase 2 moves, player 1 play
the sequence f in each of the components p,q of p® ~q.

Case 1. In this play s, T is not finished. Then § is finished. It is
ultimately reduced to some p ¢ P, and the play ¢ of p (subsequence of s)
is not in Domain(r) for any r ¢ P, by choice of f. For p’ = p, extend p’
by setting p’(?) = 0; leave the other games unchanged. Then 0 loses the
play s of S® ~T although he used ¢, so ¢ is not winning.

Case 2. § is not finished. This is entirely analogous to Case 1. We
take the play ¢ of the g« P to which T eventually reduced, and set
¢'(t) =1 for all ¢’ <gq.

Case 3. Both § and T are finished in s. They are reduced to games p
and ¢ such that p < gis unnecessary, which implies p £ ¢in P by clause (a).
The plays t and % of p and ¢ (subsequences of s) are not in Domain(r)
for any r ¢ P, by choice of f. If » > p, extend it by setting r(t) = 0; if
r'< ¢, set r(u)=1; otherwise, do nothing to 7. Bven if ¢=u, these
definitions do not conflict with each other because p<£ ¢.

This completes the inductive definition of the games p. The con-
struction assures that P is mapped into $(x) in an order-preserving way,
and no unnecessary inequalities hold. In particular, if p<£ ¢ in P, then
p < ¢ is unnecessary (by inspection of the definition of necessary), so
p< ¢ in 8(x). The map of P into 8(x) is therefore order-isomorphic. W

COROLLARY. $(x) is not modular. '

Proof. It suffices to consider 8(w), as sublattices of modular lattices
are modular. Let P be {0,1,2} ordered so that 0 <2 and 1 is incompa-
rable with 0 and 2. Then the modular inequality

(OV1)A2 < 0V(1AZ2)

is unnecessary, hence false for a certain embedding of P into 8(x). W

With P and » as in Theorem 4, let us extend the notion of term by
16%
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allowing formal gl.b.’s and lu.b.’s of » or fewer, rather than only two,
ferms at a time. We also extend the definition of necessary to include
the new infinitary terms. The clauses corresponding to (b) and (e) are

(b') Tt 8 < Ty is necessary for all iel; so is S< AT,

1€l
(¢/) If 8 < T is necessary for some i ¢ I, then'so N8 T,
iel

and (c) and (d) ave modified similarly. (The index set I is assumed to have
cardinality < ».) Theorem 4 remains true with these extended definitions
“of term and necessary. It follows that § containg an isomorphic copy of
the completely free A-complete lattice on P, where 1 is any cardinal
and P is any partially ordered set. It also follows that completiely free
2-complete lattices satisfy only necessary inequalities.

Tt should be pointed out that not every lattice can be embedded in 8.

TusorEM 5. If A 4i <\ By, then either A¢ < \/ By for some iel,

' o el jer jet
or N\ Ai < B for some jed.
iel
Proof. Let o be a winning strategy for 0 in

/\Ai®""\/ B; = /\A¢® /\NBJ .
iel jed iel jeJ ‘
Sinee 0 moves first in a tensor-product game, ¢ must begin by specifying

a choice of /\ 4;or A\ ~Bjy; suppose it chooses the former. (The argument
el jeJ

in the other case is analogous.) By definition of A, it is still 0's move,
and ¢ must choose an i el. From here on, the players are, in effect,
playing A4:;® ~\/ By, and: ¢ provides a winning strategy for 0 in this
jed
game. Hence, 4; <\/ B;. m
jeJ

It is easy to give examples of lattices where A4,A4, << B;VB, does
not imply 4; < B,VB, or 4,A 4, < B; for either ¢. According to Theorem 5,
such a lattice cannot be lattice-isomorphically embedded in L. ‘

3. The weak ordering. The weak ordering relation, A << B, was in-
formally described in the introduction. It is similar to the strong ordering,
but, instead of playing 4 against the oracle, we play a more complicated
game which we call R(A4). This game resembles the tensor product of
copies of A in that player 0 may abandon plays of A to start new ones
and may later resume previously abandoned plays. Also, the oracle (as 1)
is expected to win every finished play of A, so the rules for winning in
R(4) are the same as for @ A. However, R(4) differs from this tensor

) L i€w )
product in that 1 (the oracle) is required to answer the same moves the
same way in all plays.

icm

Degrees of indeterminacy of games

163

Turning to a formal definition of R(4), we assume that 4 is on
a set X disjoint from w. (Otherwise, replace X Dby another set.) Then
R(A) is the game on o v X such that

1 i (Hk <length(s)) (s(k) e and R(4)(3(k))=1),
1 i (", ke w) (si(k) =§(k) and si(k) # s4(k)
and A(si(k))=1),
1 if (Hiewn Range(s))A(s)=1,
0 otherwise.

R(4)(s) = |

(The notation s; was defined in § 1, before the definition of &.) The
second clause of this definition says that 1 loses if the ith and jth plays
of A first differ at the %th move and this was a move of 1. The remaining
clanses are as in the definition of ® A, and the remarks following the

i€o

definition of ® in § 1 also apply here. -

THEOREM 6.

(a) RA) < @4 <A

1€

(b) R(4) = RR(A).

(e) If A < B, then B(A) < E(B).

(@ R\ 4i=\/ RA.

iel i€l

(e) R(A)QR(B) = R(A®B) = R(AAB):

Proof. The firgt inequality in (a) is proved by a mimicking strategy
and the second follows from Theorem 2. So RR(4)< E(4). For (b),
we need only show that B(4)® ~RR(4) is a win for 0. I f: o X0 —>w
is any bijection, then 0 wing this game by a mimicking strategy that
ensures the same play in the (¢, j)th copy of A in RE(4) and the fli,5)th
copy of A in R(A). For (c), suppose o is a winning strategy for 0 in
A® ~B. Then 0 wins R(4)® ~R(B) by the following strategy. When
player 1 chooses the 4th copy of B in R(B), reply, using o, in that copy
of B and the ith copy of 4 in R(4). For each i, player 0 wins the ¢th copy
of A or of B. Either he wins all the B’s or at least one of the A’s, so he
wins B(4)® ~R(B). (Note that 0 will reply differently to the same moves
in two copies of B, thereby losing R(B), only if 1 has already committed
the same error in the corresponding copies of A.) Half of (d) follows
from (c). For the other half, 0 wins R(‘\{ AN® ~\/IR(A¢) by the follow-

€ 1
ing strategy. Begin by choosing B(\/ 4;) and index 0. Then 1 must reply,
i€l TR
in the 0th copy of \/ 4, by choosing an index j e I. By definition of E,
iel

he must choose the same index in all other copies that are ever played in.

At your (0’s) next move, choose ~\/ R(A’), and there choose the same
iel
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index j. From this point on, you are, in effect, playing R(4,)® ~R(4,)
" which you win by mimicking. Finally, part (e) is proved by mimicking;
we leave the details to the reader. @

We define the weak ordering by

A<B iff R(A4)<B..
In view of parts (a) and (b) of Theorem 6, we also have
A<B iff R(A) < R(B),

from which it is clear < is a pre-ordering. The associated equivalence

relation is
A~B iff A jB ﬁA .

Clearly, A < B implies 4 <X B, so each weak equivalence class is a union

of (strong) equivalence classes. We have a canonical projection of § onto

the partially ordered class W of weak equivalence classes of games.
Tor any set {44 i<} of games and any game O, we have

(VieI)0 < A < (Vie HR(0) < As
<> R(O) < A\ 4
1€l
had Oﬁ/\Air

i€l
and, using Theorem 6(d),

(Vie) 4i=C < (Vie )R(4) < O
<R(\A)=\R4)< 0

iel i€l

Therefore, the operators /\ and \/ give g.l.b.’s and Lu.b.’s in W as well
as in 8. W is a complete “lattice” and the canonical projection from 8§
to W is a complete “homomorphism”.

THEOREM 7. W.4s Brouwerian; the relative pseudo-complement B: A s
~(R(4)® ~B).

Proof. For any games 4, B, 0, we have

0N <B=R(0O)®R(4)= R(ON4A)< B
< E(0)® ~(~(E(4)® ~B)) = R(O)QE(4)® ~B
is a win for 0
« (< ~(R(A4)Q@~B). n
COROLLARY. W s distributive; in fact,

AN\ Bie2\/ (AABy).

tel iel

icm®
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In particular, W is modular. ‘
Proof. See [1], pages 147 and 65,

Thus, W has pleasant properties which 8 lacks. On the other hand,
it lacks the symmetry property of § expressed by Theorem 2(a). To see
this, consider the game A constructed at the end of § 1. As A® 4 is a win
for 0, B(4) = 0, 80 A==0. But ~A4%*T;in fact ~A~~0 becanse ~A® ~4
is a win for O.

This example also shows that a game can be ~0 without being = 0.
On the other hand, if A~~1 then 4 =1, for R(I) is a win for 1.

W ghares with § the property that, given any set of elements other
than O and I, there is an element incomparable with all of them. We
omit the proof becamse it is essentially the same as for 8. We cannot
embed free lattices in W, for W is distributive; the best we can hope for
is to embed free distributive lattices. We shall show that this is indeed
possible.

Let P be a partially ordered set. We define terms as in § 2 (before
Theorem 4), but we consider inequalities I' << T where T is a term and
I is a finite set of terms. The definition of necessary is modified as
follows.

(a) If p < ¢ in P and p eI, then I'< ¢ is necessary.

(b) 1 I'< T and I'< U are necessary, so is I'< TAT.

(¢) It {8} v I'< U and {T}w I'< U are necessary, so is {SvTio
ul'gU.

(d) It I' < T is necessary, so are I'<< TyU and I'< UVT.

(e) If+{8} u I' < U is necessary, so are {SAT} v I'< U and {TAS} v
uwI'g U.

THEOREM 8. P cah be order-isomorphically embedded into W in such
a way that if 8 ST in W then {8} < T is necessary.

Sketch of proof. As in the proof of Theorem 4, we inductively
defeat all strategies that threaten to make S 5 T when {§} <T is un-
necessary. Such a strategy would be in the game R(8)® ~T (rather
than §® ~T as in § 2). At phase 1 moves, T and the various copies of §
in R(S) are reduced to subgames. At any stage of the game, only finitely
many copies of § have been started. YWe let I” be the finite set consisting
of § together with the subgames to which it has been reduced, and we
let Y be the subgame to which 7' has been reduced. Let player 1 strive
to keep I" and Y such that I” < Y is unnecessary. He can do this success-
fully, because of the definition of necessary. In particular, if peP
eventually appears in I" and T is eventually reduced to ¢, then p<£ ¢ in P
because of (a). The rest of the proof is just like the proof of Theorem 4. M

For any embedding of P into a lattice, we interpret the inequality
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Ir<Tas AS<T. If the embedding preserves order and if the latfice
Ser
ig distributive, then all necessary inequalities become true. (Distributivity

is needed becamse of clause (c).) Hence, the sublattice P of ‘W generated
by P is the completely free distributive lattice on P. We have thus shown
that all free distributive latbices are, up to isomorphism, sublattices of .
We have also shown that an inequality 8§ < T holds in the completely
free distributive lattice on P iff {S} < T is necessary.

As in § 2, we can generalize Theorem 8 by permitting infinitary,
say x-ary, lattice operations. The required extension of the definition
of necessary is obvious; for example, (e) is replaced by

(e) {8} v I'< U is necessary for every i e I, then so is {V 83} o

tel
SR E IR .
We then have order-isomorphic embeddings of P into W such that,
i § and T are terms built up from P by applying the lattice operations
+to % or fewer terms atb a time, then § j T in W only if I8} < 7 is necessary.
Interpreting inequalities as above, we find that the necessary ones
are true for any embedding of P into a »*-complete lattice satistying
the generalized distributive law
(V8IAT <V (8iAT).
iel iel
(The converse inequality always holds.) Since W is Brouwerian, it satisfies
this generalized distributive law, and so do all its »™- complete sublattices.
It follows that, for any P and %, the completely free, %+ - complete,
generalized-distributive lattice on P can be »'-completely embedded
into W, and satisties § < T iff {8} < T is necessary.
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A geometric form of the axiom of choice

by
J. L. Bell (London) and D. H. Fremlin (Cambridge)

Consider the following well-known result from the theory of normed
linear spaces ([2], p. 80, 4(b)):

(%) the unit ball of the (continuous) dual of a normed linear space
over the reals has an extreme point.

The standard proof of («) uses the axiom of choice (AC); thus the impli-
cation AC—(x) can be proved in set theory. In this paper we show that
this. implication can be reversed, so that (%) is actually equivalent
to the axiom of choice. From this we derive various corollaries, - for
example: the conjunction of the Boolean prime ideal theorem and the
Krein-Milman theorem implies the axiom of choice, and the Krein-Milman
theorem is not derivable from the Boolean prime ideal theorem.

1. Prelimjnaries. Throughout this paper we shall assume that all
linear spaces we consider have the real number field, R, as their underlying
field of scalars.

DerrNtron. Let I be a linear topological space. A subset 4 of L is
said to be quasicompact if whenever ¥ is a family of closed convex sub-
sets. of L such thab {F ~ A: F ¢ 5} has the finife intersection property,
then N {FnA: FeF}£0. An element a ¢ A is called an extreme point
of 4 if z,yeA and a= }(e+y) imply a=2z=1y.

Now consider the following propositions:
(BPI) Every Boolean algebra contains a prime ideal.

(HB) Let M be a linear subspace of a linear space L and let p be
a sublinear functional on L (that is, p(#+¥y) < »(z)+p(y) for
all @,y eL and p(aw)= ap(s) for all 0 <aeR and all zel).
If f is a linear functional on M such that f(z) < p(e) for all
2 € M, then f can be extended to a linear functional g on L
such that g(z) < p(z) for all z <L
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