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obtained if more specialized choices of ¥ are made. For example the
following result is easily shown. .

(5.4). CoROLLARY (McAuley-Tulley). Let p: (T,d)-+I* be a light
proper onto mapping. Defining F = {a: I>I*| (Hx e I)a(t) = (x, ) Vi e I3,
p is full over F iff for each f: I—T with p-f(t) = (0, %) there is a section
s: 2T for p extending p.

Analogues of this theorem can be stated for cells of higher dimension
(see [5] and [6]).

As another example, McAuley (in [5]) attempted to eliminate some
of the pathology of light open mappings by defining a twist free mapping.
Alight open onto mapping p: T'—B is twist free if for each homeomorphism
h: 8t—~B and @ ep~Y(h(1,0)), there exists a homeomorphism H: ST
with p-H = h and H(1,0) = 2.

A conjecture of McAuley is partially answered by the following.‘

(5.5). CorOLLARY. If p: (T', d)—B is a proper twist free onto mapping
and p s full over H (S, B) then any 2 cell in B can be lifted to T.
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Homeotopy groups of orientable 2-manifolds
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-Jong Pil Lee (Vancouver)

1. Introduction. Let X be a topological space, and let H(X) denote
the group of homeomorphisms of X onto ifself topologized by the compact
open topology. The arc-component of the identity Hy(X) is a normal
subgroup of H(X) and (X)= H(X)/Hy(X) is the group of the arc- )
components of H(X), which is called the homeotopy group of X. T.he
equivalence relation defined by Hy(X) is called isofopy. We can also define
the isotopy relation in a subgroup H'(X) of H(X) and the group gene‘mte‘d
by the isotopy classes will be called the isotopy group of H'(X), which is
denoted by m[H'(X)]. J will denote the group of integers and J, the
integers mod2. In 1914, Tietze [10] showed that the homeotopy group
of the 2-sphere is J,. This was proven again by Kneser in 1926 [7], 3aer
in 1928 [2], Schreier and Tlam in 1934 [9], and most recently by Fisher
in 1960 [4]. In [7] Kneser also obtained a result that the hon{eo’uopy
group of a disk is J,. In 1923, Alexander [1] proved that the isotopy

groirp of homeomorphisms of an n-cell onto itself leaving the boundary

pointwise fixed is trivial. This result has been a mosh important tool
for further development in this area of study. In 1962, in ferms of the
winding number of a homeomorphism of an annulus, Gluck [5] proved
that the isotopy group of homeomorphisms of a closed annulus onto
itself leaving the boundary pointwise fixed is J. He also showed that
the homeotopy group of an annulus is JpX J5. .

In this paper we compute the homeotopy group and 1sot0py groups
of various subgroups of the homeomorphism group of the mamfo}d' qb-
tained from the 2-sphere by removing the interiors of three disjoint

‘subdisks. Further we deal with the orientable 2 -manifold with » boundary

curves. ,
2. Preliminaries. In this section we give preliminary results which
will be used in the mnext section.

Bagie notations
M, will denote an orientable 2-manifold with » boundary curves,
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HY(M,) = {h ¢ H(M)| h is orientation preserving on I},
H~(M,)= {h e H(M,)| h is orientation reversing on M},

Hy(Ma) = {h « H(My)| h(Cy) = Oy for certain m boundary curves Cj},
HY{M,) = {h e H(M,)| h= ¢ on certain ¢ boundary curves},
H}yM,)=H"(M,) ~H,(M,),

H!(M,) is similarly defined for certain m and ¢ boundary curves
where m -1 < n and the m curves are different from the ¢ curves. 8, will
denote the symmetric group on » letters. The notation “~" will mean
the homotopy relation and I = [0, 1].

Lmyma 2.1. The space of homeomorphisms of a closed n-cell onto itself
which leave the boundary of the m-cell poimtwise fized is contractible [1],
p. 406. ‘

DEFINITION 2.2. An isotopy of a space X is a collection {@;}, te I,
of homeomorphisms of X onto itself such that the mapping G: X X I —+X
defined by G(x,t) = Gie) is continuous. An isotopy which moves no
point on Bd(X) is called a B-isotopy. b ~ g[h N ¢] will denote that % is

isotopic (B-isotopic) to g. The imbeddings f,,fi: X —Y are ambient
isotopic if there is a level preserving homeomorphism G: ¥ x I--¥Y x I
such that G(y,0) = (y,0) for all y e ¥ and (fi(x), 1) = G(fy(x),1) for
all z e X.

Lemwma 2.3. Let M be a 2-manifold with boundary. Let a and B be two
arcs in M such that

BA(M) ~ a= Bd{a) = Bd(f) = BA(M) ~ 5,
and which are homotopic heeping the end points fized. Then they are ambient
isotopic by a B-isotopy [3], p. 89.

- Lemma 2.4, Let M, be o 2-manifold with n boundary curves and a be
an arc connecting the boundary points with Int(a) C Int(My,), and let b and g
be any homeomorphisms in H™ M) such that the closed arcs h{ayoa®
and g(a) o a belong to the same homotopy class in (M, %) where x, is
the base point on a. Then h(a)==g{a) with the end points of the are a held
Siwed.

‘Proof. We note that if g,, g, ¢ H"(M,) and gy(a) o o and gy(a) o a™*
belong to the same homotopy class in 70y (Mn, 2), then g7 g(a)=<a, with
the end points of « held fixed. Thus it is sufficient to consider a homeo-
morphism & ¢ H*M,) such that h(a) o a= ez with Z, a8 the base point,
and the proof is similar to the arguments in [6], p. 42.

LEM:MA 2.5. Let M be o 2-manifold with boundary, and {a;}eq De
o finite collestion of arcs sn M such that

_(i) each a; connects boundary points with Tnb(as) C Int (M) for
each 1 ¢4,

icm
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(ii) as N az= O for ¢ aﬁj and
(iil) cutting M along the a’s leads to a disk.

Then if a homeomorphism h has the properties that h = e on Bd(M)
and (ai)==a; for each ielI, then h is B-isotopic fo the identity.

Proof. We prove the theorem by an induction on the number of
the ares as.

First we prove it for the case n = 1. Let o be an arc satisfying the
above conditions in a manifold M and % be a homeomorphism of M onto
itself such that h = e on Bd(M) and h(a)~~a. Since the two arcs k(a)
and o are ambient isotopic by a B-isotopy by Lemma 2.3, there is an
isotopy G4 M—M, 0 <t<1, such that G; = ¢ on BAd(M), Gy=e¢on M
and Gy*h = ¢ on a. Thus by cutting M along e, we realize that G;'h
is a homeomorphism of M’ such that G;'h = ¢ on Bd(M’), where M’ is
the disk obtained from. M Dby cutting along «. Hence Lemma 2.1 implies
that @G;*h is B-isotopic to the identity on M'. Thus h is also B-isotopic
to the identity on M.

Now assuming that the theorem is true for the case n = k, we prove
it for n = k+1. Let {a, a;, ..., az, 0z4,} be a collection of the arcs in
2 2-manifold M satisfying the above conditions and % be a homeo-
morphism of M onto itself such that A= e on Bd(M) and h(az)~~q; for
1<% < k-+1. Then in particular we have h(a;,,)==a;,, keeping the end
points held fixed and these two arcs are ambient isotopic by a B-isotopy.
There is thus a B-isotopy Hy: MM, 0 <t <1, such that Hy=e¢ on M
and H;'h = ¢ on a,,. Now cutting M along a;.,, we see that H;'h is
a homeomorphism of M’ such that H*h = ¢ on BA(M') and H;h(0;)~a;
for 1 < i<k, where M’ is a 2-manifold obtained from M by cutting
along .. By our assumption H;'h is B-isotopic to the identity on M.
Thus % is also B-isotopic to the identity on M and the theorem follows
for any integer n = 1.

Let A = 8:xI and H(A) = {h e H(4)| h = ¢ on Bd(4)}. H. Gluck (5]
defined the winding number for a homeomorphism % e H*(A4) as follows.
Let 5 be the isomorphism of (8%, 0) with J which takes the class of the
path f(t) =t onto 1. Let o be any path in 8t x I from (0, 0) to (0,1) and
P;: 8 xI->Q8 the natural projection. Then Py(a) is a closed path in 8
Dbased at 0. Hence [P(a)] is an element of 7,(8%, 0) and #([Py(e)]) = (a)
is an integer. The integer w(ha)—w(a) is independent of the path « for
any h e H2(A).

DEFINITION 2.6. Let & be a homeomorphism in H*(4) and o a pat.h
in A from (0,0) to (0,1). Then the integer W[h; A]= w(ha)—o(a) is
called the winding number of h on A. :

We note that T defines a homomorphism W: H%(A)->J. But it is
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shown that the kernel of W is the arc-component of the identity HY(4)
and thus W is in fact an isomorphism of H2(4) onto J [5].

DErINTioN 2.7. Let M be a 2-manifold and 4 be an annulus in
Int(M). Then there is a homeomorphism h4 of the annulus 4 onto itselt
such that W[ha; A]=1 and s =-e on Bd(4). This homeomorphism can
be extended to M by the identity on M — A. We call the exstended homeo-
morphism an A -homeomorphism and denote it by &4 also.

THEOREM 2.8. Let A and A’ be two annuli which can be deformed to
coincide with each other on an orientable 2-manifold M. Then two A - homeo-
morphisms hy and h,., are B-isotopic to each other. :

Proof. Since 4 can be deformed to be coincide with A’, the same
side boundary curves ¢ and €’ of 4 and A’ respectively are isotopic.
Thus there is an isotopy G4 M —M, 0 <t <1, such that G;=¢ on M
and Gy(C) = (. Hence G;h, G, 0<t<1, is a B-isotopy between the
homeomorphisms %4 and G4 haGy". Observing that Gy haGy? is supported
on an annulus in Int(M) which has the common interval boundary
curve ( with the annulus A4’, it can be shown that % 47 18 B-isotopic
to G1ha@7. Hence hy is B-isotopic to hy..

Lpwmwma 2.9. Let b be a homeomorphism in HF(M,). Then h can be
deformed 1o o homeomorphism & such that k= e on Bd(Ma), where the
isotopy 1is taken in H}(M,).

Proof. Define an annulus 4, around each of the boundary curves C;
so that each C; forms a boundary curve of the annulus Aqy A CInt (M) v
VOiand 4;~n4;=0 for 1 <4 s j <n. Now we construct a homeo-
morphism g;

L on Bd(M,),

n
e on  M,—|]JA4;.

=1
‘Then g1 A; is isotopic to the identity on A, for 1 <t < n, since the isotopy
is allov‘ved tf) move on each boundary curve (¢, and hence ¢ is isotopie
?10 .the 1d‘ent1ty on M, by an isotopy in H(M,). Thus it is clear that hyt
15 isotopic to the homeomorphism & in H; (M) with hg™' = ¢ on Bd(M,)
Letting & = hg“‘, the proof is complete.

THEOREM 2.10. Let M, be an orientable 2-manifold with n boundary

ourves and k be a homeomorphism in Hu(My). Then b must have the same
orientation on all the boundary curves.

Proof. We assume that % i orientation preserving on a boundary
curve O; and reversing on 03 where 1 <Jjs# k< n Let M, be a closed
orientable 2-manifold obtained from M, by filling in the interiors of all

the boundary holes, and % an extension of the homeomorphism & to M.

Let 0; and O be the interiors of the disks bounded by the curves C;

g=
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and Cx respectively. Then it can be seen fhat % must have d_j_ﬁerent
orientations on O; and O, since % has different orientations on Bd(0y) = Cj
and Bd(0x) = Ck. Thus we have a contradiction and 2 must be orientation
preserving or reversing on all the boundary curves.

3. Homeotopy groups. In what follows M, will denote the manifold
obtained from the 2-sphere by removing the interiors of three disjoint
subdisks. )

We extend the concept of the winding number defined in the previous
section to the 2-sphere with three boundary curves. We denote by 4; an
annulus in Int(M,) enclosing only one corresponding boundary curve C;
and h,, will denote an A;-homeomorphism of M, supported on A; for
1 <4 < 3. By saying that 4: encloses one curve (i, we mean that 4; can
be shrunk onto the boundary curve C; and thus 4; can be extended up
to O so that C; forms a boundary curve of the extended annulus A; while
the other boundary remains fixed.

A 3.1, Let My, be a manifold obtained from the 2- sphere by removing
the interiors of n disjoint subdisks, and h be a homeomorphism in H“(lil,,).
Then } is B-isotopic to a product of A-homeomorphisms of M, [8], p.537.

Tmyaa 3.2. Let My be a manifold defined in Lemma 3.1 and b a h{)metg—
morphism in H¥M,). Then in the product of A—homeommph?sms z.uhwh 8
B-isotopic to h, the exponent of the homeomorphism h,, s unique for
1<i<38. ‘

Proof. Without loss of generality we asswme that h is B-isotopic
to two different products of the following forms;

(A) WREND,
and
(B) 15 lhlj shljg

with % £ I, where ks and I (1 <4< 3) are integers. Since the annuli A
(1 <4< 3) can be taken to be disjoint from one another, the homeo-
morphisms f4, commute with one another.

Tt is enough to consider an arc a connecting two boundary curves (o8
and €, with Int(e) C Int(My). Thus from the produei;s (;’A) a-nd (B}, we
need to consider only the reduced forms A%h, and 133, since Ay can
be taken to be disjoint from the arca and thus

Wik (a) = REREENE (a)
and

B (o) = W10 (a)
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e denote a; = s ~na and b;= By ~na for =1 and 2 where B; is the
external boundary curve of A;. Let oy =[ay, b, a = [by, a,] and g
= [by, bsl.

Cs

Since

(W ()] v [h2(0e)] = WiEhE (a4 © ay)
and

[hlzltl(al)] - [hljg(az)] = hﬁlhﬁz(al v ),
we see that

R (a) = [hg(an)] o f o (R (0s)]

and
W R, (a) = [ ()] o B o [B12,(as)]
Thus
(RELR%) (W14, (@) o= [AE(a;)] o B o (A28 (ay)] .
Then

{[hgﬂ—ll)(al)] ° /3 ° [hgf:_l’)(ag)]} 0 gy - w(lcg‘—lz)j
W]_lere o, and o, are different generators of the homotopy group (M, «,)
with @ = a;. Bub w0 o o= 540 ynless ky—1 = 0 and ky—T, = 0.
Thus &, I, implies that “

hf;‘lhffz(a) o~ hf;lhljlz(a)
and

REREL IR (a) 92 s 1a 1S (a) .

Then Theorem. 2.5 implies that

ky g, ke 7, % Ix 31
bR G, 5 bl BB nls

icm
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which is a contradiction. Thus k; =}, and the exponent of ki, must be
unique in the product. Similarly it ean be shown that the exponents of

. the other homeomorphisms h,, and h, are also unique.

DeriNiTIoN 3.3. Let % be a homeomorphism in HM;) and 5
a product of A-homeomorphisms which is B-isotopic to h. The winding
aumber of h around each of the boundary holes C; is defined to be the
exponent of the homeomorphism hy, in the product »'. We denote by
Wh; C:] the winding number of » around the boundary hole Ci.

THEoREM 3.4. The homotopy group (M) is Sy X J,.

Proof. We first observe that every h e Hj(M,) is isotopic to the
identity by an isotopy in Hy(M,). By Lemma 2.9 k can be deformed to
2 homeomorphism ¢ ¢ H3(M;) where g is B-isotopic to a homeomorphism
of the form REhkn% for some integers ki (1 <4< 3). But each K% can
be deformed to the identity by rotating the boundary eurve Oy through 0
to 2(—Fki)m. Hence g (and thus h) is isotopic to the identity in Hy (M) .
and the homeotopy group is H(M,)/HF (M,).

+
H7(M,) ~ 8; and

th
We note that T, =

Hy(M)  H@E{M)
HF () S N M)E ()~

HT (M) Hy(M,) H(M,)
al subgroups of ————. Let ¢ be
where (I, an. Ly are normal subgroup L) ®
H(M,) H(M,)/HE (M)

Then ¢

the canonical homomorphism from T ontio FRUAER uy

% onto its range, and thus
Hy (M)

+
_ H(M,) %H (ﬂfs)xﬂi(Ma) ~ 8, X
Hf (M) Hf(M,) Hj (M)

induces an isomorphism of

3 (M)
TuEOREM 3.5. The isolopy group of Hy(Ms) is JyX Ja, where Hy(Ms)
— {he H(M,)| 1(Cy) = Cu}. A

Proof. We note that m[HF(My)]=1[e] in m[Hy(Ms)l, gince as in
the proof of Theorem 3.4, every h e H¥(M,) is isotopic to the identity
in H(M,) and HF (M, C Hy(M,) C H(M,). Thus it is enongh to consider
the isotopy classes of the subspace H,y (M) —Hi(M,). We divide

H(M,)—H (M) = K, v Ko Ky
‘where

K, = {heHf (M) 1(Cy) = Cs}»
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Ky = Hy (M),

Ey= {he Hy (My)| h(Cy) = Oy}

Then every homeomorphism in K, is generated by homeomorphismg
in K, and K,. Hence the isotopy classes of Hy(M;)—H (M) are generated
by the classes of K, and K,, each of which generates a group J,.

Now we show that the isotopy group m[H,(IM;)] is the direct product
of the groups generated by the isotopy classes of K, and K,. Let G; he
the group generated by the isotopy class of K; for ¢ = 1 and 2. Then by
the above arguments,

afHy( M) = Gy o Gy = {10 gie Gy, i=1,2}.

Further observing that ¢, n G, = {[¢]} and each @; is a normal subgroup
of w[H,(Ms)], we have m[H;(M,)] == & X @, and thus the isotopy group
is Jo X .

TeEEOREM 3.6. The isotopy group of H3(M;) is J X J X J.

Proof. Since all the possible annuli in Int(M,) can be regarded as
the annuli 4; (1 <4< 3) enclosing only one corresponding boundary
curve (; with 4; nA;=0 for 1 <4 #j <3, Lemma 3.1 implies that
every heH3M;) is B-isotopic to a homeomorphism of the form
REnkehi for some integers &, (1<4<3). Thus we have m[H¥M,)]
o~ no[{hﬁllhﬁih '}] where by Lemma 3.2 any two homeomorphisms of the
form h%h% 0% having different exponents of %, are not B-isotopic to
each other. But each % 4 generates the isotopy group J classified by the
winding numbers W[A%; 4,]. Thus the isotopy group mo Wik s
JXJ XJ, and the theorem follows.

THEOREM 3.7. The isotopy group of H2(M,) is J X J, where

BA(My) = {he H(M)| h=2¢ on Cyu 0y} .

Proof. We first note that H2(M,)C Ht(M,) by Theorem 2.10 and
every h e H:(M,) can be deformed to a homeomorphism in H3(M,) by
an isotopy in H*(M,). But the isotopy in H2(M,) is allowed to move on
the boundary curve C, and thus every h ¢ H2( ) is isotopic to a homeo-
morphism of the form #%7% for some integers %, and %,. Flence

Wo[Hz(J’[s le 730[{}" hfﬂl kyed}],

where any two homeomorphisms of the form. h’“ % having different
exponents of h,, are not isotopic to each other in Hz(]l[s) Thus we see
that m[{h%3%}] = J x J and the theorem follows.

Now we consider the homeotiopy and isotopy groups of the orientable
2-manifold with » boundary curves.

icm
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TasoREM 3.8. Let M, be an orientable 2-manifold with n boundary
ourves. Then m[Hm(Mn)] is Tomomorphic o 8, _,, XJ, with the kernel
m [ HF (M), where 0 < m < N

Proof. Let ¢ be the canonical homomorphism from Honl M) onto
H,(M,,)
Hm(Mn)
Hno(Mn)
H} (M)
Hopo M)

Hpn(Ma)
Hy (M) A
= m[Hn(Mn)]. Then it can be seen that the kernel of ¢ is
= (M) |

Now we note that

, where Hyo( My) is the identity component of H,,(M,,)

Hy (M)
H (M)

Hu(Ma)
and T (L) are normal subgroups of

Hy (M) M) Hy (M) ~d..

Hi (M) wH+ LE (L)~
Hy(My)  Ho( M) H (M)

Let p be the canonical homomorphism from QL) onto ()AL’

and

Hp(My) "
Then y induces an isomorphism of ———- T +( i) onto its range. Thus we obfain
Hn(Ma) Hi(M,) Ha(Mn)

= 8y X d,

I (0, SHA(M n>XH+(Mn> =

and the proof is complete.

TaEOREM 3.9. Let My be an orientable 2-manifold with n boundary
curves. Then the isotopy growp of Hi(M,) is homomor: phic to the symmetric
group Sp_gmay with the kernel a[HY,_[(M,)], where m+1t<n.

Proof. Noting that HY_(M,) C Hb( M, )CH+( ) by Theorem 2.10
-—-————m(M ) this theorem can also be proved by similar

-t M)
arguments as in the proof of Theorem 3.8.

I would like to éxpress my sincere gratitude to Professor J. V. Whitt-
aker for his generous assistance.

and 22 By mry
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Let us consider a pointed compact Hausdorff space (X, x,) and an
ANR-system (X, x,) associated with (X, z,) (see [3]). Let (X, x,) be
an inverse system of nth homotiopy groups. Its inverse limit does not
depend on the choice of (X, x,) (see 6.3) and here is referred to as the
nth limit homotopy group of (X, ,) (in symbols (X, z)).

Consider two pairs, (X, ®,) and (¥, y,), and the associated inverse
systems (X, x,) and (Y, y,). To any map f: (X, x,)—(Y, y,) (in the sense
of [3]) and a natural number % we can assign the induced morphism
fur (X, X)) >ma(¥, y,) and its inverse limit, limfy = f;: my(X, o)
=¥y Yo)-

In general, the algebraic properties of limfy do not determine the
algebraic properties of f,,. For instance, the implication

(*) limf, is a bimorphism = f, is a bimorphism

in general fails (see § 6).

The purpose of this paper is to distinguish a-class of spaces which
satisties (*). This leads to the notion of uniform movability of an inverse
system in an arbitrary category, in particular in the category of ANR’s
or in the category of groups (§§ 3, 4). A uniformly movable inverse system
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