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Rings in which ideals are annihilators
by

Michal Jaegermann and Jan Krempa (Warszawa)

Introduction. The aim of this paper is to present some structure
theorems about associative rings in which every left ideal is a left an-
nihilator {L:.A-rings). We develop here the ideas given in paper [8] by
C. R. Yohe. In particular, we obtain answers to the problems mentioned
there.

In § 1 we prove a structure theorem for semiprime rings in which
every two-sided ideal is an annihilator (ILA-rings). This theorem. enables
us in § 2 to give a complete characterization of semiprime LA -rings.
In § 3 we shall prove that every semiprime LA-ring B which satisfies
some simple finiteness conditions is a finite direct sum of matrix rings.

In § 4 we consider L(1)A-R(1)A-rings (i.e. rings in which every
one-sided ideal is an annihilator of one element). These are rings with
unity and Theorem 4.2 characterizes such rings as finite direct sums
of matrix rings over rings of some special kind.

§ 5 contains some remarks on commutative L.A-rings.

In § 6 we give some examples.

In this paper by an ideal of a ring we shall mean a two-sided ideal.
R is a simple ring if R® 3£ 0 and if R has no ideals different from 0 and R.
A semiprime ring is a ring without non-zero nilpotent ideals. All one-
sided definitions and results are generally stated in their left versions.
The right versions are used without any further mention.

§ 1. Semiprime ILA-rings. If § ig a non-empty subset of a ring R the

Ig(8)y={reR| 28 =0} will be called a left annihilator and rgx(S)=

= {reR| Sz=0} a right annihilator of the set S. We shall use I(8)
instead of I(8) and »(8) instead of r5(8) if there is no confusion; I(S)
and r(8) defined in this way are a left and a right ideal of R, respectively.
A left ideal I of R is said to be a left annihilator in R J.f I= Z(S) for
some SCR.
The proofs of the following two propositions are st—raughtfmwald
and we omit them.

7 — Fundamenta Mathematicae, T. LXXVIL
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'PROPOSITION 1.1. (i) Let 8 and T be mon-empty subsets of a ring R.
Then 1(8) = 1(r(8))), USw T)=US) ~UT) and if SCIT, then 1(8)
DUD).

(i) Let I=18) and J =UT). If r(l)=r(J), then I =J. B

PROPOSITION 1.2. Let A be a direct summand of a ving R, If IC A
is o left anndhilator in R, then I is a left annihilator in 4. m B

ProrostrioN 1.3. For any ideal of o semiprime ring R we have

Proof. We have (I-Z(I))2= 0. But I.7(I) is a left ideal of a semi-
prime ring R. Hence I-I(I)= 0. Therefore I(I)Cr(I). Considering the
right ideal »(I)I, we obtain the converse inclusion. m

In view of Proposition 1.3 we agree to write, for any ideal of a semi-
prime ring R, a(I) instead of I(I) = »(I). Of course a(I) is an ideal of R.

DerFINiTION. A ring R is called an ILA-ring if each of its ideals is
o left annihilator in R.

Using Propositions 1.1 and 1.3 we can easily see that for any ideal T
of a-semiprime ILA-ring a(a(I)) = I.

PRoPOSITION 1.4, If I is an ideal of o semiprime ILA-ring R, then
R=I@a(I).

Proof. We have (I na(I)?CI-a(I)=0. Hence I ~a(Il)= 0 since
R is semiprime. Let us take 8§ = I@a(I). We have §D I v a(I); thus
by Proposition 1.1 a(8) Ca(I) ~ u(a(I)) =a(I)~I=0. Since R is semi-
%rimz: a(R)= 0. Then a(8)= a(R). Applying Proposition 1.1, we get
=N. B -

CorOLLARY 1.5. Let R be an ILA-ring. Then R is prime if and only
if B is simple. m_

COROLLARY 1.6. Let R be a semiprime LLA-ring and let P be a prime

tdeal of R. Then the annihilator a(P) is a simple ring and P is a maximal
ideal of R. &

THEOREM 1.1. A ring R is a semiprime ILA-ring if and only if R is
a direct sum of simple rings.

. Proof. Let R be a semiprime ILA-ring and let & be the seb of all
prm-le ideals of R. Let A be the sum (as the sum of ideals) of all
annihilators (P), where P ¢ 7. For any Pef we have AD a(P). Then
a(4) E Na(a(P))= NP = 0 since R is semiprime. Therefore R = A®a(A)
= 4; ie. R is a sum of ideals a(P), P 9, which by Corollary 1.6 are
s§mp1e a8 rings. Now it is not hard to verify that R is a direct sum of
simple rings. :

The converse implication is obvious. m
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§ 2. Semiprime L A-rings.

DEFINITION. A ring R is said to be a lefi annihilaior ring (an LA -ring,
for short) if each of its left ideals is a left annihilator in R.

In an analogous way one can define a.right annihilator ring (an
RA-ring). Bach LA-ring is of course an ILA-ring.

PropoSITION 2.1. Let R be an LA-ring and r(B) = 0. Then for any
subset 8 C R we have 8 C ES, where RS is the set of all finiie sums of the
form > agsi, ai e R, sie 8.

Proof. Since R-8r(ES8) =0, we have Sr(BS8)Cr{(R)= 0. Therefore
SCIr(RS))= RS. The last equality follows from Proposition 1.1 (i)
because R is an LA-ring.

PROPORITION 2.2. A prime LA-ring is simple and contains a minimal
one-sided ideal.

Proof. Let R be a prime LA -ring. Then by Corollary 1.5 B is simple.
We will show that B contains a minimal one-sided ideal. Let z ¢ R, & = 0.
Then by Proposition 2.1 2 ¢ Bx. Thus # = y2 for some y e R. It is easy
to check that y cannot be quasi regular. Therefore the ring E cannot be
radical in Jacobson’s sense. It is well known ([5], Theorem I1.6.1) that R
containg g maximal left ideal I. Since R is an LA-ring, we have I = I(S)
for some § C R. By Proposition 1.1 I = I(K) for the right ideal K = r(I{S)).
Since I # R, we have K == 0. Hence K” 5= 0 because R is prime. Therefore
pK 5 0 for some p e K. Hence I(pK) # R, since otherwise (pK)*>= 0,
which is impossible. Since IpK = 0, we have I CI{pK). But I is maximal,
and therefore I = I(pK).

Now we shall prove that Ep ~nI = 0. Let us take any s e Rp ~ I.
Then s = s;p for some s, €« R. But, on the other hand, s e I = I(K). Hence
8;pK =0, ie. s el(pK)=1. Then s=speIpCIK=0. Therefore
Rp~nI=0.

Since Rp 3 0 and I is a maximal left ideal of R, a left R-module R is
a direct sum of R-modules Rp and I. Therefore Rp is a minimal left
ideal of R. '

It is well known ([5], Theorem IV.16.3) that a ring R is isomorphic
to the complete ring of linear transformations of finite rank of a wvector
space over a division ring if and only if R is a simple LA-ring containin,
minimal one-sided ideals. Therefore we have :

THEOREM 2.1. 4 ring R is a prime LA-ring if and only if R is iso-
morphic to the complete ring of linear iransformations of finite rank of
a vector space over a division ring.

It is also known ([5], Theorem IV.16.4) that a simple ring with
minimal one-sided ideals is right and left Artinian if and only if R is an
LA-RA-ring. Therefore, applying the Wedderburn theorem, we get

7
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THEOREM 2.2. A ring B is o prime LA-RA-ring if and only if R is
isomorphic to the matriz ving over a division ring. .

PROPOSITION 2.3. Let R be'a divect sum -of vings Ry, teT, and let
rg(Ry) = 0 for every t e T. Then R is an LA-ring if and only if the rings
R,,t¢T, are LA-rings.

Proof. If R is an LA-ring, then by Proposition 1.2 R, ¢ ¢ T, is also
an LA-ring.

"Conversely, let R;, t « T, be an LA-ring and let I be a left ideal of R.
By K we denote the sum of all B, ~ I, t¢ 7' Then obviously K CI. Now
let @ el. Then a = a,-+a,+ ... +ax, where a, e B,. By Ploposmon 2.1
a; = yiaq for some y; e By, The‘refore ;= Ys0;=Yia €I, ie. a ¢ K. Hence
we have proved that every left ideal I of R is a direct sum of left ideals
By~ I

- Since the rmgs R,,teT, are LA-rings, we have E,n I =1,(8,) for
some S, eR,. It is not hard to check that I=1(8), where § is'a set-
theoretical union of §;,fe7. W '

Applying Theorem 1.1, Proposition 2.3, Theorem 2.1 and respectively
Theorem 2.2 we obtain

TEEOREM 2.3. A ring R is o semiprime LA-ring if and only if R is
a direct sum of complete rings of linear transformations of finite rank of
vector spaces over division rings. @

THEOREM 2.4. A ring R is a semiprime LA-RA -ving if and only if B is .

& direct sum of mairiz rings over division rings. m

§ 3. Semiprime LA-rings with finiteness conditions,

DrrFINITION. A ring R is an LFA-ring if each of its left ideals can
be expressed as an annihilator of a finite subset of R. A ring R is an
L(n)A-ring if each of its left ideals can be expressed as an annihilator
of a set with at most n elements from R.

In an analogous way one can define RFA- and R(n)A-rings.

ProposrrioN 3.1. If an LFA-ring (resp. Li(n)A-ving) is a direct sum
of rings (# 0), then that sum is finite and every direct summand 8 an
LFA-ring (resp. L(n)A-ring).

Proof. Let-an LFA-ring R be a direct sum of rings R,, e T. By
assumption, 0 = I(8) for some

8= {231“28217 '“?Zskc}gR y, where teT, syelRy,

and all but finite s, équal 0. T, is a finite subset of 7' which contains such
VeI tliat there exist s; 0 for some ¢=1,2, ...,k Since f,e T\T,
implies Ty, C1(8) =0, we have T'= T, and T is fmite.
‘ The proof of the' second part is straightforward. m

icm®

Rings in which ideals are annihilators 99

m
ProrosiTioN 3.2, Let R= @ R; and r(R)=0 for i=1,2, ..., m.
i=1

i-
Then (i) if every Ry is an L(p:)A-ring, then R is an Li(q)A-ring, where
g = maxpy; (ii) if every Rq is an LFA-ring, then R is also an LFA-ring.

Proof of (i). Let I be a left ideal of R. As in Proposition 2.3
I=@® (I "R;). There exist sw, t=1,2,..,m, k=1,2,..,q, such

f=1
that sw e Biy six =0 if £ >ps and I~ R; = Ip(8;, 85, v, 83)- It is not
hard to check that I = ZR(S‘sﬂ, Zs,z, 72%)-
i

Analogically one can prove (u)

THEOREM 3.1. For a semiprime LA-ring R the following conditions
are equivalent:

(i) B is an L(1)A-R(1)A-ring.
(ii) R s an LFA-ring.
(iii) R s finitely generated as an E-module (left or mg]zt)
(iv) R is a ring with a unity element.
(v) R satisfies ACC or DCC on left ideals.
(vi) R satisfies ACC or DCC on right annikilators or right ideals.
(vii) B i8¢ an RA-ring and does not contain infinite direct sums of
two-sided ideals.

(viil) R is a finite direct sum of mairiz rings over division rings.

Proof. Every left ideal of a matrix ring M over a division ring has
the form Me, where e is an idempotent. Hence Me=I(1—e¢) and M is -
an L{1)A-ring. Analogously A is an R(1)A-ring. Now, as a simple con-
sequence of Theorem 2.4 and Propositions 3.1 and 3.2 (with their right
versions), we obtain the equivalence of conditions (i), (vii) and (viii).

TWe have obvious implications (i) = (ii), (viil) = (iv) = (ii), (viii)=

= (vi) = (v). Hence it is enough to prove (ii) = (viil), (iii) = (viii),
(v) = (viii).

By F(Dt) we denote the ring of all linear transformations of finite
rank of a vector space Pt over a division ring D. If the dimension of I is
finite and equals n, we shall identify, in the same way as in [5], ¥ (SIR)'
and the ring of all #n X n matrices over D.

If R = F(M) for some vector space M, then every left ideal of R
has the form

I=I(R)={Fc<R MFCR}

for some subspace 9t of M (cf. [5], Theorem IV.16.1). Let us observe
that a vector # belongs to 9t if and only if there exists an F ¢ I(3N) such
that IMF = Dz. From this it follows that I(M)DI(N') if and only if
N D N, where N, N’ are subspaces of M.
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(A). Proof (ii) = (viii). From Theorem 2.3 and Proposition 3.1 it
follows that we have only to prove that if an LFA-ring B is of the form
F(9M) for some vector space M, then Nt is finite-dimensional.

Let us consider a zero-dimensional subspace 9t of M. I(N) is a non-
zero left ideal of & (IM). Thus there exist linear transformations 1y, Iy, ..., F,
such that :

) I k
I(R) = YTy, By, o, Fr) = {F ¢ F(M)| MFC) kerF} = I() kerF,).
' i=1 i=1

k
This implies M=) kerF;.
=1
Let us consider the linear transformation

G: EUE——>W1><§TRF2X “ee kag
> (oPy, aFy, ..., 2Fg), xeM.

Then ker @ = [ kerF; = . Hence M has the same dimension as a MG
which is a subspace of the finite-dimensional space MF; X MF, X ... X M.
(B). Proof (iii) = (viii). From Theorem 2.3 it follows immediately
that R is a finite direct sum of rings of type F (M) which are finitely
generated as F(I)-modules.
If BR=5(M) is a finitely generated left R-module with generators
I, ¥y, ..., Fx, then for every F ¢ B there exist transformations Gy, Gs,
., G from R such that

F =GP+ ,+ ... +@F:.

By ¢(H) we denote the rank of transformation H. Now from the proper-
ties of the rank of linear transformation we obtain for every I e R

e(F) < o(F)+e(Fo)+ .. +o(Fk) =m.

Therefore dim MM < m.

If B is a right R-module, the proof is analogous.

(C). Proof (v)= (vili). As in (B) we may assume that B = F(M).
From the remark on the form of left ideals in F (M) it follows that M
satisfies ACC or DCC on its subspaces, whence It is finite-dimensional. m

) § 4. L(1)A-R(1)A-rings. The following useful proposition results
directly from Proposition 1.1.

ProrosrrIoN 4.1. Let B be an LA-RA-ring. Then the following maps

I>r(I), E~1U(E), where I s aleft and K is a right ideal of B, are mutually

inverse antiisomorphisms of lattices of left and right ideals of R. In particular,
UB)=7(R)=0.m
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TuworEM +.1. For any LA-RA-ring B the following conditions are
equivalent:

(i) B is an RFA-ring.

(i) B satisfies ACC on left ideals (equivalently DCC on right ideals).

(iii) B is a left and right Artinian ring.

(iv) B is an L(n)A-R(n)A-ring with unity for some n.

e give a cyclic proof.

(A). Proof (i) = (ii). Let I be a left ideal of a ring E. By Proposi-
tion 4.1 I =1r(I)). Since B is an RFA-ring, there exists a finite sef
S = {8, Say -+, $n} C R such that the right ideal »(I) ean be expressed
in the form » (I) = r(8) = r(8%), where 8* is a left ideal generated by S.
Thus I = 8*. Hence every left ideal of R is finitely generated. This
implies that R satisfies ACC on left ideals. By Proposition 4.1 this is
equivalent to DCC on right ideals.

(B). Proof (ii) = (iii). We start with the proof that R has a unity
element. Since R satisfies DCC on right ideals, the Jacobson radical
J =J(R) of B is a nilpotent ideal. Hence I(J) % 0, and thus r(l(J))
=dJ = R=r(0).

Let g be the index of nilpotency of J. We shall prove that for every k,

<k < g, aring R/J* has a unity. We proceed by induction. The ring R/J is
semisimple and satisfies DCC on right ideals, and so it must have a unity
element. Let us suppose that for every m < k R/J™is aring with a unity. By
Proposition 2.1, Re CJ* implies ¢ J*. Hence 7 (R/J¥) = 0. Analogically
{RBjJ*) = 0. Let us consider ideals J/J* and J* YJ* of the ring R/J"
Rings

R gige =By and  BW*[gusygr = R

have unity elements by the induction assumption. Moreover, J/J*-J*~%/J*
= 0. Lemma 2 from [3] implies that R/J* is a ring with unity.

Now it remains to prove that R satisfies DCC on left ideals or equiva-
lently ACC on right ideals. But this follows directly from the fact that B
satisfies DCC on right ideals and from the Hopkins theorem ([4],
Theorem IV.29).

(C). Proof (iii) = (iv). Because R satisties ACC and DCC on left
ideals, there exists a composition series of left ideals of a length n. By
Proposition 4.1 we infer that correspondent right annihilators form
a composition series of right ideals of the length n. In particular, every
left and right ideal has a set of generators with at most n elements in it.
Hence every left ideal of B can be expressed in the form I = 1(8;; Sz, -+ 5 k),
where k<< n and s, S,, ..., 8, are generators of a right ideal (I). Thatb
means that B is an L(n)A-ring. Analogously R is an R(n)A-ring.
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(D). Proof (iv) = (i). Obvious. ®

DrrINITION, An LA-RA-ring which satisfies one of the conditiong
of Theorem 4.1 is called a quasi-Froebenius ring (a QF -ring).

DEFINITION. A ring R is called a pli ring if B has a unity element
and each left ideal of R is principal, i.e. has the form Rx for some # ¢ R.
Analogously we define a pri ring.

CorROLLARY 4.2. If R is an LA~R(1)A-M'ng, then R is a right and
left Artinian pli ring.

Proof. We have only to prove that R is a pli ring. But this fact is
contained in the proof of Theorem 4.1, part (A). m

‘OQur aim in this section is to give a complete characterization
of LA-R(1)A-rings. Since every such ring has a unity element, in the
gequel we shall only deal with rings with unity.

DEFINITION. A ring R is a left self-injective ring if each homomorphism
(of left R-modules) from a left ideal of R into R is a right multiplication
by a suitable element of R.
' L_It; is known (cf. [2]) that R is a QF-ring if and only if R is a left
‘gelf-injective and left Noetherian ring.

.PROPOSITION 4.3. If R is a pli ring and every principal vight ideal
@R is a vight annihilator in R, then R is a QF-ring.

Proof. It is enough to prove that R is a left self-injective ring
because a pli ring is obviously a left Noetherian ring. ’

] Let I be a left ideal of R and let ¢: IR be a homomorphism. There

exists an element # ¢ E such that I = Rx. If for some y ¢ B we have
yo = 0, then ¢(yo) = yp(a) = 0. Hence I(zR) = I(z) C I(p(2)) = l(p(2)R).
But 2E and ¢(z) B are right annihilators and hence by—_]?roposition 1.1 (i)
@R D ¢(x)R. Therefore there exists such a i< R that ¢(w)= at. Since
every @ el has a form a= bx for some b <R, we obtain ¢(a) = ¢(bx)
= by(2) = bot = af, which means that R is self-injective. m

-As usual, by R, we mean the ring of all n X n-matrices over R.

PSOPO.SITION 4.4. If Ry is an RA-ring, then R is also an RA-ring.
The proof can easily be obtained by standard arguments. |

B E)E(‘:)E‘INITION A ring B is a primary ring if for every ideal 4, B of R,
=0 implies either 4 =0 or B"= 0 for some n. A ring is called

a eompletely primary ring if R/J(R) is a division ring, where J (R) is the -

Jacobson radical of R.

For one-sided Artinian rings this definition coincides with that in [6].

The next. proposition is a )
I ) ) part of Theorem I1.4.12 f
state it only for the sake of completeness.‘ ‘ rom [0 end we
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ProposTTiON 4.5. Let R be a primary left Artinian ring in which
the Jacobson radical J (R) is a principal left ideal of R. Then Ris a pliring and,
there exists a completely primary left Artinian pli ring B such that B = By
for some natural n. Moreover, every left ideal of B is two-sided and is of
the form (Bw)* = Buw®, where Bw = J(B) and 0 < % < q=the index of
nilpotency of w. B

PropOSITION 4.6. Let B be as above. If every principal right ideal
of R is a right annthilator, then there ewists a completely primary left and
right Artinian pli pri ring B such that R = By for some natural n.

Proof. By Proposition 4.5, B = By for some completely primary
left Artinian pli ring B and R is a pli ring. Then by Proposition 4.3 E is
a QF-ring, and in particular an RA-ring. Proposition 4.4 implies that
B is also an RA-ring. That means that every right ideal of B is an an-
nihilator of some left ideal of the ring B. Hence there exist at most g+1
right ideals of B (g is the index of nilpotency of J(B)). But the left ideals
B, Bw, ..., Bw*™, Bu?=0 are two-sided, and therefore the only right
ideals of B are Bw¥, k=0,1, ..., ¢. Therefore B is right Artinian.

Since 1¢ wB, w e wB and Bw is the only right ideal of B with these
properties, we have B = Bw. This implies w*B = Bw*fork=0,1,...,¢
which means that B iz a pri ring. &

PROPOSITION 4.7. If B is a left and right Artinian completely primary
pli pri ring, then for every natural n the ring By is an L(1)A-R(1)A-ring.

Proof. From Proposition 4.5 it follows directly that all left ideals
of B are of the form Bw¥, where 0 <k < ¢= the index of nilpotency
of w. Now it is easy to note that Buw® = H{w*¥), which means that B is
an LA-ring. Analogically B is an RA-ring. Since B is left and right
Artinian; B is a QF-ring ([1], Theorem $9.7). Moreover, B, is a pli pri
ring ([4], Theorem IV.40). This implies that By is an L(1)A-R(1)A-ring.

DerFNIToN. A ring R is called an ipli ring if every two-sided ideal
of R can be expressed in the form Rz for some x e R.

In an analogous way we define an ipri ring. Obviously, every pli
ring is an ipli ring.

TamorEM 4.2. For every ring R the following conditions are equivalent:

(i) R is an L(1)A-R(1)A-ring.

(i) B is an LA-R(1)A-ring.

(iii) R is a pli ring and every principal right ideal zB is & right an-
nihilator.

(iv) R is a left Artinian ipli ving and every principal right ideal xR is
a right annihilator.

(v) R is o left and right Artinian ipli ipri ring.
(vi) B is a left Ariinian ipli ving and the Jacobson radical J(R) is
a principal right ideal.
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(vil) R is a finite direct sum of ideals By, i=1,2,..,m, and every
Ry is the ring of all ni X ne-matrices over o completely primary left and right
Avrtindian pli pri ring By.

Moreover, m, Ri, By, and ny in condition (vii) are wuniquely determined
up to an isomorphism.

Remark. Confrary to the case of semiprime LA-rings it is not
possible to drop the agsumptions on right ideals of R.

Proof. (A). The implication (i) = (ii) is' obvious. The implicationg
(i) = (ili) and (i) = (iv) follow directly from Corollary 4.2 and (iii) = (iv)
from Proposition 4.3.

(B). Proof (iv) = (vii). Let B’ be a direct summand of a ring R which
satisfies condition (iv). Then, for any » ¢ R’, #R’ = xR, and hence 2R’ is
a 1‘i.g]?t annihilator in R; therefore, by Proposition 1.2, #R’ is a right
_a;nmh]la,tor in B'. Moreover, R’ is obviously a left Artinian ipli ¥ing. It
is easy to see that every left Artinian ipli ring satisfies the assumptions

of Johnson’s theorems ([6], Theorers IL.4.1 and II.4.2). Now, applying

the f.irst‘ the'o‘rem of Johnson we could represent B as a finite direct sum

of primary rings Riyi=1,2,...,m Every ring R; satisfies the assumptions

;)fftProgosm]llon Ai.& Then for every R, there exists a completely primary
- left and right Artinian pli pri ring B; such that &, is the ri f

matrices over B;. % e O£ albmeon

(C). The implication (i) = (v) follows diréctl f
(C). The rom Corollary 4.2.
The implication (v) = (vi) is obvious. Y ' v

(D). ’Proof (vi) = (vii). As in (B) we could represent R as a direct
sum of rings By, i=1,2, ..., m, where R; are primary left Artinian ipli
rings. Th(? Second Theorem of Johnson [6] forced that every RyJ (Rq) is
3 Ig'm%e ring. Hfanee‘ E,—/J (_Ri), a8 a left Artinian ring, is simple. Of course

'(B;) i8 & prineipal right ideal of R;. Now, applying Theorems IV.88 and
-« IV.39 from [4], we directly infer that R; are of the jrequired form.

(B). Pr v e .
i fg 2) oof (vii) = (i). This is a simple corollary of Propositions 4.7
\ (F). Proof of the i e — . m o

uniqueness of the representation. Let @ R: be

2 representation as was described in (vii). By Proposition 4.5 afﬁlproper

;%zj}lseiir J;; a,;rs Z(;n"u?med inJ (Ba) :h'nd hence are nilpotent. This implies
gl aenﬁeng id isal of R; is nilpotent. Hence R;, ag a ring with
A e é ;3011 d r%ot be the sum of its proper ideals. Applying
nni@el e tn 8, we 1.,nfer that m and the ideals Ry are determined

y up to the ordering of summands. The fact. that n; and B are

" uniquely determined : e
Theorem V.10, by B uI? to an isomorphism. is mentioned in [4],

icm
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CoROLLARY 4.8. Every Izamomvorphic image and o finile direct sum of
L(1)A-R(1)A-rings ts also an L(1)A-R(1)A-ring.
Proof. This follows directly from the equivalence of conditions (i)
and (v) of Theorem 4.2. B

§ 5. Remarks on commutative A-rings. In the commutative case we
will use the terms A-ring, FA-ring and (n)A-ring for the terms LA -ring,
LFA-ring and L(n)A-ring, respectively.

By Theorem 4.1 and well-known facts about commutative rings
([9] Theorem IV.3, [7] Theorem 1.1) one could obtain

THEoREM B.1. For a commutative ring B the following conditions are
equivalent: . .

() B is an A-ring and B satisfies DCC (or equivalently ACC) on
ideals.

(i) R is an FA-ring.

(ili) There ewists such an n that R is (n)A-ring. :

(iv) R is a ring with a unity element and R is a finite direct sum of
completely primary, i.e. local, Artinian rings B, i =1, 2, ..., m, such that
every By has exactly one minimal ideal. Moreover, there exisis such an n that
every ideal of B: has ai most n generators.

The representation described above is unique up lo an isomorphism. B

Remark 1. From Proposition 2.3 it follows that every direct sum
of local Artinian A-rings is an A-ring. But Example ¢ will provide an
A-ring which is not of this form.

Remark 2. From Proposition 4.7 it follows that every local Artinian
ring in which every ideal is prineipal is an A-ring. This means that R has
exactly one minimal ideal. (This fact was proved directly in [8].) Similiar
theorem is not generally true if ideals of R have (at most) n generators,
n>1. For example R = Z[X,Y]/(X? ¥*, XY) is a local Artinian ring
and all ideals of R are B= (1), (X,¥), 0, (X), (X), (X +Y). The last
three ideals are minimal, whence R could not be an A-ring.

There also exists a local ring with exactly one minimal ideal which
is not an A-ring. For this see Example C.

§ 6. Examples. .

A. An example of an L(n)A-ring which is not an L(n—1)A-ring.

From Theorem 3.1 it follows that every semiprime LFA-ring is an
L(m)A-ring for every natural m. It is not true in the general case. For
example, let B = K[X,, X;, ..., X]/N, where K[X,, X,y ..., Xy] is a poly-
nomial ring over a (commutative) field K of characteristic at least n
and let N be the ideal of K[X;, X, ..., Xx] generated by the sebt

{Xfaxi, ,Xi}u B
U {(X,X,— X, X) (1<i<n) and (1<j<n) and (i)}
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One could verify that B is a local Artinian ring in which (X, X,) is a single
minimal ideal, that every ideal has at most n generators and that
(Xy, Xs, oy Xn) has exaetly n generators. By Theorem 5.1 R is an
A-ring. Now it is easy to see that K is an (n)A-ring and is not an
(n—1)A-ring.

B. An example of a left and right Artinian completely primary pli
L(1)A-ring with upity which is not an RA-ring.

Let K (X) be the field of rational functions over a field X and let @
be the endomorphism of K (X) which maps p(X) onto p(X?). ‘

Let B be the ring of all formal sums p,+p,Y, p,, P, € K(X), where
addition and multiplication is defined as follows ’

(Pt Y) (1Y) = (014 @)+ (P 0) ¥,

D1+ 2. V) + YY) = p10+H{P1 o+ 02 0 (Ql))y .

Then every element of a proper one-gided ideal of R has the form
pY,p e E(X). Thus all left ideals of R are B, RY and 0. Now one could
immediately infer that R is a left Artinian completely primaj i
. . . a "
L(1)A-ring with unity. i v S
The ring R is a 4-dimensional left K (X?)-vector s
T n , - pace and ever
right }deal. is a K (X*)-subspace of E. This implies that R ig right Artiniazz
The right u‘i(?als R, YR=E(X»)Y, XYR = K(X*) XY and 0 are different.
By Proposition 4.1 we infer that B could not be an RA-ring.
C. Examples of & local A-ring which is not an Artinian ring and
8 local ring with exactly one minimal ideal which is not an A-ring.
_ Let Z be the set of such reals from [0, 1] that 0 ¢ Z and the sum
of any two numbers from Z either belongs to Z or is greater than 1.
Let T be the set of symbols #,, where a ¢ Z. And let R be a vector space

spanned over some fixed field K by the get 7. We defi iplicati
on the set T in the following way: . fefine mlfipliestion

by tg= {t“““3 %f at+f<1,
0 if at+pg>1
:id we extend this' definition to R by distributivity. 1f, is the unity
Whment of E. All ideals of R are of the form: either I = I(a)= R,
er;a;Z,;rI:I(a) = RS, where8 = {t;¢ T| a < § <1 and ¢ [0, 1]}
=1[0,1], then I () = I{I(1— a)) and I(z)=UI i i
: = o 1'-' DAvEY
an A-ring. But R is not an A.I‘(ginian rir)lg. @)=l i B i
It Z consists of 0 and all reals a, 3 < a <1, then R has a single

minimal ideal I(1). Annihilators roper i i
means that R is not an A-ring. 2 moper ekl equsl T which

D. A remark about LFA-rings.
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‘We have prg'ved in Theorem 4.1 that every LFA-RA-ring is an
L(n)}A-R(n)A-ring for some n. We have also proved that a semiprime 4
LFA-ring is an L(n)A-ring for every =.

The authors do not know whether there exists an LFA-ring which
is not an L(n)A-ring.
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