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Binding spaces: A unified completion and extension theory
by
A. K. Steiner (Ames, Ia) and E. F. Steiner (Ames, Ia)

0. Introduction. Completions of various topological and wuniform
structures are often obtained by embedding the structure in some filter
space. Common examples are those of embedding .& Tychonoff space
in the space of Z-ultrafilters or real Z-ultrafilters to obtain the Stone-
Cech compactification or the Hewitt real compactification, respectively, [3].
Or, of embedding a uniform space in the space whose members are equiva-
lence classes of Cauchy ultrafilters to obtain a uniform completion [1].
Recently Wallman-type compactifications have been obtained by em-
bedding a Tychonoff (or T,) space in a space of ultrafilters of sets from
a normal base [2] or a-separating family [6].

Our goal is to provide a common setting for these and other situations.
We. will extend the concept of ultrafilter by considering more general .
objects called clusters. Clusters differ from ultrafilters in two ways. First,
every finite subecollection of a cluster will be bound (close in a certain
sense), and although a finite number of closed sets having a point in
common are bound, these need not necessarily be the only bound col-
lections. Secondly, a family of sets maximal with respect to having each
finite subcollection bound is a cluster if and only if it contains at least
one set from each cover in a specified family of coverings.

The first notion is used in the construction of clusters in a proximity
space [6], and tle second in defining Cauchy ultrafilters in a uniform
space [4]. Thus we obtain greater flexibility, both in the creation of ultra-
filter-like objects, by using the notion of bound sets, and in their selection,
by requiring them to pass through a collection of covers.

The covers and bound families of a set X determine a structure on X
called a binding structure. The bound families also determine a topology
on X. The class of all binding spaces, together with the maps between
them, forms a category in which subspace, product, and quotient space
may be defined. .

A Dbinding space X may be embedded in the set X* of clusters, and
the covers and bound families in X ean be extended to define a binding
structure on X*, with respect to which X is a dense subspace.
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Clusters are fixed or free depending on whether the closures of their
sets have a point in common. The space X* is complete and is called
a completion of X. A finite collection of subsets of X is bound if ang
only if their closures in X* have a point in common. Any map from X
into a ecomplete binding space whose topology is regular has an extension

to X*. The class of all binding structures whose completions have ,'regula.r'

topologies is also a category, and the complete spaces in it constitute
a reflective subcategory. '

In defining a binding structure, it is often convenient to specify
something simpler, called a base, which uniquely determines the structure.
We will, therefore, define a base for a binding space and work out the
properties of the space it generates before setting forth the axioms of
the binding space itself.

The spaces to which we apply the theory are most easily seen to be
binding spaces when appropriate bases are chosen.

1. Fundamental concepts. Let & be a base for closed sets for a 7} -topo-
logy on a set X. Thg Ppair (By; Cz) will be called. a closed base for a binding
structure on X provided By is a family of finite collections of nonempty
subsets of & satisfying: '

Bl if ¥y, Fy, ..., Fne¥ and N F; %@, then {F} e By;

B2. if {Gj} C {Fi} € BF’ then {Gj} € Bg.—;

B3. if {F,F;} e Bz and FC G U H where G, H ¢ F, th

; ", then {G, i} € By

or {H, F} e By; o ’ @1 8
Bi if #¢Fe¥, then there are sets Fy,F,,...,FyeF such that
se[\F; and {F,F} ¢ By;
and Cy is a family of coverings of X congisting of sets in F.
. A cluster base in" (Bgy, Cz) is a subfamily 8 C & which contains at
easf: one seb ﬁgm each member of Cy and is maximal with respect to
having: each finite subcollection in B |

1.1. ExAvrerE. Let F be all the closed sef

P ) 8 from some T,-topology
ondX, Bg all‘ﬁ?ute collections f’f cloged sets with nonempty intlersectioné,
and Cg all finite closed coverings of X. Then (Bg, Cg) is a cloged basge
and the cluster bases are the ultrafilters of closed sets

The cluster C generated by a cluster base S i "

. ¢ § ig the family of all subsets
ACf2h&vmg the property that for each F e y ACT implies T eS.
s ,_m lﬂiﬁlirg. ,If Fe8 and FC @ e, then B3 and the maximality
o D gf at G e 8 Thus each cluster base is contained in the cluster
il %hzeﬁuzzérﬂg 8, 7:1582(19::;6 cluster bases, then 8, cannot be contained

L 4] enerated by 8, and thus distinet ; ] X
distinet clusters. If § generates C, then G~ F — (;luster bages generafe

13. Luvuma. If F, G ¢ F and FU@eS, then FeS or G eS8,
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Proof. It F ¢ 8, there are sets Iy, I, ..., Fy € § such that {F, F;} ¢ Bs.
Similarly if @ ¢S, there are sets @y, ..., GmeS such that {&, Gj} ¢ By.
From B2 it follows that neither {F,F;, G;} nor {G,F;, G;} is in By s0
by B3, {Fv G, F;, G} ¢ B, Thus Fv G ¢8.

The binding structure generated by the closed base (Bg, Cs) is the
pair (B, C), where B consists of all finite collections of subsets of X oes
curring in some cluster and C is the family of all coverings of X which are
refined by some member of Cg. ‘ :

The cluster C generated by the cluster base 8 in (B, Cx) will be

Vea,lled a cluster in the binding structure (B, C) generated by (Bs, Cs) and

may be characterized as follows.

1.4, TaEOREM. A family U of subsets of X is a cluster in the binding
structure (B, C) if and only if it contains an element from each member
of C and is mazimal with respect to having each finite subcollection in B,

Proof. Let U be a cluster. The second property holds by the def-
inition of B. If ¢ € C, then ¢ is refined by some ¢’ € Cy and. U contains
2 set Fec'. Since FC 4 e ¢, any set G ¢ F containing A contains ¥, and
is thus in the cluster base generating W. Hence 4 € Wb ne.

Now, suppose U satisfies the above conditions. The family § = U~ F
intersects each cover in Cg. If Fy,...,FyeF and {F;}¢ By, then {F3}
cannot be contained in any cluster and so {F;} ¢ B. Thus any finite sub-
collection of § is in Bg. The maximality of ‘U, implies that § is a cluster
base. If A e and A CF e, then FeS. U is thus contained in the
cluster C generated by $ and the maximality condition on AU implies
that W= C.

In the definition of an abstract binding space, this characterization
will be taken as the definition of a cluster.

For each ACX, let A= {xeX: {x, A} < B}.

1.5. TEEOREM. The binding structure (B, C) generated by the closed
base (By, Cy) has the following properties:

PL If Ay, .., AnCX and () A; + @, then {4} ¢ B.

P2. If {B;} C {4} ¢ B, then {Bj} ¢ B. o

P3. If {A, A} eB and ACBw O, then {B, Ai}eB or {C; Ai}¢B.

P4. {4} ¢ B if and only if {4:} B.

P5. If {»,y} B, then z=1.

P6. A covering is in C if and only if it is refined by a covering in C
composed of sets of the form A. 3

PT. If {As} e B, then {As} is contained in some cluster.

Proof. P1. If e[ A; then S;={F ¢F: z eF} is a cluster base
and {4} is contained in the cluster generated by 8. Thus {4:} ¢ B.
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P2 holds because any cluster containing {4} containg {B,;} C {44,

P3. Let C be a cluster containing {4, 4;} and let S be a cluster bage
generating €. If B ¢ €, then there is an ¥ ¢ § such that BCF and F ¢,

- If 0 ¢ C, then there is & G ¢ & such that 0 C ¢ and G ¢ §. Since ACF L G,

~lows that F = F for each F e ¥ 50 the sets

and A eC, Fu @e8. From 1.3, either F e 8 or G 8. This contradiction
shows that either B eCor 0 cC and thus either {B, 4} ¢« B or {0, 4}« B.

P4. If z e A, then {z} and A are both in the cluster generated by §,
(see proof of P1), so {x, A} e B. Thus 4 C 4 and any cluster containing A
contains A. Conversely, let A CF eF and suppose # ¢ . By B4 there
aresets ¥y, ..., Fy ¢ § such that © « (| I; and {F, 7} ¢ Bs. Thus no cluster
base can contain {F, Fy} and hence no cluster can contain both A and {z}.
This implies that if A CF e then ACF and so every cluster con-
taining 4 contains 4. P4 follows from the definition of B.

P5. If o == y, then there is an F ¢ & such that « € F, y ¢ ' 50 by the
argument above, y ¢ {Z} and {z, y} ¢ B.

I?G. B"rom B4 it follows that F=F for each FeF a,ndv 50 each
covering in Cy is composed of sets of the form 4. Any covering refined
by a member of C is refined by a member of Cy, and is thus in C.

P7 follows directly from the definition of B.

) We now define a binding structure on X to be a pair (B C) ‘where
B is a family of finite collections of nonempty subsets of X and C7 is a’ family
of coverings of X, satisfying properties P1-P7. The members of B will
be called bound collections, and the members of ¢ will be called oobers.

) Note..If ﬁ is a family of subsets of X such that X C | #, # is a cover-
ing of X; if, in addition, # e C, then # is a cover of X,

1.6. LuvwA, The operator A4 is a dosure operator.

Proof. From P1 it follows that A C 4 and thus that X — X. Sinc
no. collection in B contains @, 0 =3. {s, 4 U]Tg;etl};mifYa.;ch;nSlmci;
{m,A}fB or {x,B}eB, by P3, so AU B=4u B From P5 it follsc;ws
that {Z} = {s} for each ¢ X and from P4, {w A} = {%, 4} ¢ B implie
that {z, A} ¢ B, 50 Z CA. Thus Z = 4 and the op’erator , rure
operator.
If (B, C) is a binding structure o (s in the |
of (B, C) are defined to b(%g those sets Ar;ufl’l ‘Egztcf Sidzseéqxiléni T
logy since {Z} = {2}, and the closure of a set 4 in this 1 ,
If (B, C) is generated by the closed bage (B ),
of (B, C) coincides with the one generated by 4

A4 is a closure

a T, -topo-
opology is just 4.
» Cg), then the topology
! F. From property B4 it fol-
in & are closed in the topology
18 not contained in the cluster
such that 4 C¥ and z ¢ 7. 7 is

of (B, C).ITf z ¢ AC X, then 4 (and hence 4)
generated by S;. Thus there is an F e 5
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closed under finhite unions and is therefore a base for the closed sets in
the topology of (B, C). .

1.7. LeMMA. Fach binding structure (B, C) on a set X is generated by
a closed.base (Bg, Cx). ‘

Proof. Let F denote the family of all closed sets in the topology
of (B, C); let By be all finite subcollections of sets in & which are in B;
and let Cx be all covers in C which are composed entirely of sets in F.
Clearly By satisfies B1-B3 since B satisties P1-P3. Since {z} ¢ ¥ for all
x e X, By satisties B4 also and (Bg, Cg) is a closed base for some binding
structure on X. Denote this binding structure by (B?, C'). ]

A simple consequence of Pé is that C = C*. To see that B= B, we
observe that each cluster base 8 in (Bg, Cg) is the intersection of a unique
cluster in (B, C) with F, and that each cluster in (B, C) gives rise to
a cluster base in (Bg, Cy). If U is the cluster in (B', C?) generated by the:
cluster base W ~ F, where AU is a cluster in (B, C), it is not difficult to
verify that U= 9. From P7 and the definition of B® it follows that
B= B o )

1.8. Remark. We should point out at this time that distinet binding
structures may have ‘the same topology.

For example, let N denote the positive integers with the discrete
topology. Let F, be the family of all finite or eofinite sets and let F, be-
the family of all subsets of N. If By, F,, ..., Fp € 54 then let {Fj} ¢ By, if
and only if M) F; = @, for 4= 1, 2. Let Cy, be thefamily of finite coverings
of N by sets in §4. For i =1, 2, (B, Cy,) is a closed base for a binding
structure (B;, C;). The topology of each structure is the diserete topology,
but B, ng and C g C,.

A set X having a binding structure defined on it, explicitly or
implicitly, will be called a binding space, or sometimes merely a space.
A binding space will be called a Hausdorff space, a regular space, ete.,
whenever the topology of the binding structure is Hausdorff, regular, ete.

Tn the following, whenever § is a set function, & a family of sets
and R a collection of families, we will write S(R)= {S(R): B <R} and
S(R) = {S(R): RC R}. )

A cluster C in a binding space is free if (| € = @; otherwise it is fized.
A Dbinding space is complete if éach cluster is fixed. If the cluster Cis.
generated by the cluster base §,then 8 CC and (1) 8§ = @ implies [ C=0.
Conversely, if @ () S, then {&} e C; thus @ ¢ 4 for each A ¢C and x e\ C.
To determine the completeness of a binding space, it is therefore sufficient
to consider only cluster bases. '

The cluster bases of the binding structure generated by the closed
base of example 1.1 are the ultrafilters of closed sets. Thus this binding:
space is complete if and only if its topology is compact. :


Artur


48 A. K. Steiner and E.F. Steiner

1.9. Ly, A cluster is fiwed if and only if it contains o singleton,

Proof. If {s} ¢ C, then {#, A} « Bforeach A e C. Thus » e M {4:4ec)
and € is fixed. Conversely, if @ e () {4: 4 ¢ C}, then {z, 4:} ¢ B for each
finite subcollection {4} of C. From P4, {z, A:} < B and s0 the maximality
of € implies {x}eC. Actually, # ¢ (| C implies {#} = N C by P5. v

If (B, C) and (B, C*) are binding structures on X and X, respectively,
a function f from X to X* is a mapping if f~*(C*) C C and f(B) C B. Thus
a mapping takes bound collections forward to bound collections and
covers backward to covers.

1.10 TuEOREM. A mapping is a continuous function.

Proof. Let f be a mapping from X to X* and let I be closed in the
topology of (B, C"). If ¢ f™(¥), then f(z) ¢ F' and thus {f(z),F} ¢ B.
Since f(ByC B, {z, Y F)} ¢ B so @ ¢ f~(F). Thus f~(F) is closed in the
topology of (B, C) and f is continuous.

TIf C and C! are uniformities on X and X*, respectively, then a mapping
from X to X' is clearly a uniformly continuous function.

If f is a one-to-one mapping of X onto X* and f~* is also a mapping,
then X and X' are isomorphic and f is an isomorphism. Identities and
compositions of mappings are mappings; thus binding spaces and mappings
«constitute the category of binding spaces.

1.11. If (B, C) and (B', C") are binding structures on the same set X
and the identity functions on X is a mapping of (B, C) to (B!, C*), then
(B, C} is finer than (B, C') and (B, C") is coarser than (B, C).

The finest binding structure on a set X is the pair (B,, C;) where
{4} e B, if and only if (N 4; + @ and C, consists of all coverings of X.
The topology of (B, C,) is the discrete topology since A = 4 for each
A C X. The covering composed entirely of singleton sets is in C;, 0 each
cluster must contain a singleton and must therefore be fixed, 1.9. Thus
{B,, Cy) is complete.

The coarset binding structure on a set X is the pair (B, C,) where
{4} «B, if and only if either (| A; % @ or some A, is infinite, and C,
consists of all coverings refined by the covering ¢ = {X}. If 4 is infinite,
A= X and if 4 is finite, 4 = 4. Thus the topology of (By, Cy) is the
cofinite topology. From the definition of B, it follows that each cluster
must contain a singleton, and is therefore fixed, 1.9; hence (B,, Cy) is
complete.

Actually, the family of all binding structures on a set X forms a com-

plete lattice, but the proof of this will be delayed until the next section,
‘where it follows from a theorem on products.

2. Fundamental constractions. If X and ¥ are binding spaces and
Y is a subset of X, ¥ will be called a subspace of X if the binding structure
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on Y is the coarsest one which makes the injection i: ¥ —.X a map-
ping. ) .

In the following, we will construct this coarsest binding on Y. Let
(B, C) denote the binding structure on X and 6= {4~ ¥: 4 C X}. Let
Cg be the trace on Y of covers in C and if G, Gy, ..., Gy € G, let {G:} € Bg
if and only if {G4} « B. It is not difficult to verify that (Bg, Cg) is a closed
base for a binding structure. Let (B(X)C(T )) denote the binding structure
on Y generated by (Bg, Cg).

It is easy to observe that ¢ ¢ C(Y) if and only if C iy the trace on ¥
of a cover in C (C(Y)=Cn~ ¥), and that B(Y)C B. However, there
may be sets Ay,.., 4, C ¥ such that {4,} B, but {4} ¢ B(Y).

2.1. LemMmA. The injection i: ¥Y—X i3 a mapping.

2.2. LemmA. If (B, C%) is any binding structure on Y making the
injection a mapping, then (B, C') is finer than (B(™), C(T)).

Proof. First C(¥)=4i"%C)C C. Second, if {4,,..., An} € BY, then
{i(4y)} e B and 50 {4; ~ Y} < Bg. Let C' be a cluster in (B, C*) contain-
ing {4:}, and let 8= {d ~ ¥: 4 <C'}. Thus finite collections of § are
in Bg and & contains a member of each cover in Cg. § is contained in
& cluster C in (B(Y), C(Y)), {4} CC and thus {4:} < B(Y).

Lemmas 2.1 and 2.2 show that (B(Y¥), C(Y)) is the subspace binding
structure on Y. It follows that if f is & mapping from a space W into
& space X, then f is a mapping from W onto the subspace f[W] of.X.

A subspace Y of X is called a dense subspace provided (B(Y), C(X))
is a closed base for the binding structure of X , where closures are taken in X.

It Y is a dense subspace of X then the following hold:

(a) The closures (in X) of sets in ¥ are a base for the closed sets of X.

(b) Y is topologically dense in X, ie Y = X.

(c) The closures of covers in C(¥) are in C. ’

(d) It 4,,..., 4, C Y, then {4} ¢B(Y) if and only if {A;} e B.

(e) For each # e X—Y, there is a cluster € in ¥ such that N €= {z}.

The following example shows that a topologically dense subspace
need not be dense as a binding space. Let X = [0, 1], C be all coverings
of X, and let {4:} e B if and only if ") cl4; % B, where cl.4 is the closure
of 4 in the usual topology on [0, 1]. It follows that = ¢4 if and only if
@#ecld, and C contains the covering consisting of singletons. Let ¥
=1[0,1) be a subspace of X. Then the covering ¢ of ¥ which consists of
singletons in Y is a cover in C(¥). Clearly, ¢ = {7} y« ¥} = ¢ is not
a covering of X, so ¢ ¢ C. By property (c) above, ¥ is not a dense sub-
space of X.

The product of a family {X,} of binding spaces is the coarsest binding
structure on the cartesian product of the sets X, making each projection
a mapping.

4 — Fundamenta Mathematicae T. LXXVI
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2.3; THEOREM. The product of any fawily of binding spaces ewmists.

Proof. Let (B,, C,) denote the binding structure on X, and let &, be
the family of closed sets in X, with respect to the topology of (B,, C)
Tet x be the cartesian product set of the factors X, and let p, denote
the coordinate projection of = onto -X,. »

The family {p;F): F e F,}, is a subbase for the product topology
on 7 which is a T4-topology. Let & be the family of finite unions of these
subbase elements and let Cg be the family of covers of z of the form p;*(e)
where ¢ is a closed cover in C,. If Fy, ..., By ¢ F, let {F} ¢ By if and only
if for each 7 a subbase element Ai C F; can be chosen so that {p,(44)} ¢ B,
for each a.

We need to verify that ( B:-r-, Cy) satisfies conditions B1-B4. First,

if msﬂFt for 7y, 1, ...,

i=1
such that z sﬂ Gi. Thus p,(® ﬂ p(Gh) for each a, 80 {p,(G4)} € B, and
i=1 =1
{F} ¢ Bz. Thus Bl holds, Oleally B2 is valid. ;
To see that B4 holds, suppose @ ¢ p;*(F,) for F, e F,. Then Po(2) ¢ F,
80 {p7ip.(2), pTH(F,)} ¢ By, (Since F, is the family of all closed sets in
the topology of (B,, C,) which is Tl,pa(m)e‘.‘ia 50 pi'p. @) € F.) Now,

m
if & ¢F = Upu—gl('FmL thell, as aboVe, ~{.p;;1pa4(m)7 F} ¢B'"
M i=1 ’

F, e F, then there is'a subbase element G, CF;

2 .pam.pam

and ze ﬁ D P o).
To show that B3 holds, we. ’WI]J. use the fact that 1f iy (A )
C U { Upa“l(fi,’ }WhereAﬁ eF t(4p) C Up id)
i=1 j=1
for some 7, 1 << i m.
Now assume {F;, G} ¢ By and ‘@ C H ¢« 7. There are subbase elements
A;CF, and B C @ sueh that {paAi )s Po(B)} € B, for each a. BCGCH

U{Uipa, (Dy,5)} s0o BC Up (Dy,;) for some j,1<j<
Cqupq (D) = UD“ so by 3, {p,4,

If as q, then p.,pa,‘(Dk i) =X, and thus {p,(4,), p.p5" (Dy,1)} € B,
Since p;*(Dy ;) CH, {Fi, H} ¢ Bz. Thus (Bg,Cg) 1s a closed hase for
% binding structure, say (B, C), on .

To see that the projections are mappings, let C, eC,. By P6, there
is a closed cover d, < C, such that d, refines 0,. From the deflmtlon of
Cs, p7(d,) € Cx and p7Y(d,) refines p71(C,), so p;‘( ) €C. Thus p;{(C,)CC
for each a.

The topology of (B, C) is just the product topology of = so the

Fpand A; ;e F,, then Py

<M. Dol B)

)s Dy,;t € B, for some k.
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projections are continuous. This implies that p, takes bound families

into bound families, for if A,,..,4,Cx and {p,(4,}¢B,, then

{p(4,)} ¢ B,. From the definition of By, {p;'p,(4,)}¢Bs and thus
TP (A} ¢ B. Since 4, Cp'p(4,), {4} ¢B.

Finally, suppose (B1 C") is another binding structure on = making
each projection a mapping. Bach cover of a which is refined by a cover.
of the form p;(¢,) for ¢, € C,, is in C* and thus CCC. If Fy, ..., Fu ¢ &
and {#:} ¢ B, then by P3, there are sets A; e U Pp7HF,) such that Ai Cr,

and {4} ¢ B*. Thus {p,(44)} ¢ B, for each a and by definition, {F:} ¢ Bs.
Now, suppose {@:} « B'. There is a cluster U in (B%,C") containing

13 ey Om. Leb &= {F: FeUn F}. Since Cg CCY, U (and hence &)
contains a set from every cover in Cy. Each finite subcollection from & is
in. By so & is contained in a cluster base & in (By, Cy), and by 1.2, §C VU,
a cluster in (B, C). If GiCFeF, then FeUW. Thus FeWbn F=8§C8§
and @i e U. From the definition of B, {¢;} ¢ B. Thus (B, C?) is finer than
(B, C) and the theorem is proved.

In any category, an object Z is a product of a family {X,} if there
exist mappings p,: Z—>X, such that (1) if f: W Z and g: W—Z are two
different mappings, then for some a, p.f 5 9,9, and (2) for every family
of mappings f,: W—X_, there exists a mapping f: W—Z such that pf=7f,
for each a. Clearly = with the projection mappings satisfies (1), and (2)
also holds when f is defined by f(w), = f,(w). Thus = is a product in the
categorical sense and we have:

2.4. TueoREM. A function f from a space W into the product = of
spaces X, is a mapping if and only if p.f is a mapping for each a.

Theorem 2.3 can now be used to prove that the family of all binding
structures on a given set X is a complete lattice with respect-to the partial
order defined in 1.11.

Let {(B,, C,)} be a family of binding structures on X and let (B, C)
denote the product binding structure on =, the. product of these binding
spaces. The injection e: X—=x defined by p.e(s) = 2 for all zeX is
one-to-one and ¢X is a subset of m. If (B(eX), C(eX)) denotes the sub-
space binding structure on eX, then (e'B(eX), e7'C(eX)) is a binding
structure on X. Let B'= ¢ 'B(eX) and C'= &7 'C(eX).

2.5. LEMMA. (BY, C") is finer than (B,, C,) for each «.

Proof. From the definition of subspace, ¢ is a mapping from X
into z. Thus p,e is a mapping of (B, C') onto (B,, C,)-

2.6, THEOREM. (B', C%) is the coarsest binding structure on X which
is finer than (B,, C,) for each a.

Proof. Let (B,, C;) be a binding structure on X which is finer than
(B,, C,) for each a. Then the function p,e: (B;, C;)—(B,, C.) is a mapping

4%
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(since p.e is just the identity). From 2.4 it follows tpaﬂs % (By, C)—>m is
a mapping. The definition of the subspace binding implies that (B, C,)
is finer than (B, C'). This, together with 2.5, completes the proof.

The binding structure (BY, C') may thus be denoted as \/ (B,, C,).

a
Tt can be shown that C'=|JC, and that {#, A} ¢ B' if and only if
{z, A} ¢ B, for each a. ¢ ‘ .

There is a largest and a smallest binding structure on X (1.11). Since,
in any partial order, the existence of suprema and a smajllest.element
implies the existence of infima, it follows from 2.6 that the family of all
binding structures on X forms a complete lattice. .

A quotient mapping ¢: X ~@Q is an onto mapping such that whenever
¢ is a composition of two mappings ¢ = gf, where g: Q"' is one-to-one
and onto, then ¢ is an isomorphism.

9.7. TemorEM. Bvery mapping f: X Y has the form f1q, where ¢: X—>Q
is a quotient mapping and f': Q>Y is one-to-one.

Proof. Consider the family of all binding struetures on the set f[.X]
which make f a mapping. The binding structure on f[X] induced by that
on Y is such a structure. That fis a mapping with respect to the supremum
of this family of structures on f[X] follows from 2.4 and the definition
of the supremum. Let @ be the set f[X] with this finest structure making f
a mapping. Let q: X—>@ be coincident with f and let f*: @ >Y be the
identity mapping.

If ¢: X—~@Q factors as ¢=¢,g, where g, X—>@Q"' and g¢;: @'>Q is
one-to-one and onto, then the binding structure on @' is finer than that
on @ and makes f a mapping. From the definition of @, g; must be an
isomorphism. Thus ¢ is a quotient mapping.

2.8. The topology of the product, or subspace binding structure is
the product, or subspace topology, respectively. Thig is obvious since
the product and subspace binding structures were generated by bases
for closed sets of the product and subspace topology, respectively. The
following example shows that this is not the case for quotients.

Let X = [0, }) v (}, 1], F the family of closed (in the usual topology)
subsets of X, and Cy the family of finite covers from F. A finite sub-
collection Fy, Fy, ..., Fy ¢ F will be in By if and only if () F; = @ where
Fy is the closure of F; in the usual topology on [0,1]. Tt is easy to verify
that (By, Cg) is a closed base for a binding structure (B, C) on X. Moreover,
{[0,3), (%, 11} eB. Let ¥ = [0, 4] have the binding structure generated
by finite covers of closed sets (in usual topology) and finite subcollections
of closed sets with nonempty intersection. The function f: XY defined
by fle)=a, 5¢[0,}) and f@)=1, we(},1] is a mapping. Since
{{0,%),(},11} B, {[0, 1), {%}} is bound in the quotient structure on ¥,
that is, } is in the closure of [0, %) with respect to the topology of the
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quotient binding structure. However, since f is the identity on [0, 1
and [0, ) is closed in the topology of (B, C) on X, [0, }) is closed in the
quotient. topology on Y.

In general, since every mapping is continuous (1.10), the quotient
topology is at least as fine as the topology of the quotient hinding
structure, and in the above example, it is finer.

3. Complete spaces and completions, In section 1, a binding structure
(B,C) on a set X is defined to be complete provided each cluster (or
equivalently, each cluster base) is fixed. This definition is analogous to
that of a complete uniform space in which each Cauchy ultrafilter con-
verges, or to a compact topological space in which each ultrafilter of
closed sets has a nonempty intersection. As might be expected, some
of the theorems regarding complete uniform spaces and compact
topological spaces carry over to complete hinding spaces.

3.1. TEROREM. A closed subspace of a complete binding space is complete.

‘Proof. Let ¥ be a closed subspace of X and let C be s cluster in
(By, Cy), the binding structure on ¥ induced by (B, C) on X. By 2.2,
ByCB. Let w={HCX: ACE for some A eC}. Property P3 and
By C B imply that every finite subfamily of U is in B. If € ¢ C, then
CnXYeCy, 50 there is an A e~ Y such that 4 eC. But A=Bn Y
for some B e § and B is in WU. Thus U is a cluster in (B, C) and C C L.
Since X is complete, () €D () W s O, and since ¥ is closed, [} CC Y.

The converse of 3.1 is not true, i.e. a complete subspace of a com-
plete binding space need not be closed. To see this, it suffices to notice
that-if 'C contains the cover composed of singletons, then any subspace
of X will be complete, but not necessarily closed. The binding structure
(By, C,) defined in 1.11 is such an example. It can be said, however, that
a complete subspace of a complete binding space is not a dense subspace.

3.2. THEOREM. The product of complete spaces is complete.

Proof. Let = denote the product of spaces X, having complete
binding structures (B,, C,), and let (B, C) denote the product binding
structure on «. By 2.3, the projections p,: n— X, are mappings, so if C is
a cluster in (B, C), p,(C) is contained in a cluster W, in (B,, C,). Let
Z,=[) U, and let z = (x,) e 7.

If ACx= and o ¢4, then there are closed sets F,C X, such that
z ¢ U{,p;;:l(Fai): 1 < i g\ n‘} D 'A“ Thus mai = _’pa;(w) épa;[pu_gl(Fag)] = Fag? i‘e‘
F, ¢ W, and consequently pZ'(F,)¢C. By P3, | J{pHF,): 1<i<n}
is not in € and thus 4 ¢ C. This shows # e[| € and =z is complete.

A space Y is said to be a completion of X if ¥ is complete and X is
isomorphic to a dense subspace of ¥. When no confusion will arise, we
will simply assume that X is a dense subspace of Y.
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3.3. THEOREM. Hach binding space has o completion.

Prootf. Let (Bs,Cs) be any closed base for the b.inding gtructure
(B, C) on X and let X* be the set of all cluster*bases*ln {(Bg, Cg). Eor
each F eF, let F* = {SeX*: F eS8} and let § = {F": FeJ}. Define
B |{(F}: (P} ¢ By} and Cp= (C* = {F*}: €= (T} e Cy). .

First, F* is a base for the closed sets of some T,-topology on A-.
If § ¢ X* and F7, F} ¢ 7 with 8 ¢ F} w Iy, then 'y ¢ 8 and T, ¢ 8. If Us is
the cluster in (B, C) generated by 8, then F; v F, ¢ W Thui therg is an
7, e¥ such that Fy uF,CF, and Fy¢S. This shows 8 ¢ Fy. Tt is easy
to verify that F' o Fi CFi. Clearly, Se[\{F*: FeS8}). If 8 8, then
there is a F' ¢ ¥ such that Fe8 and F ¢ §%. Thus §' ¢ {I™: F €8} and
{8} =N {F*: I 8}

The verification that Bg. satisfies B1-B4 is straightforward. Since
$ ¢ X* contains an element from each ¢ e Cg, Cg is a family of coverings
of X*. Thus (Bg+, Cys) is a closed base for a binding structure (B*, C*)
on X*, which is the desired completion. : _

To see that (B, C*) is complete, it is sufficient to observe that for
each § ¢ X*, the family 8" = {F™*: ' ¢ 8§} is a cluster base in (Bgx, Cq«),
and that 8§ =8

Define e: X-+X* by e(®)= 8;= {F e¢F: @ eF}. Clearly, e is one-
to-one. To see that ¢ is a mapping, let d* ¢ C*. There is a cover 0* ¢ Cyu
which refines d*. For each F* ¢ 7%, ¢ }(F*) =T and thus e~}(C*)= (0 ¢Cy.
Since ¢ refines e~Y(d"), ¢ Xd*) ¢ C.

To show that e(B) C B*, it is sufficient to show that if W is a cluster
in (B, C) and U is generated by the cluster base 8, then ¢[W] is contained
in the cluster in (B*, C*) generated by 8*. Let 4 ¢ W. If e(4) C F* ¢ 5%,
then e(A)CF*ne(X)=¢(F). Thus ACFeF 50 by the definition
of W, F €S This says that F* ¢ 8%, and that e(4) is in the cluster in
(B*, C*) generated by 8%

If (B.x, Cex) is the subspace binding structure on ¢(X), and if d e C,
then d is refined by some (¢ Cg, ¢(d) is refined by e(C)= C* ~e(X)
€Cex, and thus e(d) eCox. To see that ¢ %(B,z) C B, first observe that
if ACe(X)and 8 ed, then e7(4) is in the cluster in (B, C) generated by 8.
Now, if {44} ¢ B,y C B*, then {4;} ¢ B}; and since X* i complete, there
is an 8 ¢ X* such that 8 e[\ 4;. Hence {e7(4,)} is in a cluster in (B, C)
and {¢7'(4:)} ¢ B. This completes the proof the ¢ iy an isomorphism of X
onto ¢(X), a subspace of X*.

- It remains only to show that e(X) is dense in X*, and this will be
accomplished by showing that eF = F* for all FeF. Clearly ¢F C F*.
If Se¢X* and S ¢eF, then since F* is a base for closed sets of X (1.7),
there is an Fy ¢ ¥, such that eF CF* and § ¢T¥. But eF CFF implies
that FCF,, and hence that F*CFy. Thus if S¢eF, then §¢JF* so
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eF = F*. Tt is now. easy to verify that Bs. C B.x and that Cy+C Cex.
Now, since (Bgx; Cg«) is a closed base for (B¥, C*), every cover in C* can

be refined by one in Cgy, hence in C.x; since By C Box C B*, (B.x, Cex)
must generate (B*, C*). : .

3.4. LeMmuMA. If F is a function from a complete space Z into a complete
space X such that F(A) CF(4) for all ACZ, and the restriction of F' to
a dense subspace X of Z is a mapping, then F is a mapping.

Proof. A finite collection of subsets of a complete space is bound
if and only if the intersection of the closures of the sets is nonempty. Thus
if {4} is bound in Z, then (1 4; 5= @. This implies @ = ") F(4s) C N F(4a),
hence {F(4:)} is bound in Y.

If d is a cover of ¥, then d is refined by a closed cover ¢ of Y.

(FIX)™(C) is a cover of Z. But F is continuous, so (F{X—I(O)— refines
F~Y0) which in turn refines F~(d). Thus F~d) is a cover of Z, and
F is a mapping.

3.5. THEOREM. The completion of a binding space is unique up to an

isomorphism.’
) Proof. Suppose ¥ and Z are complete binding spaces and that X is
isomorphic to ¢(X) and g(X), dense subspaces of ¥ and Z, respectively.
Let (Bex, Cex) and (B,x, C,x) denote the binding structures on ¢(X) and
g(X), respectively. A family U of subsets of e(X) is a cluster in (B.x, Cex)
if and only if L is a cluster base in the closed base (Bexy Cex).

If f: e(X)—>g(X) is defined by f(e(w)) = g(x) for each x ¢ X, then
J is an isomorphism of ¢(X) onto ¢(X). If y ¢ ¥, then y = [ AL for some
cluster W in (B.x, Cex).

Define F(y) = ﬂﬁ_ﬁ). Then F is a one-to-one function frem Y onto Z
and F(e(z)) = fle(z)) for all e« X. Tf B Ce(X) and ye B, then E is in
the cluster base whose intersection is {y}. Consequently; ET(_ET) = f(B) is
in the cluster base (in Z) whose intersection is F(y). Thus F(F) C F(E).
The inclusion F(F) C F(E) follows in a similar manner. Since {E: B Ce(X)}
and {f(E): E C e(X)} are bases for the closed sets in ¥ and Z, respectively,
F is a homeomorphism. Applying 3.4 to F and F~, it follows that F is
an isomorphism of ¥ onto Z which satisfies Fe = g.

Because of the one-to-one correspondence between cluster bases and
clusters, the points in X™* may be thought of as clusters in X. Or, the points
in X*— X may be thought of as “ideal points” to which the free clusters
in X now converge.

3.6. THEOREM. Bvery mapping on o binding space X into a complete
reqular binding space ¥ has a unique extension to the completion X* of X.

Proof. Let f: X+X¥ be a mapping where ¥ is complete and regular.
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For each p e X*, let Uy = {4 C X: p e A} TEfHWp) = {BC ¥: f~(B) ¢ U},
then fH#(Uy) is contained in a cluster in _Y. Let y Q FH(Uog). ;f 2 £y,
there are sets B,, B, C ¥ such that B, w By= Y, y ¢ B, and 2 ¢ B,. Since
F4B,) w f4B,) = X, either f7Y(By) or f7}(By) is in Wy,. This says either
B, or B, is in f#,). The condition y ¢ B; implies B, e FHEA), ie.
2 H(Usp).
qfm])feﬁ(nepﬁ’: X*>Y by Fip)={) fH#(Usyp). If v X and B € FH(Wy),
then z e f-Y(B). Since f is a mapping, f(#) e B and thus F(z) = f(«) for
all weX.
In Yight of 3.4, to show that F' is a mapping it is sufficient to prove
that F(4) CF(A) for all A C X*. Let p e and suppose F(p)¢F(A),
Since ¥ is regular, there are sets B,, B,CY such that B, w B=Y,

F(4)CB,, F(p)¢B, and B, nF(4)=0. The first condition implies
that for each g e 4, either F-Y(B,) or f~XB,) is in Uy. But if f~(B,) € Uy,
then F(g) « B,, which contradicts B, ~ F(4)= @. Thus f~(B,) ¢ Uy for
each ged, ie gef (B, for all ged. But A Cf B, implies that

p €A CfYB,), which contradicts F(p) ¢ B,. Thus F(A)C F(4).

Since ¥ is Hausdorff and X = X*, I is the unique extension of f.

In order to obtain a categorical result, we need to restrict our atten-
tion to those binding spaces whose completion are regular spaces.

A Dbinding space will-be called an R-binding space if it satisfies (R):
if Cis a cluster and F = F ¢ G, then there are sets 4, and 4, in X such that

(i) X= 4,9 4,,

(i) 4, ¢C,

(i) {F, 4,} ¢B.

3.7. LeMMA. The topology of an B-binding space is regular. A complete
regular space is an R-binding space. '

Proof. If ' is a closed subset of X and @ ¢ F, then F ¢ C; = {B C X:
zel} It A; and 4, satisfy (i)-(iii), then X—4, and X—4, are disjoint
open sets containing % and F, respectively.

If X is complete, each cluster contains a singleton; so if F'= F ¢ G,
then there is an {z} ¢ C such that 4 ¢ F. If U and V are digjoint open sets
containing # and F, respectively, then X—U and X—7V satisty (i)~(iii).

3.8. THEOREM. A space is an R-binding space if and only if its coms
pletion s regular.

) E’ro of. Tl.xe elements of X* are just the cluster of X and the closures
in X* of sets in X form a base for the closed sets of X*. From this, the
proof follows as in 3.7.

The family R of R-binding spaces and maps constitutes a category,

and if X is the subfamily of R consisting of complete spaces, then ¥ is
a subecategory of R.
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Theorem 3.6 shows that the embedding e: X—>X* is a K-reflection
of X (whenever X* ¢ X); and theorem 3.3 and lemma 3.8 guarantee the
existence of J-reflections for each X e R.

3.9 THEOREM. X is a reflective subcategory of R.

4. Applications. For any set X there is a finest and a coarsest binding
structure on X, both of which are complete, 1.11. If (X, 7) is a topological
space, & binding structure (B, C) on X will be said to be compactible with =
if the topology of (B, C) is .

4.1. Lemma. For any T, topological space (X, ) there is a finest
binding structure on X which is compatible with .

Proof. Let ¥ be the family of all closed sets in (X, 7) and Cys be
the family of all closed coverings of X. If ¥, F,, ..., Fy e &, then let
{F'i} € B if and only if [} F; # @. It is easily seen that (Bg, Cgx) isa closed
base for a binding structure (B, C) on X and that the topology of (B, C)
is just 7 (1.7). If (B, C') is any other binding structure on X compatible
with 7, then P1 and P4 imply that BC B' and P6 implies that C*'CC
Thus the identity function of (B, C) onto (B, C') is a mapping.

. 4.2. For a given T-topological space (X, =) there are several binding
structures on X which are compatible with 7. Some of the more common
ones aré given below.

(a) Let F be a family of closed subsets of X which separates points
and closed sets, i.e. if H is closed and « ¢ H, then there are sets #,, Fye &
such that s e, HCF, and F, nF,=0. If Fy, ..., Fpn e F, let {F;} ¢Bs
if and only if [} F'; # @. Let Cx consist of all finite coverings of X from .

The cluster bases in (Bg, Cys) are subfamilies of &, maximal with
respect to having the finite intersection property. The completion X* of
the binding structure generated by (Bg, Cs) has a compact topology.
From 2.3 and 2.17, it follows that as a topological space the completion
is a compactification of (X, ), [6]. If F is the family of all closed sets
of (X, 1), then as a topological space, X* is the Wallman compactific-
ation of (X, 7).

(b) If ¥ and (By, Cy) are as in (a), but now (X, ) is a Tychonoff
space and F is also a normal family, i.e. disjoint sets in & can be separated
by disjoint complements of sets in &, then the topology of the completion
is also Hausdorff and the completion is, topologically, usually referred
to as a Wallman-type compactification, [2], [6].

(c¢) If (X, ) is & Tychonoff space, ¥ is the family of all zero-sets
in X, finite subcollections of & are in By if and only if they have non-
empty intersection, and Cg is all finite coverings of X from &, then the
cluster bases in (Bg, Cy) are just Z-ultrafilters (ultrafilters of zero-sets,
see [3], chapter 6). From the definition of the topology on the com-
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pletion, it is, topologically, ‘the Stone-Cech compactification AX of
(X, 7).

= fg‘he 7 -ultrafilbers are all fixed if and only if v is compact, so a Ty-
chonoff space is compact if and only if it is complete with respect to the
‘binding structure just defined. This structure will be called the g-binding
on X compatible with v. It is easy to see that the f-binding on a Ty-
chonoff space is an R-binding.

4.3. LEMMA. A continuous function from o Tychonoff space (X, )
into a compact Hausdorff space (X, o) is o mapping from X into Y when X
and Y have the p-binding compatible with © and o, respectively.

Proof. The inverse, under a continuous function, of a zero-set is
& zero-set, and since any cover of ¥ can be refined by a finite cover of
zero-sets, its inverse under f is a cover of X.

It A, ..., 4, CX and {f(4:)} is not bound in ¥, then since ¥ is
complete, () fw(Ii) = . There are zero-sets Z, ..., Zn in (¥, o) such that

FflA4)CZ; and (Z;=0. Thus A;CfZ:) and [)f(Z:) =@. Since

{f~{(Z4)} is not bound in X, neither is {4.}. f must then take bound col-
lections of X into bound collections of ¥ and hence f is a mapping.

Lemma 4.3, together with theorem 3.6, prove that every continuous
function from a Tychonoff space (X, 7) into a compact Haugdorff space
can be extended (to a mapping, and hence continuously, 1.10) to AX:

(d) By modifying example (¢) to let Cg consist of all countable
coverings of zero-sets, the cluster bases become Z-ultrafilters with the
-countable intersection property, and the completion of the structure
.generated by (Bg, Cg) is, topologically, the Hewitt realcompactification,
vX of (X, 7). The binding structure on a Tychonoff space (X, ) just
-defined, will be called the »-binding on X compatible with z.

A Tychonoff space (¥, o) is realcompact if and only if ¥ is complete
‘with respect to the »-binding compatible with ¢. Exactly as in 4.3,

-a continnous function from a Tychonoff space (X, 7) into a realcompact

space (¥, o) is a mapping from X into ¥ when X and ¥ have the »-binding
compatible with = and o, respectively. Thus, again from 3.6 and the fact
that the »-binding is an R-binding, any continuous function from a Ty-
chonoff space (X, 7) into a realcompact space can be continuously ex-
tended to »X. :

4.4. Tt might be worthwile to mention that if (¥, o) is any Hausdortt
compactification of a topological space (X y 7), then there is a binding
structure on X, compatible with 7, whose completion, topologically, is
(¥, 0). It is not too difficult to check that the closed base (Bg, Cx)
generates such a structure, where 5 is all closed sets of (X, 1), Cq is all

finite coverings of X by members of &, and it 7, ..., F, ¢ F , then {F} € By
Af and only if N cly ,F; # @,

icm

Binding spaces: A unified completion and extension theory 59

4.5. Now suppose (X, p) is a Hausdorff uniform space. Let § be the
family of all closed subsets of X with respect to the uniform topology
and let Ci be all closed uniform coverings in u. If Fy, ..., Fpre F, let
{F;} € By if and only if for each cover € € Cy thereis an F ¢ C such that
Fal;#=0, 1i<n

Jt is easy to see that (Bs, Cg) satisfy Bl and B2. Each uniform
covering can be refined by a uniform covering of closed sets. Thus if
{@G,F} and {H,F;} are not in By, there are covers C;, C; € C5 such that
no set in C; intersects ¢ and each F;, and no set in C, intersects H and

" each Fy. There is a C; « Cs which refines both €, and C, and no set in C;

can intersect ¢ v H and each F;. Thus {G' v H, Fy} ¢ By and B3 follows.
For B4, if # ¢ F e F then there is a € e Cy such that st(z, C) nF = @.
Thus {#,F} ¢ Bs.

The binding structure on X generated by (Bs, Cy) will be called the
u-binding: This binding structure is compatible with the topology of u
and the covers are precisely the uniform coverings.

4.6. THREOREM. A uniform space is complete if and only if the u-binding
is a complete binding structure on X.

Proof. Bach Cauchy ultrafilter in (X, x) can be extended to a cluster
in the p-binding, so completeness of the binding structure implies com-
pleteness of the uniform structure. )

To show that converse, suppose (X, u) is complete and let C be
a cluster in the u-binding. Define a family § = {4 ¢ C: st(F, €)C A for
some O eC, and F eF ~ C}. Since each cover in C iy star-refined by
another cover in C, § contains a-member of each uniform covering in
p=C. For A, 4,, ..., Ape§, there are covers Cp, C,, ..., On and sets
F,F,, .., Fpin § ~C such that st(F;, C;) C A;. There is a closed cover
C ¢ C which refines each O;. Since {F;} is bound, there is a set He C
such that H nF; # @ for each 4. Thus H C[)st(¥Fi, C) C(st(Fs, Ci)
C[ 4i, and S has the finite intersection property. Sinee (X, u) is com-
plete, NG = 9. .

¥ ze() G, we will show z e[| C. Suppose on the contrary that
2 ¢[) €. Then there is a set .4 « C such that o ¢ A. There is a cover C e C
such that st(z, 0) ~ 4 = @. Let C* be a closed cover, which star-refines C
and let G €S~ O Since st(@, () C st(w, 0), there can be no set in ¢*
which intersects both @ and A. Thus {¢, A} are not bound which contra-
dicts @, 4 ¢ C. This completes the proof that the w-binding on X is
complete.

In order to show that the completion X* of the z-binding on X and
the uniform completion of the uniform space (X, u) coincide, we will
need the following two lemmas. ’

4.7. LevMMA. The p-binding is an R-binding.
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Proof. Let C be a cluster and H a closed set of X not in C. There
are then closed sets” Fy,Fy, .., FneC such that {H,Ty, .., u}¢Bg.
From the definition of By (4.5), there is a cover C, € Cg such that no set
in O, intersects H and each Fi. Let Oy, 0y, 05 € C be such that 0; star-
refines €, , for i=1,2,3. Let FeCn 0,. There are sets K;eCy,
§=0,1, 2 such that st(F, ;) C K,, st(Ks, 0b) CK,, and st(XK,, 0,) CK,.
Since {7, Fy, ..., Fu} € By, s6(F, C3) n Fy 7= @ for each i and thus K, ~ I,
# @ for each i. From the choice of Oy, Ky~ H =@ and {K,, H} ¢ Bg.
It E= cly(X—K,), then K, vF=X. It remains to show X ¢C. For

o e Ky, st(z, 0y) Cst(Ky, ) CEy 50 @ ¢ B. Thus st(F, 0) " B =0 and

{B,F} ¢ B, and B ¢C. o

4.8. LmMmA. If X* is the completion of the u-binding on X, then C* is
a uniformity for X*.

Proof. It suffices to show that Cg, is a base for a uniformity since
each cover in C* isrefined by one in Cgry. If 05 = O, A Oy for 0y, 0, 03 € Cy,
then Gy = C,AC,. If O, star-refines O, and O, star-refines Oy, then G,

star-refines C,. Cy is a base for u, 80 Cgy is a base for a uniformity,
namely C*.

4.9. TEHEOREM. The completion of the u-binding on X is, as o uniform
space, the uniform completion of (X, u). '

Proof. To show (X*, C*) is a completion of (X, u), we must show
that the topology of the binding structure (B*, C*) agrees with the uniform
topology induced by C* and that (X*, C*) is complete. .

Tf A is closed in (B*, C*) and & ¢ A, then there is an F ¢ F such that
ACF*, z¢F*. By 4.7, there are sets Fy, F, e F such that F, uF,= X,
{F,F,} ¢ By and v ¢ F;. From the definition of By, there'is a ¢ e Cg such
that for each H e 0, if # « B then H* n F* = @. By 4.8, there is a C, ¢ Cyx
such that O, star-refines C. Thus if # e K* ¢ 0, then st(K*, T)) n F* = 0.
Since « e st(K”, 0,) and st(K*, 0;) ~ A =0, A is closed in the uniform
topology on (X%, C*). ,

_Conversely, suppose 4 is closed in (X*,C*) and @« ¢ A. There is
& O eCgzy such that st(w,C)n A =0. Let C, e Cqy star-refine . For
each a e A, st(a,Ch) ~st(z, () =@. Let K = | {st(a, Cy): ac A} and
clK be the closure of K in (X*, C%). Since st(z, ) n K = O, # ¢ clK.

I F=cx,yU{Fecl: AnF*£0), then 4CE*. It remains to
show' that ¢ B, Pirst, ECcK and z ¢clK. Thus there are covers
bi; by e Cgs such that b, star-refines b, and st(z,35,)~ clK = @. Let
weF* eby. It Geby and G F 0, then G Cst(F", b,) C H* ¢b,. This
implies that H*Cst(x,b,), and thus that H* ~ K —=@. Tt follows
that GNnHB =0 and {B,F}¢By. But z<F* and F*~ F* — @ imply

that @ ¢ B*. This completes the proof that the two topologies are
identical. .
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If § is a Cauchy ultrafilter on (X*, C*) ecomposed of closed sets,
then 8§ is contained in a cluster C in (B*, C¥). Since [ C # &, & converges.
410. If f is a uniformly continuous function from a umiform space
(X, p) into a uniform space (¥, 4'), then fis a mapping from X into ¥
where X and Y have the p-binding and x*-binding, respectively. Clearly
the inverses of covers are covers and if {f(U:)} is not bound, then there -

is a closed cover ¢ of Y, no member of which intersects each f—(—UT).
Clearly, no member of f~*((C) intersects each U; so {U;} is not bound in X.

Since (Y, u') is complete if and only if the u*-binding is complete (4.6),
and the p'-binding is R-binding (4.7), theorems 3.6 and 4.9 imply that
every uniformly continuous function on (X, x) into a complete uniform
space can be extended uniformly to X*, considered as a uniform com-
pletion of (X, u).

4.11. Let (X,4) be a proximity space and x the uniformity on X
generated by & [4]. The clusters in the p-binding are precisely the
J-clusters [5] and the completion of X with the u-binding is the Smirnov
compactification of (X, 8). It follows that any é-continuons function
from one proximity space into another, may be extended to a J-continu-
ous function from the Smirnov compactification of one to the Smirnov
compactification of the other.

412. Bach paracompactification of a topological space may be
obtained as the completion of a binding structure in a natural way. Suppose
(X, 7/X) is a topologically dense subspace of (Y, =), where (¥, 7) is para-
compact and T,. If F is the family of all closed subsets of ¥, let Cg be
all locally-finite closed coverings of ¥, and let By consist of all finite
subcollections of & whose members have a point in common. Then
(Bg, Cz)-is a closed base for a complete binding structure on ¥ which is
compatible with z. X, with the subspace binding, is dense in ¥ and
thus the completion of X is isomorphic to Y.
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