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On boundedness and discontinuity of additive functions
by
J. Smital (Bratislava)

Let f be a real-valued function defined on the #-dimensional
Buclidean space Ry; f is said to be additive if it satisfies the functional
equation
() . Fla+y) = flo)+f(y)

for each #,y ¢ B,. R. Ger and Marek Kuczma [6] have introduced the
following classes of sets: A set T C R, Dbelongs to the class $ if and only
if each additive function upper-bounded on T is continuous. A set 7 C R,
belongs to the class C if and only if each additive function bounded
(bilaterally) on 7' is continunous. It is known that $ 5= G, see [6] or [10].

There are known various conditions upon 7' which are sufficient
for T'e B, resp. T ¢C, and also conditions upon 7 which are necessary
for T ¢ B, resp. T ¢ C. For example, if T has a positive inner Lebesgue
measure, then 7' ¢ $, ie. each additive function upper-bounded on T is
continuous. This is the famous theorem of A. Ostrowski [18] generalized
by A. Csbszér [2] and 8. Marcus [15]. Other results can be found in [8],
[17], [14], [11], [12], [16], [4], [5], [6], [10], [9]. However, none of those
results gives a condition which is both sufficient and necessary for T ¢ $,
resp. T ¢ C. And the following is the problem of M. Kuczma [13]: give
a characterization of the members of the classes $ and C. The present
paper is devoted to this problem.

The set R, can be interpreted as a vector space over the field @ of
rational numbers, and each additive function f: R,—~R (R denotes the
set R,) as a morphism from the vector space R, to the vector space R,
since each such additive function is Q-linear, i.e. f(az+ fy) = aof (2)+
+Bf(y), for a, B e Q, x,y e By, see [1]. Hence it is natural to apply some
methods and results from vector analysis to the functional equation (1).
Let B be a vector space over . Then each basis of B is referred to as a
Hamel basis. A subset ¢ of » vector space F is @ -convex if

(1—a)C+alCC

whenever ae @, 0 < a < 1. Let A be a subset of B and let # be a point
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from A. Then 4 is @ -radial at the point 2 if for each y e E there is a positive
real ¢y such that @+ ay e A whenever [a| < ¢y, ae@.

Marcin E. Kuczma [10] has considered the subsets 7' C R, which are
both @-convex and @-radial at some point. He has shown that such
a set 7T belongs to B if and only if T contains an open sphere. In the
present paper there is proved a similar result with the class B replaceq
by € (see Theorem 3 below) and this result is a key to the characteri.
zation of the class C (see Theorem 4 below). However, a similar characteri-
zation of the class B is impossible (see Remark 1 after Theorem 4), In
the paper we use some ideas from the above-mentioned paper of Marciy
B. Kuczma.

Finally, here are some remarks concerning the notation. In the
sequel, the usual set-theoretic operations ave denoted by |, o\
(difference), X. The symbols +, —, -, 3, denote the algebraic operations;
they may be applied also to sets, e.g. A4 B denotes the set of all elements
of the form a+b, @ ¢ A, b ¢ B. Rational numbers are always denoted by
Greek letters.

Theorem 1, which follows presently is an analogon of the famous
Hahn-Banach theorem on linear functionals, applied to vector spaces

~over . See also [10]. First we prove the following

Lenua. Let E be a vector space over @, and let X and Y be subspaces
of B such that X C'Y and X has codimension 1 in X; let € be a Q-conves
subset of E which is Q-radial at 0 and symmetric with respect to 0 (i.e. ¢
= —0); finally, let f: X—>R be an additive function such that |f(z)| <1
Jor @ e X ~ (. Then there exists an additive function g: ¥ — R which is ay
extension of f and is such that |g(z)| <1 for xe ¥ ~ (.

Proof. According to the supposition we may write
) : Y=2X+Qy
where ¥ is a point in ¥\X. Consider the following sets U,V C X x@:
U={e,8): 0eX, £ 0, (a—p)ic ),
V=A@ 8:2¢X, 50, (z+y)/eC}.
Since C is Q-radial at 0, for each e X there is a number £ 0 such
that (zty)/§ e (. Hence U and V are non-empty sets.
Write . .
u = sup{f(s)—&: (2,8 e U},
w' = inf{f(z)+ & (x, &) U},
v = inf{—f(a): (0,8 eV},
v = sup{—E—f(a): (, £) e V}.
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We are going to show that
(2) wWzu, 029, v>u, and EN

Suppose, on the contrary, that ' < w. Then there exist (2, 8)e T
and (@, &) € U such that f(a)-+¢& < J{@a)—&; hence, by the Q-line-
arity of f, 7

: By— iy
: B2,
3) T

On the other hand, (#,—¥)/§, « 0, (z.—y)/&, € C. Since C is -convex and
symmetric with respect to 0, we have

Ty—@ & By & m—y

TEVE H4E & E+m & <O

Thus # e X ~ 0, which implies |f(x)] <1, contrary to (3).
Similarly, let »" >v. Then there exist (2,,7,) eV, (2,7,) ¢V such
that —m—f(#) > 72— f(22), and hence

(4) fr>1,

where 2 = (#,— 2;)/(, 4 12). On the other hand, (24 ¥}/, € C, (2 +Y)fn € O
henee from the @ - convexity and symmetry of ¢, similarly to the preceding
case, it follows that z ¢ 0. Thus [f(2)| <1, contrary to (4).

If v < u, then there exist (wy, &) eV, (w,, &) ¢ U such that &— f(w,)
< f(w,)— &, or equivalently,

() . flw)>1,

where w = (w,-+w,)/(&;+&). On the other hand, (w-+y)/é €C,
(w,—Y)/E, € C; hence, by the @-convexity of C, we C, and consequently
flw) <1, contrary to (5).

Finally, assume that %’ < v’. Then there are (4, 7) e U, (%) eV
such that f(#,)+ v < —f(t)— 72, 80

(6) f)<—1,

where t = (f, +1,)/(7,+ 7). On the other hand, (h,—y)/zy € O; (b+¥)/vs € C;
hence, by the Q-convexity of C, ¢e(, and consequently f(¢) > —1,
contrary to (6).

Thus (2) holds. Hence there exists a real number ¢ such that v > ¢ > v’
and «' > ¢> w. Define a function g by

@

g@)=flw) forweX, gy =c,

and extend it by Q-iinearity onto the whole of Y. It remains to verify
that |g(2)] << 1, for each ze ¥ ~ C.
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 Let a+ay e ¥ n ¢, where » e X; we may assume that o520, 3¢

1
o >0, then (f, —) e V; hence
a a

1l{l«f(:v)) >v>c¢ and %(——1-—f(m)) gv<e,

and so
—1<g(otoay)=f(@)+ac<<1.

z 1
If o< 0, then (——, —;) e U, whence
a

%(1—]’(53)) <u<e¢ and '—2(—1—]”(50)) zu=c,

and so again
—1<glotay) <1.
Now we are able to formulate the following

TEEOREM 1. Let B be a vector space over @, X o subspace of B, and ¢
o Q-convex subset of B, Q-radial at 0 and symmetric with respect fo 0. If
f: B is an additive function which is bounded om the set X ~ 0, then
there exists an additive function F: B—R which is an ewtension of f and
which is bounded on O.

Proof. The proof of the theorem is hased on the lemma proved above
and on Zorn’s lemma. It is mueh the same as the proof of the Hahn-
Banach theorem and so we omit it. The reader is referred to (8%, [19]
or [10].

In Theorems 2 and 3, which follow, there are constructed certain
discontinuous additive functions. Theorem 2 .is devoted to- functions

defined on R and Theorem 3 is a generalization of Theorem 2 to functions
defined on R,

THEOREM 2. Let  be a Q-convex subset of the real line, Q -radial af 0
and symmetric with respect to 0. Then either C is an interval or there ewists
a discontinuous additive function, F: R->R bounded (bilaterally) on C.

Proof. Assume that C is not an interval. The set O is dense in itself,
since if z ¢ O then also each aze €, for q e @, |a| < 1. From this and from
the @-convexity of ( it follows that ¢ contains no non-trivial interval.

Hence there exist reals # and y such that -
(7) e, gel, 0<|o/<ilyl.

The proof of Theorem 2 is haged on Theorem 1. We construct a discontinu-

ous additive function g on the set Q- @y, bounded on the set (Qu-+Qy) »
~ 0, and then we extend g %o the desired function F.

For each integer k> 2 define a set 4, CQxQ by
Ax={(a, f); an+py ¢ O,a,8¢Q,a> k}.

Tt is easy to verify that if (a, §) e Ax, then 8  0; otherwise there would
exist some a >k >1 such that oz ¢ ¢ and hence, by the @Q - convexity

of O, 1 (aw) = x € 0, contirary to (7). Thus we can define the sets By C Q
a

a8 follows:
B = {9‘-; (a,ﬂ)eAk}.
B

If theve exists a & such that A = O, define an additive function g
as follows: g(az+fy) = a. By the symmetry of 0, it (¢'z-4p'y) e O, then
Ja'| < k. Hence g is bounded on ¢ ~ (@z+Qy). Now Theorem 1 guarantees
the existence of an additive function F, bounded on € and such that F is
an extension of g. Clearly ¥ is discontinuous since, for each a €@, F(ay)
= g(ay) = 0.

Thus we may assume that Ay = J, for each k. We show that all
numbers from B have the same sign. Indeed, if there are positive rationals
0y, 0, B, P, Such that e @4y e 0, 86— Py e C, 0 >k >2, 0, > k= 2,
and, say, f, > B, (in the case of §; < f, the proof is similar), then by the
Q-convexity and symmetry of ¢ we have .

1 (B o ) . _]:(/32'11 )
3 Is_l(a1m+ﬁ1?/)+(a2m B4) — 3 ——ﬂl +a)|zel,
. Baoy Baay d
whence —E— 40y < 2; on the other hand, a, > 2, —[3—> 0, and so
1 1 .
%ﬁl +a, > 2 — a contradiction.
1

"In the sequel we may assume without loss of generality that each
set By contains positive numbers (otherwise it suffices to replace y
by —y in (7)).

We show that, for each (a, f) € Ax,

) %<2.

E}, 2 for some {(a, f) € Ax. If <1, then

g
1
By € C and hence, by the Q- convexity and symmetry of C, 5 ((az+ By)— BY)

Assume, on the contrary, that

2 .
= (g) zel; but a>n> 2, whence Z(;—lm) = e (, contrary to (7). If
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la

11 ‘ .
f>1, then ;(E(am—}—ﬁy)—iy) = (— )w e €, which again implies g ¢ ¢ __

2p
a contradiction.
Since, for each k3> 2, By By, there exists a lim(supBy) =,

In view of (8), 0 < ¢ < 2. Define an additive function g onkthe set Qz4-Qy
as follows: ¢ (ex+ fy) = a— fc. We show that g is bounded on (Q2+Qy) ~ .
Let (e fy) e 0. Since O is symmetric, it suffices fo consider the cage
of f>0. Let £¢>0. For each integer & > 2 choose a pair (axy Br) € 4,

such that %— cl < e. Bince limag = + oo, from (8) we have lim g, = + 0

k ] k~rc0 :
Let m be an integer such that fn > f. By the Q- convexity and Symmetry
of ¢ we have ﬁ(amm—{—ﬁmy) = (ﬁq—mw+ﬁy) = w4 py e C and

Bm Bm
9) —et o<t D,
B i

By the @-eonvexity and symmetry of ¢ we have %((am—}- BY)— (wx+py)
= a;w z e C, whence
(10) —2<a—w<?2,

From (9) and (10) it follows that

glav+fy) = a—fo < a+fe—w < 24 ps,
and similarly

g{ao+By) > a—fe—0 > —2— s .
Sinece ¢ is arbitrary, we get

—2<g(an+py) <2.
Thus g is bounded on the se$ (Qz+Qy) ~ ¢.
Finally, we show that ¢ is discontinuous on Qu-+Qy. Let 7 >0,
- Choose a positive rational number 6 < 9 guch that |6—ef < 5. For each f
such that |B] < 1/y we have |g (854 By)| = |8— fe| = [Bljo—¢| < 157 — 1.
On the other hand, since 0 < 6 < 2, we get from (7) |6z +y| > |y|/3. Thus
the set of those 2z from Q- Qy for which lg(2)] < 1 is denge in tlie interval
(— ly1/37, lyl/35). Since 7 is arbitrary, we conclude that there is a sub-
set 4 of ¢z+Qy which is dense in B and is such that |g(2)| < 1 for 2 ¢ 4.
But g(») =1, whence g is a non-zero additive function. From this it
follows that g is discontinuous on Qz+Qy. - h

Now Theorem 1 applied to the functi
' ction : i g
of a desired extension ¥ of g, q.e.d. ¢ garaniess the existente
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TaROREM 3. Let C be a Q - conver subset of the n- dimensional Euclidean
space B, Q-radial at 0, and symmetric with respect to 0. Then either ¢
contains a sphere centred at 0 or there ewists a discontinious additive Sfunction
F: Ry—~R bounded on C. o

Proof. Leb ¢, €, ..., ex be the usual orthonormal basis for R,. If for
each i, 1 <i << n, Oi = R-e;.~ C is an interval (which is, by the symmetry
of O, centred at 0) let d be the length of the smallest interval €;. Let
(#y, @oy -y #n), Where @ e B, be a point from R, such that 4] < djn,
for each ¢. Then nw;-e;e 0; C ¢ and hence, by the @ -convexity of O,

1
(@yy Bay voey Ln) = ,;(ﬂ,ml-el-k'rzwfeg-]—...-]-m:n~e,,) eC,

and consequently ¢ contains a sphere.

Thus we may assume that, for some 4, ; is not an interval. In this
case, by Theorem 2, there exists a discontinuous additive function
f: B-es>R, bounded on R-¢;~ 0= (i, which can he extended, by
Theorem 1, to a discontinuous additive function F: R,—R bounded
on C, q.e.d. .

In the next sections we shall use the following notation: If T is a sub-
set of R,, let Q(T) denote the @-convex hull of 7.

Now we are able to prove the main result.

THEOREM 4. Let T' be a subset of the n-dimensional Buclidean space R, .
Then each additive function f: Rn—>R bounded on T is continuous if and
only if the Q-conver hull of T— T contains o sphere.

In other words, T ¢C if and only if Q(T—T) contains o ball.

 Proof. Assume that Q(Z—T) contains a certain sphere. Let f be
bounded on T, i.e. let |f(x)| < M. for x e T. Then f is also bounded on
T'— T with the bounding constant 2M. If 2z ¢ Q(T—T), then 2z = a2+
+ .t am®m, where ;e T—1T, a;e@Q, a;>0, ay+..+0on=1. Hence

[F@)] = lerf (@) + oo + anf(@n)] < alf@)l+ .. + anlf(@n)]
‘ <o+ oo +an)2M = 2M;

thus f is bounded on the set @ (T— T) of positive inner Lébesgue measure
and consequently f is continuous (see [15]). '

Now assume that @(7— T) contains no sphere. Clearly @(T—T) is
@-convex and symmetric with respect to 0. Tf @(T— T is also @-radial
at 0, then there exists, by Theorem 3, a discontinuous additive function
[t Bu->R, bounded on @ (7— T). Let a be a fixed point from 7. Since
T—aCQ(T—1T), we conclude that f is bounded on T—a and conse-
quently f is also bounded on 7.

Hence it remaing to consider the case where Q(7— T) is not §-radial
at 0. In this case @ (T'— T') cannot contain a Hamel basis. Indeed, if H is

+
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a Hamel basis contained in @(Z'—T), then each element z e R, can be
written in the form # ¢ 3 a;b; (finite sum) where b; e H v — H C @(7— ),
a; > 0. From the @-convexity of @ (T— T) it follows that x/ Y oy eQ (T—17)
and consequently oz ¢ @ (I'— T) for each positive a < 3 a;. Thus Q (77— T
is -radial at 0 — a contradiction. Hence @ (7'— T') does not contain any
Hamel basis and so the vector subspace (over ¢) spanned by Q(7— T)
cannot be the whole R,. To finish our proof we use the following result
of R, Ger and Marek Kueczma [6]: If A €C, then the vector subspace
spanned by 4 is Ry,. Hence @(T— T) ¢ C and, similarly to the Preceding
case, we conclude that also T¢ C, q.e.d.

Remark 1. In connection with Theorem 4 one may expect that
the sets from the class B can be characterized as follows: A set Tisin 8
if and only if the @-convex hull of T contains a sphere, or at least hag
the positive inner Lebesgtie measure. However, this hypothesis is false
a8 is shown on an example by Marcin E. Kuczma [10].

Remark 2. A set A C R, is called to be midpoint conver if for each
z,yed, $(@+y)ed. R. Ger and Marek Kuczma [6] have proved the
following result: Let T'C R,, and let J(T) denote the midpoint convex
hull of T. If the set J(T)—J(T) has a positive inner Lebesgue measure,
then T eC. The authors have conjectured that this condition is not
necessary for T C. Their conjecture is true, as can be shown on & rather

complicated example. In fact, there exists a midpoint convex symmetric

set T ¢ C, which has the zero inner measure. Consequently, Q - convexity
in Theorem 4 cannot be replaced by midpoint convexity.
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