Concerning certain minimal cover refineable spaces (*)

by

U. J. Christian (Gaithersburg)

The concept of minimal cover refineable spaces was first used by R. Arens and J. Dugundji. This paper extends their results to show both additional properties which imply minimal cover refineability and additional properties which are implied by minimal cover refineability.

In the course of the research for this paper, some properties of dense subspaces of certain minimal cover refineable spaces were noted. In particular, it was noted that every Nagata space contains a dense metrizable subspace.

1. Introduction. The property of minimal cover refineability will be seen to be a very weak property — one of the basic topological building blocks. It is hoped that this paper will encourage other mathematicians to attempt to link this basic concept with additional basic concepts in new and significant ways.

This paper is divided into three sections. This first section will define minimal cover refineability and identify some spaces which possess this property. A space which does not possess this property is also described.

Section 2 is primarily concerned with dense subspaces of certain minimal cover refineable spaces, and, in particular, with dense metrizable subspaces. Of particular interest is the result that each Nagata space contains a dense metrizable subspace. This section also discusses a relation between the weight of a space and Souslin’s number.

Section 3 gives properties that force subsets of minimal cover refineable spaces to be minimal cover refineable.

In this paper, “space” means “a T_2 topological space”, the word “cover” means “open cover,” and a refinement is assumed to be composed of the same kind of elements (i.e., open or closed) and cover the same set as the collection which is refined.

(*) This paper is based upon the author’s doctoral dissertation at the University of Houston, written under the direction of D. R. Traylor.

15 - Fundamenta Mathematicae, T. LXXVI
The statement that K is a minimal cover of the point set M means
that K is an open cover of M and if g is an element of K, then $(h: k \in K$
and $k \neq g)$ is not a cover of M.

The statement that a point set M is minimal cover refinaeble means
that if K is an open cover of M, then there is a refinement of K which
is a minimal cover of M.

Examples of minimal cover refinaeble spaces are metacompact
spaces (as proved by Arens and Dugundji [1]) and F_σ-screenable spaces
(cf. [35]).

Theorem 1.1. In an n_r-compact space, the following are equivalent:
(a) Lindelöf, (b) metrizable, (c) linearly Lindelöf, (d) hypolindelöf, (e) screenabila,
(f) metacompact, (g) F_σ-screenable, (h) paracompact, (i) hypocompact,
(j) σ-compact (any prior), (k) minimal cover refinaeble.

G. Aquaro has shown that (b) implies (a) [3]. (His argument seems
unduly tedious. It need only be noted that if U is an open cover of a space S,
then the collection $\{p \in S, \bigcup (k: k \in C \text{ and } k \cap p \neq 0)\}$ has
a minimal subcover.) By Morita [30], (a) implies (i). The balance of the
argument should be obvious.

By Theorem 1.1, the countable ordinals with the order topology,
commonly denoted by $[0, \Omega]$ is an example of a space which is not minimal
cover refinaeble.

2. Separability and related concepts. This section will be concerned
with dense subsets of semi-stratifiable spaces and, in particular, with
dense metrizable subspaces.

Several papers of the last decade have dealt with dense metrizable
subspaces of Moore spaces. In [36], W. N. Younglove established that
each complete Moore space contains a dense metrizable subspace. B. Fitz-
patrick showed a Moore space that has no dense metrizable subspace
in [14] and gave additional conditions for dense metrizable subspaces
of Moore spaces. In [15], B. Fitzpatrick proved that a normal Moore space
which is not a σ-example of type D has no dense metrizable subspace.
In [32], C. W. Proctor showed that if a locally connected
Moore space has a base with the property that the space is collectionwise
normal with respect to each discrete subset that is contained in the
boundary of some base element, then the space contains a dense metrizable
subspace.

The research into the conditions in which a semi-stratifiable space
has a dense metrizable subspace was undertaken at the suggestion of
D. E. Taylor.

Two papers that have theorems dealing with dense subspaces are in
the bibliography [2], [10].

The statement that a space S is semi-stratifiable means that there
is a function G from the product of the collection of closed sets of S with
the natural numbers into the collection of open sets in S such that (i)
$\bigcap_{n=1}^{\infty} G(A_n, n) = A$ for each closed set A and (ii) $G(A_n, n) \subseteq G(A_n, n)$
whenever $A_n \subseteq A_m$.

A number of papers have dealt with stratifiable and semi-
stratifiable spaces. Material on these spaces may be found in [7], [9], [11],
[12], [13], [21], [31]. Arhangel'ski calls stratifiable spaces "laced" and
discusses them in [5].

The statement that a cardinal m is κ_r-regular means that the cardinal
is not the sum of countably many cardinals, less than m.

The following definitions were taken from [23]:

If m is a cardinal, the point set N is said to be strongly m-separable
provided that there exists an H such that (1) $H \subseteq N \subseteq H$ and (2) either
H is countable or its cardinality is less than m.

If m is the cardinality of a point set N and N is strongly m-separable,
then N is said to be semi-separable.

The following theorem was proved after discovering that semi-
stratifiable spaces are minimal cover refinaeble. The argument used
illustrates how a minimal cover refinaeble of an open cover for a semi-
stratifiable space was built.

Theorem 2.1. Every semi-stratifiable space S contains a dense
σ-discrete point set. Further, if m is the cardinality of S, then (1) m
is an κ_r-regular cardinal and S is m-compact, (2) $\kappa < m$ and S is
m-compact, or (3) $\kappa < \kappa_r$, then S is semi-separable and hereditarily strongly
m-separable.

Proof. Let G be a function from the product of the collection
of closed subsets of S with the natural numbers into the collection of open
sets in S such that (i) $\bigcap_{n=1}^{\infty} G(A_n, n) = A$ for each closed set A; (ii) $G(A_n, n)$
$\subseteq G(A_n, n)$ whenever $A_n \subseteq A_m$. Well-order the points of S. For each
integer $m > 0$, do the following: For each point p of S, there is an integer
$l > 0$ such that $G(p, m) \subseteq G(p, m, l)$. Associate l with p.

For each integer $i > 0$, let $W_i = \{p: i$ is associated with $p\}$.
Since S is well-ordered, there is a first element in the subcollection W_i,
say p_i, (assuming, of course, that W_i is not empty). Let $O_i = G(p_i, m)$.

Let P_{10} be the 10th point of the well-ordered collection W_i which
is not a point of O_{11}. Let $O_{11} = G(P_{10}, m) \cap G(S, \bigcup_{j \neq 10} O_j, 1)$.

After each initial segment, let P_{11} be the first point of the well-
ordered collection W_i which is not a point of any of the O_{12} already
constructed. Let $O_{12} = G(P_{10}, m) \cap G(S, \bigcup_{j \neq 10} O_j, 1)$.
For each integer $i > 1$, let P_{i} be the first point of the well-ordered collection W, which was not covered by any of the O_{j}, $j < i$, already constructed. Let \[O_{i1} = G(P_{i}, m) \cap \bigcap_{j=1}^{i} G(S \cup O_{j}). \]

After each initial segment, let P_{i} be the first point of the well-ordered collection W, which is not a point of any of the O_{j}, $j < i$, already constructed. Let \[O_{im} = G(P_{im}, m) \cap \bigcap_{i=1}^{m} G(S \cup O_{j} \cup O_{j}). \]

Let \(Q_{n} = \{P_{1}, P_{12}, P_{123}, \ldots, P_{1234}, \ldots, P_{12345}, \ldots\} \). Note that Q_{n} is discrete since \(O_{11}, O_{121}, O_{1213}, \ldots, O_{12134}, \ldots \) covers S. Let $p \in S$ and E any open set containing p. There is an integer $i > 0$ such that $p \not\in G(S \cup E)$. Therefore, $E \cap \mathcal{Q} = \emptyset$. Hence, the collection \(\{Q_{j}\} \) is the dense \mathcal{Q}-discrete point set required.

The collection \(\{Q_{j}\} \) demonstrates that if the hypothesis is met, S is strongly \mathcal{Q}-separable and, thus, semi-separable. It will now be shown that S is hereditarily strongly \mathcal{Q}-separable. Let N be any subset of S. Use the construction above to generate \(Q_{n}(N) = \{P_{n1}(N), P_{n2}(N), P_{n3}(N), \ldots, P_{n4}(N), \ldots\} \) for each integer $n > 0$ except that the points of N are well-ordered instead of S and, so, the elements of \(\{W\} \) contain only points of N. Note that for each integer $m > 0$, the collection \(Q_{n}(N) \) can be decomposed into countably many dense collections; i.e., \(\{P_{n1}(N), P_{n2}(N), P_{n3}(N), \ldots, P_{n4}(N), \ldots\} \). Thus N is strongly \mathcal{Q}-separable.

An example of a space which is compact but not semi-separable is the space $[0, \mathcal{Q}]$. Separability does not imply the property of hereditary separability nor, \mathcal{Q}-compactness even in a Moore space; McAslaney provided an example of such a space [27].

A space is collectionwise Hausdorff if every discrete subset can be covered by a collection of disjoint open sets such that no two points of the discrete subset are contained in an element of the collection.

THEOREM 2.2. Every collectionwise Hausdorff normal semi-stratifiable space contains a dense paracompact subspace.

Proof. Let S be a space satisfying the hypothesis and let \(\{Q_{j}\} \) be a countable collection of discrete point sets such that $\bigcup \{Q_{j}\} = S$. For each integer $i > 0$, let O_{i} be a collection of disjoint open sets which covers Q_{i} and refines O_{i}, an arbitrary open cover of $\bigcup \{Q_{j}\}$. Let H_{i} and K_{i} be disjoint open sets containing Q_{i} and $S \setminus O_{i}$, respectively. Let \(O'_{i} = (g \setminus O_{i}) \). The collection \(\{O'_{i}\} \) contains countably many discrete collections of open sets. This demonstrates that $\bigcup \{Q_{j}\}$ is strongly \mathcal{Q}-separable and, thus, paracompact.

The statement that a space S is basically metacompact means that if B is a basis for S, then every open cover of S has a refinement consisting of elements of B which is point-finite. The statement that a space is basically minimal cover refinable means that if B is a basis for the space, then every open cover of the space has a refinement consisting of elements of B which is a minimal cover of the space.

The hypothesis of the following theorem is almost strong enough to give a dense metrizable subspace.

THEOREM 2.3. Every metacompact semi-metrizable space contains a dense basically metacompact (and, thus, basically minimal cover refinable) subspace with a point-regular basis.

Proof. Let S be a space satisfying the hypothesis. Since a semi-metrizable space is semi-stratifiable, there is a countable collection, \(\{Q_{j}\} \), of discrete point sets such that $\bigcup \{Q_{j}\} = S$. For each integer $i > 0$, let O_{i} be a point-finite open cover of Q_{i} which refines the collection \(\{y_{p}, p \in Q_{i}, g_{p} = S \setminus (Q_{i} \setminus p)\} \). Let $O_{i}' = O_{i}$. For each integer $i > 1$, let $O_{i}' = (g' \setminus O_{i})$ and $g' = g \setminus \bigcup_{i} O_{i}$. Clearly, \(\{y_{i} > 0, g \in O'_{j}\} \) is a point-finite cover of \(\{Q_{j}\} \). Every subcollection of \(\{y_{i} > 0, g' \in O'_{i}, p \in Q_{i}, g' \in C'_{j} \} \) covering \(\bigcup \{Q_{j}\} \) contains a point-finite cover of \(\bigcup \{Q_{j}\} \).

Then \(\bigcup \{Q_{j}\} \) is basically metacompact. By Arens and Dugundji [4], \(\bigcup \{Q_{j}\} \) is basically minimal cover refinable. It will now be shown that \(\bigcup \{Q_{j}\} \) has a point-regular basis. Since S is first countable, let \(\{h_{k}\} \) be a countable basis for each point p of S. Let \(O_{i}'_{j} = (g' \setminus O'_{i}, p \in e' \cap Q_{j}, g' \setminus \bigcup_{k=1}^{i} h_{k}) \). For each point p of \(\bigcup \{Q_{j}\} \), there is an integer $J > 0$, such that if $j > J$, only one element of the collection \(\{y_{i} > 0, g \in O'_{i}\} \) contains p. Therefore, the collection \(\{y_{i} > 0, g \in O'_{i}\} \) is a point-regular basis for \(\bigcup \{Q_{j}\} \).

The proof of the following theorem is a combination of the techniques developed to prove Theorems 2.2 and 2.3 and is not shown since the argument is so similar to that used for those two theorems.

THEOREM 2.4. Every collectionwise Hausdorff semi-metrizable space contains a dense basically metacompact (and, thus, basically minimal cover refinable) subspace with a point-regular basis.

The following theorem has been argued in the proof for Theorems 2.3 and 2.4.

THEOREM 2.5. If a semi-stratifiable space is either collectionwise Hausdorff or metacompact, it contains a dense basically metacompact (and, thus, basically minimal cover refinable) subspace.

THEOREM 2.6. Every collectionwise Hausdorff normal semi-metrizable space contains a dense metrizable subspace.
Proof. By the arguments used to establish Theorems 2.2 and 2.4, the space contains a dense paracompact subspace with a point-regular basis. By Alexandroff [1], this dense subspace is metrizable.

Since a Nagata space is a first countable stratifiable space [9], the following theorem is true:

Theorem 2.7. Every Nagata space contains a dense metrizable subspace.

A definition of weight may be found in [13]; a definition for density (or character density) may be found in [8].

The Soubin number of a space is the upper bound of the cardinal numbers m such that there exists in the space a collection of m not empty disjoint open subsets.

The following theorem may prove useful in investigating the weight of a space. The theorem is an application of Theorem 2.1.

Theorem 2.8. If m is an ω_i-regular cardinal and m is the density of a semi-stratifiable space S, then there is a discrete point set in S with cardinality m.

The reader should convince himself that the following theorem is true:

Theorem 2.9. Every hereditarily separable hereditarily minimal cover refifiable space is a hereditary Lindelöf space.

Corollary 2.10. A necessary and sufficient condition that a hereditarily separable minimal cover refifiable space be hereditarily minimal cover refifiable is that the space be perfectly normal.

Theorem 2.11. For every collectionwise Hausdorff Moore space, the weight is equal to the Soubin number.

Proof. Let S be a Moore space, (G_i) a sequence which is a development for S, and D a collection of m many open sets which is a basis for S, where m is the weight of the space. Only the case where $m < \kappa$ is considered. For each integer $i > 0$, let G_i' be a refinement of G_i which is a minimal cover of S and let P_i be a collection containing one and only one point from each element of G_i' which is in no other element of G_i'. Since G_i' is a development of S, the cardinality of $(i: i > 0, g \in G_i')$ is not less than m. If $m < \kappa$, then for some integer $i > 0$, the cardinality of G_i' is not less than m. Let H_i be a collection of disjoint open sets covering P_i such that no element of H_i contains two points of P_i. Then the Soubin number of S is not less than the cardinality of H_i nor more than the weight of S.

An example of a space which contains a dense metric subspace but is not minimal cover refifiable is provided by [0, Q]. Following are two examples of stratifiable spaces which are not semi-metric. Note that stratifiable spaces are paracompact.

Let S consist of one copy of the plane for each countable ordinal. If P_1 and P_2 are two not disjoint open sets in S, let $P_1 \cap P_2 = (0, 0)$. Let basis elements for a point p of S distinct from $(0, 0)$ be any open set in the plane containing p which does not intersect $(0, 0)$. For each countable ordinal a and each integer $i > 0$, let a basis element for the point $(0, 0)$ consist of the point $(0, 0)$ plus the points in open disks of radius $1/i$ with center at $(0, 0)$ in each plane associated with an ordinal greater than a.

The previous example suggested the following one to D. R. Traynor. Let S be the points of a simple sequence of copies of the plane, P_i. For each pair of integers $i, j > 0$, let $P_i \cap P_j = (0, 0)$. For each integer $i > 0$, let basis elements of P_i be any open set in the plane that does not intersect the point $(0, 0)$. Let each basis element for the point $(0, 0)$ be the union of an open disk of the plane P_i with radius $1/i$ and center at $(0, 0)$ for each integer $i > 0$ where P_i is a positive integer.

Mackey [27] gives an example of a stratifiable semi-space which is not developable.

3. Minimal cover refifiable subsets. This section will be concerned with subsets of minimal cover refifiable spaces. The section begins with the following obvious theorem:

Theorem 3.1. Every closed subset of a metacompact or P_κ-screenable space is minimal cover refifiable.

The statement that a collection B of closed subsets of a space S dominates S means that B covers S and if $A \subset B$ and A has a closed intersection with every element of some subcollection of B which covers A, then A is closed.

The concept of a dominating collection is due to Michael [28].

Theorem 3.2. In order for every closed subset of a space to be minimal cover refifiable, it is necessary and sufficient that the space be dominated by a collection of subsets such that every proper closed subset of each element of the collection is minimal cover refifiable.

Proof. For the reason noted by Michael [28], necessity is obvious. Let G be a collection of subsets which dominates a space S such that every proper closed subset of an element of the collection is minimal cover refifiable. Let G' be any open cover of S. Let g be an element of G and c an element of G' which covers a point of g. Then $g' \cap c$ is minimal cover refifiable, so g is minimal cover refifiable. Let M be any closed subset of S. Well-order the collection $(g: g \in G \text{ and } g = g' \cap M)$ and call it G'. Let C be any open cover of M. Let G_i' be a refinement of G' which is a minimal cover of g_i, the first element of G'. Let G_i' be a refinement of G_i' and $c = c \cap g_i'$ which is a minimal cover of $g_i' \cap c_i'$ where g_i' is the first element of g_i' not covered by G_i'. After each initial segment,
Concerning certain minimal cover refinable spaces

Let g_0 be the first element of G not covered by $\bigcup_{j \in A} C_j$ already constructed. Let C_0 be a refinement of \{$c \in C$ and $c = c_n \cap \bigcup_{j \in A} g_j$\} which is a minimal cover of $g_0 \cup C_0$. Then $\{c : n > 0 \text{ and } c \in C_n\}$ is a minimal cover of M.

Corollary 3.3. Every open subset of a space P which has the property that every closed set is G_2 and minimal cover refinable is minimal cover refinable.

Theorem 3.4. Every open subset of a perfectly normal minimal cover refinable space is minimal cover refinable.

Proof. The following argument seems unnecessarily complicated. However, no simplification is apparent. Let R be a perfect normal minimal cover refinable space, and C any open cover of R. Since C is perfectly normal, let $\{G_i\}$ be a sequence of open sets such that $C_i \cap C = \emptyset$, $C_i = (g ; g \in C_i \text{ and } g = g \cap R)$.

Let $C_0 = \{g ; g \in C \text{ or } g = G_0\}$. Let C_0 be a refinement of G_0 which is a minimal cover of S. Let $C_i = \{g ; g \in C_i \text{ and } g \not\subseteq G_i\}$. Let M_i be the collection of all points of $(C_i)^{\#}$ which are not in two elements of C_i.

Let $C_i = \{g ; g \in C_i \text{ and } g = (g \cap G_i) \cup M_i, \text{ or } g = g \cap C_i\}$. Let $C_i = \{g ; g \in C_i \text{ and } g \not\subseteq (G_i \cup C_i)^{\#}\}$. Let M_i be the collection of all points of $(C_i)^{\#}$ which are not in two elements of C_i.

For each integer $i > 2$, let

$C_i = \{g ; g \notin C_i \text{ and } g = (g \cap G_i) \cup M_i, \text{ or } g = g \cap C_i\}$.

Let C_i be a refinement of C_i which is a minimal cover of S. Let $C_i = \{g ; g \in C_i \text{ and } g \not\subseteq (G_i \cup C_i)^{\#}\}$. Let M_i be the collection of all points of $(C_i)^{\#}$ which are not in two elements of C_i.

Since the properties named are hereditary in a space in which closed sets are G_2, the following theorem is true:

Theorem 3.5. If a space has the property that closed sets are G_2 and is either metacompact or F_σ-screenable, then the space is hereditarily minimal cover refinable.

An example of a paracompact space which is not hereditarily minimal cover refinable is given by $(0, 2)$. The following is an example of a minimal cover refinable space which contains a closed set which is not minimal cover refinable. It is based on a suggestion by G. W. Proctor.

Let T be the points of $(0, 2)$. For each point p of $(0, 2)$, let T_p be an independent copy of $(0, 2)$ and let T_p have the order topology. Let $S = \{p : p \in T$ or $q \in T$ and $p \in T_p\}$. For each point p of T, let an open set containing p be the union of all the points between q and r where $g \subseteq T$ and $q < q < r$ for 0, use $(0, r)$ plus the union of all the points greater than some point of T_p for each $s \subseteq T$ such that $q < q < r$.

References

§ 0. Introduction. The cardinal number $\kappa > \omega_1$ is called a **Helling cardinal** if every relational structure with a κ-like ordering has an elementary substructure with a λ-like ordering for an arbitrary $\omega_1 < \lambda < \kappa$. (If the language L of the structure under consideration is uncountable, then we can modify this notion, requiring $\lambda > |L|$.)

The existence of Helling cardinals is incompatible with the Axiom of Constructibility: it is easy to see that if there exists a Helling cardinal then $P(\omega_1) \cap L$ is countable. By the method of Silver [9] one can obtain the existence of \mathcal{O}_κ provided that there exists a Helling cardinal.

In 1966 Helling [2] proved that every measurable cardinal is a Helling cardinal, and Silver [8] has shown the same for Ramsey cardinals. These results seem to imply that Helling cardinals are very large. In Section 2 there is given a sufficient condition for a cardinal to be a Helling cardinal. This condition is satisfied by — among others — real-valued measurable cardinals. Prkry’s result [6] entails that cardinals fulfilling our condition may be less than the continuum.

From the example of Fuhrken [1] we know that every Helling cardinal κ must be regular. If there is a limit (strongly limit) cardinal $\omega_1 < \lambda < \kappa$, then κ is weakly inaccessible — see Keisler [3]. From these remarks it is clear that every Helling cardinal which is larger than ω_1 must be weakly inaccessible. The question arises: can ω_1 be a Helling cardinal? A partial solution of this is given in Section 3.

In Section 4 we give an application of previous results to a language with a generalized quantifier (5).

(5) The results of this paper are contained in the doctoral dissertation prepared by the authoress under the guidance of Professor C. Ryll-Nardzewski at Wrocław University. See also [11].

(7) The Corollary from [11] is not stated here. I am indebted to Professor A. Mostowski, who pointed out a gap in that proof. If this theorem is still true, the proof will be published.