

02735.

Table des matières du tome LXXVI, fascicule 3

		Page
т	A. Chapman, On some applications of infinite-dimensional manifolds	
1	to the theory of shape	181-19
F.]	L. Marin, A note on E-compact spaces	195-20
w. :	Kulpa, On the existence of maps having graphs connected and dense	207-21
υ. ,	J. Christian, Concerning certain minimal cover refineable spaces	213-22
A. `	Wojciechowska, On Helling cardinals	223-23
R	A. Ald and L. I. Sennott, Collectionwise normality and the extension	
	of functions on product spaces	231-243
J.	Smital, On boundedness and discontinuity of additive functions	245-25
K	J. Devlin, Note on a theorem of J. Baumgartner	255-26
т	A. Chapman, Shapes of finite-dimensional compacta	261-27

Les FUNDAMENTA MATHEMATICAE publient, en langues des congrès internationaux, des travaux consacrés à la Théorie des Ensembles, Topologie, Fondements de Mathématiques, Fonctions Réelles, Algèbre Abstraite Chaque volume paraît en 3 fascicules

Adresse de la Rédaction et de l'Échange: FUNDAMENTA MATHEMATICAE, Śniadeckich 8, Warszawa 1 (Pologne)

Le prix de ce fascicule est 4.35 \$

Tous les volumes sont à obtenir par l'intermédiaire de ARS POLONA-RUCH, Krakowskie Przedmieście 7, Warszawa 1 (Pologne)

DRUKARNIA UNIWERSYTETU JAGIELLOŃSKIEGO W KRAKOWIE

On some applications of infinite-dimensional manifolds to the theory of shape (1)

bχ

T. A. Chapman (2) (Lexington, Ken.)

1. Introduction. In this paper we apply some recent results concerning the point-set topology of infinite-dimensional manifolds to the concept of "shape", as introduced by Borsuk in [5].

Let the Hilbert cube I^{∞} be represented by $\prod_{i=1}^{\infty} I_i$, where each I_i is the closed interval [-1,1], and let s denote $\prod_{i=1}^{\infty} I_i^0$, where each I_i^0 is the open interval (-1,1). We let S denote the category whose objects are compacta in s and whose morphisms are fundamental equivalence classes of fundamental sequences (in I^{∞}) between these compacta. (This constitutes a subcategory of the fundamental category introduced in [5].) We let P denote the category whose objects are subsets of I^{∞} , with complements in I^{∞} which are compacta in s, and whose morphisms are weak proper homotopy classes of proper maps (see Section 2 for a more precise definition).

The first result we establish enables us to translate problems concerning the shape of compacta to problems concerning contractible open subsets of I^{∞} .

THEOREM 1. There is a category isomorphism T from P onto S such that $T(X) = I^{\infty} \backslash X$, for each object X in P.

We also show that the shape of a compactum in s depends on (and determines) the homeomorphism type of its complement in I^{∞} .

THEOREM 2. If X and Y are compacta in s, then X and Y have the same shape (i.e. Sh(X) = Sh(Y)) iff $I^{\infty} \setminus X$ and $I^{\infty} \setminus Y$ are homeomorphic (\cong).

This result enables us to give a short proof of the following Corollary concerning fundamental absolute retracts (abbreviated FAR), as intro-

⁽¹⁾ Report ZN36/71, Department of Pure Mathematics, Mathematical Centre, Amsterdam.

⁽²⁾ Supported in part by NSF grant GP-14429.

^{13 -} Fundamenta Mathematicae T. LXXVI

duced in [6]. The Corollary is originally due to Hyman [11], who used different methods to prove it.

COROLLARY ([11]). If X is a FAR, then X is the intersection of a decreasing sequence of Hilbert cubes.

2. General preliminaries. Concerning the fundamental category S we will use the results and notation from [5] and [6].

Concerning the proper category P we define a map (i.e. a continuous function) $f\colon X{\to}Y$ to be *proper* iff for each compactum $B{\subset}Y$ there exists a compactum $A{\subset}X$ such that $f(X{\setminus}A) \cap B = \emptyset$. (This is just a reformulation of the usual notion of a proper map.) Then maps $f,g\colon X{\to}Y$ are said to be weakly properly homotopic iff for each compactum $B{\subset}Y$ there exists a compactum $A{\subset}X$ and a homotopy $F=\{F_t\}\colon X{\times}I{\to}Y$ (where I=[0,1]) such that $F_0=f,F_1=g$, and $F((X{\setminus}A){\times}I) \cap B=\emptyset$. (If, in fact, there exists a proper map $F\colon X{\times}I{\to}Y$ which satisfies $F_0=f$ and $F_1=g$, then we say that f and g are properly homotopic.) We write $f{\sim}g$ to indicate that f and g are weakly properly homotopic.

If $f: X \rightarrow Y$ and $g: Y \rightarrow X$ are proper maps such that $f \circ g \sim \operatorname{id}_Y$ (the identity on Y), then we say that X weakly properly homotopically dominates Y. If, additionally, $g \circ f \sim \operatorname{id}_X$, then we say that X and Y have the same weak proper homotopy type. If $f: X \rightarrow Y$ is a proper map, then we use $\{f\}$ to denote the class of proper maps of X into Y which are weakly properly homotopic to f.

It is easy to see that \sim is an equivalence relation on the class of proper maps from a space X to a space Y. It is also easy to see that if $f, f' \colon X \to Y$ and $g, g' \colon X \to Y$ are proper maps such that $f \sim f'$ and $g \sim g'$, then $g \circ f \sim g' \circ f'$. This verifies that the composition of the equivalence classes $\{f\}$ and $\{g\}$ can be well defined by $\{g \circ f\}$. Thus we can define a category P whose objects are subsets of I^{∞} , with complements in I^{∞} which are compacta in s, and whose morphisms are weak proper homotopy equivalence classes of proper maps.

3. Infinite-dimensional preliminaries. We will need the following definition, as introduced by Anderson in [1]. A closed set K in a space X is said to be a Z-set in X iff for each non-null, homotopically trivial open set U in X, $U\setminus K$ is non-null and homotopically trivial. From [1] we find that compacta in s are Z-sets in s and I^{∞} and compacta in $I^{\infty}\setminus s$ are Z-sets in I^{∞} . More generally it is easy to see that if K is a Z-set in a space X and U is open in X, then $U \cap K$ is a Z-set in U.

We will need the notion of a Q-manifold, which is a separable metric space which has an open cover by sets homeomorphic to open subsets of I^{∞} . In [2] it is shown that if X is a Q-manifold, then $X \times I^{\infty} \cong X$. Thus for each Q-manifold X we have $X \cong X \times [0, 1]$. From [9] it follows that if X is a Q-manifold, $U \subset X$ is open, and $X \subset U$ is a Z-set in U

which is closed in X, then K is also a Z-set in X. This fact will be used in the proof of Theorem 2. The following results on Q-manifolds are also established in [9].

LEMMA 3.1. If X is any Q-manifold, then there is a locally-compact polyhedron P such that $X \times [0,1) \cong P \times I^{\infty}$.

LEMMA 3.2. If X is a Q-manifold, P is a locally-compact polyhedron, and $\varphi \colon P \to X$ is a closed embedding such that $\varphi(P)$ is a Z-set in X, then there exists a closed embedding $h \colon P \times I^{\infty} \to X$ such that $h(x, (0, 0, ...)) = \varphi(x)$, for all $x \in P$, and $\operatorname{Bd}(h(P \times I^{\infty})) = h(P \times W^+)$.

(For the representation $I^{\infty}=\prod_{i=1}^{\infty}I_{i}$ as given in Section 1 we use the notation $W^{+}=\{(x_{i}) \in I^{\infty}|\ x_{1}=1\}$ and $W^{-}=\{(x_{i}) \in I^{\infty}|\ x_{1}=-1\}$. We also use Bd for the topological boundary operator.)

Let X and Y be spaces and let $\mathfrak A$ be an open cover of Y. Then functions $f,g\colon X\to Y$ are said to be $\mathfrak A$ -close provided that for each $x\in X$ there exists a $U\in\mathfrak A$ such that $f(x),g(x)\in U$. A function $F\colon X\times I\to Y$ is said to be limited by $\mathfrak A$ provided that for each $x\in X$ there exists a $U\in\mathfrak A$ such that $F(\{x\}\times I)\subset U$.

If X is a metric space and $K \subset X$ is closed, then from [3] there exists an open cover \mathfrak{A} of $X \setminus K$ such that if $h \colon X \setminus K \to X \setminus K$ is any homeomorphism which is \mathfrak{A} -close to $\mathrm{id}_{X \mid K}$, then h can be extended to a homeomorphism $\widetilde{h} \colon X \to X$ which satisfies $\widetilde{h} \mid K = \mathrm{id}_K$. Such a cover of $X \setminus K$ will be called normal (with respect to K).

We will need the following mapping replacement result which appears in [4].

LEMMA 3.3. Let X be a Q-manifold, U be an open cover of X, A be a closed subset of a locally-compact separable metric space Y, and let $f: Y \to X$ be a proper map such that f|A is a homeomorphism of A onto a Z-set in X. Then there exists an embedding $g: Y \to X$ such that g(Y) is a Z-set, g|A = f|A, and g is U-close to f.

We will also need the following version of Lemma 3.3 for Q-manifolds X which are [0,1)-stable (i.e. $X\cong X\times [0,1)$). The proof is given in [4].

LEMMA 3.4. Let X be a Q-manifold which satisfies $X \cong X \times [0, 1)$, A be a closed subset of a locally-compact separable metric space Y, and let $f \colon Y \to X$ be a map such that $f \mid A$ is a homeomorphism of A onto a Z-set in X. Then there exists an embedding $g \colon Y \to X$ such that g(Y) is a Z-set in X, $g \mid A = f \mid A$, and $g \simeq f$ (i.e. g is homotopic to f).

(Note that if X is any Q-manifold, then

$$(X \times [0,1)) \times [0,1) \cong (X \times [0,1]) \times [0,1) \cong X \times [0,1).$$

We will also need the following homeomorphism extension theorem which is established in [4]. For its statement we will need the following notation: if $\mathfrak U$ is a cover of a set X, then $\operatorname{St}^0(\mathfrak U)=\mathfrak U$ and $\operatorname{St}^{n+1}(\mathfrak U)$ consists of all sets of the form $\bigcup \{U \in \mathfrak U | U \cap K \neq \emptyset\}$, where K runs through $\operatorname{St}^n(\mathfrak U)$.

LEMMA 3.5. Let X be a Q-manifold, $\mathbb Q$ be an open cover of X, A be a locally-compact separable metric space, and let $f,g\colon A\to X$ be closed embeddings such that f(A) and g(A) are Z-sets in X and such that there exists a proper homotopy $F\colon A\times I\to X$ which is limited by $\mathbb Q$ and which satisfies $F_0=f$, $F_1=g$. Then there exists a homeomorphism $h\colon X\to X$ which satisfies $h\circ f=g$ and which is $\mathrm{St}^4(\mathbb Q)$ -close to id_X .

We now combine these results to prove the following lemma which will be needed in Section 5.

LEMMA 3.6. Let X and Y be Q-manifolds such that $X\cong X\times [0\,,1)$ and let $f\colon\thinspace X{\to}Y$ be any continuous function. Then there exists an open embedding $g\colon\thinspace X{\to}Y$ which satisfies $g\simeq f$.

Proof. Let $h: Y \rightarrow Y \times [0,1]$ be any homeomorphism. It is clear that $h \circ f$ is homotopic to a continuous function $f': X \rightarrow Y \times [0,1)$. Let $Y' = h^{-1}(Y \times [0,1))$ (which is an open subset of Y) and define $f'' = h^{-1} \circ f'$, which is a continuous function of X into Y' which is homotopic to f. Note also that $Y' \cong Y' \times [0,1)$.

We know that $X\cong P\times I^{\infty}$, for some locally-compact polyhedron P. Thus without loss of generality assume that $X=P\times I^{\infty}$. Using Lemma 3.4 there exists an embedding $\varphi\colon P\times \{(0,0,\ldots)\}\to Y'$ such that $\varphi(P\times \{(0,0,\ldots)\})$ is a Z-set and $\varphi\simeq f''|P\times \{(0,0,\ldots)\}$. Using Lemma 3.2 there exists an open embedding $g\colon P\times (I^{\infty}\backslash W^+)\to Y'$ such that $g(x,(0,0,\ldots))=\varphi(x,(0,0,\ldots))$, for all $x\in P$. Let $r\colon P\times (I^{\infty}\backslash W^+)\to P\times \{(0,0,\ldots)\}$ be the retraction which satisfies $r(x,t)=(x,(0,0,\ldots))$, for all $(x,t)\in P\times (I^{\infty}\backslash W^+)$. Then we observe that $r\simeq \mathrm{id}_{P\times (I^{\infty}\backslash W^+)}$. We thus have

$$g = g \circ \operatorname{id} \simeq g \circ r = \varphi \circ r \simeq (f''|P \times \{(0, 0, \ldots)\}) \circ r = f'' \circ r \simeq f'' \circ \operatorname{id} = f''.$$

We will also need the following result.

LEMMA 3.7. Let X be a Q-manifold and let $K \subset X$ be a Z-set. Then there exists an open set $U \subset X$ such that $K \subset U$ and $U \cong U \times [0,1)$.

Proof. From [8] it follows that there exists a homeomorphism $h\colon X\to X\times [0,1]$ such that $h(K)\subset X\times \{\frac{1}{2}\}$. Then $U=h^{-1}(X\times [0,1])$ fulfills our requirements.

A subset K of a space X is said to be *bicollared* provided that there exists an open embedding $h: K \times (-1,1) \to X$ such that h(x,0) = x, for all $x \in K$. We will need the following result, which appears in [12].

LEMMA 3.8. Let $f: I^{\infty} \to I^{\infty}$ be an embedding such that $f(I^{\infty})$ is bicollared. Then $I^{\infty} \setminus f(I^{\infty}) = A \cup B$, where A and B are disjoint sets such that $\mathrm{Cl}(A) \cap \mathrm{Cl}(B) = f(I^{\infty})$ and $\mathrm{Cl}(A) \cong \mathrm{Cl}(B) \cong I^{\infty}$, where Cl denotes closure.

(Note that $f(I^{\infty})$ is a Z-set in each of Cl(A) and Cl(B).)

4. Proof of Theorem 1. We will need the following result in the proof of Theorem 1.

LEMMA 4.1. If $X \subset I^{\infty}$ is a Z-set, then there exists a homotopy $F \colon I^{\infty} \times I \to I^{\infty}$ which satisfies the following properties:

- (1) $F_0 = \mathrm{id}$,
- (2) for each open neighborhood U of X there exists a $t_1 \in (0,1)$ such that $F_t(U) \subset U$, for $0 \leqslant t \leqslant t_1$,
- (3) $F_t(I^{\infty}) \cap X = \emptyset$, for all $t \in (0, 1]$.

Proof. Using Lemma 3.5 we can assume that $X \subset W^+$. Then the construction of F is straightforward.

We will use the notation F(X) to denote the class of homotopies $F: I^{\infty} \times I \rightarrow I^{\infty}$ as described in Lemma 4.1.

We now construct an isomorphism T from P onto S. As indicated in the statement of Theorem 1 we let $T(X) = I^{\infty} \backslash X$, for each X in P. We now show how T assigns morphisms.

Let $\{f\}: X \to Y$ be a morphism in P, choose any $F \in F(I^{\infty} \setminus X)$, and for each integer k > 0 let $f_k = f \circ F_{1/k}$. We show that $f = \{f_k, F^{\infty} \setminus X, F^{\infty} \setminus Y\}$ is a fundamental sequence. To see this let $V \subset I^{\infty}$ be an open neighborhood of $I^{\infty} \setminus Y$ and use the fact that f is proper to choose an open neighborhood $U \subset I^{\infty}$ of $I^{\infty} \setminus X$ which satisfies $f(U \cap X) \subset V$. Now choose $t_1 \in (0, 1)$ such that $F_t(U) \subset U$, for $0 \leqslant t \leqslant t_1$. If k, l are positive integers such that $1/k, 1/l \leqslant t_1$, then $f_k \mid U = f \circ F_{1/k} \mid U \simeq f \circ F_{1/l} \mid U$ (in V) = $f_l \mid U$, as we wanted. Thus f is a fundamental sequence.

To see that f is uniquely defined in terms of F choose $F' \in F(I^{\infty}\backslash X)$ and let $f' = \{f \circ F_{1/k}, I^{\infty}\backslash X, I^{\infty}\backslash Y\}$ be similarly defined. We show that $f \simeq f'$. Let $V \subset I^{\infty}$ be an open neighborhood of $I^{\infty}\backslash X$ and choose $U \subset I^{\infty}$ an open neighborhood of $I^{\infty}\backslash X$ satisfying $f(U \cap X) \subset V$. Choose $t_1 \in (0,1)$ such that $F_t(U) \subset U$ and $F'_t(U) \subset U$, for $0 \leqslant t \leqslant t_1$. If k is a positive integer satisfying $1/k \leqslant t_1$ we clearly have $F_{1/k}|U \simeq F'_{1/k}|U$ (in U), with the image of the homotopy possibly intersecting $I^{\infty}\backslash X$. If this is the case we cannot use f to transfer this homotopy to one joining $f \circ F_{1/k}|U$ to $f \circ F'_{1/k}|U$.

To remedy this let $G\colon U\times I\to U$ be a homotopy which satisfies $G_0=F_{1/k}|U,\ G_1=F_{1/k}'|U,\$ and let $H\colon U\times I\to U$ be defined by $H_t=F_{t(1-t)}\circ G_t.$ We note that $H_0=F_{1/k}|U,\ H_1=F_{1/k}'|U,\$ and for 0< t<1 we have $H_t(U)=F_{t(1-t)}(G_t(U))\subset F_{t(1-t)}(U)\subset U\cap X.$ Thus $f\circ H_t$ defines

a homotopy which joins $f \circ F_{1/k} | U$ to $f \circ F'_{1/k} | U$. This means that $f \simeq f'$.

This gives a means of assigning to each proper map $f\colon X\to Y$ (where $I^\infty\backslash Y$ and $I^\infty\backslash X$ are compacta in s) a fundamental sequence f from $I^\infty\backslash X$ to $I^\infty\backslash Y$. In order to see that this assignment depends only on the weak proper homotopy class of f assume that $g\colon X\to Y$ is proper and $f\sim g$. We wish to show that if $F\in F(I^\infty\backslash X)$, $f=\{f\circ F_{1/k},\ I^\infty\backslash X,\ I^\infty\backslash Y\}$, $g=\{g\circ F_{1/k},\ I^\infty\backslash X,\ I^\infty\backslash Y\}$, then $f\simeq g$. To see this let $V\subset I^\infty$ be an open neighborhood of $I^\infty\backslash Y$ and choose a compact set $A\subset X$ and a homotopy $G\colon X\times I\to Y$ such that $G_0=f,\ G_1=g,\ \text{and}\ G((U\cap X)\times I)\subset V,\ \text{where}\ U=I^\infty\backslash A$. Let $t_1\in (0,1)$ be chosen so that $F_t(U)\subset U,\ \text{for}\ 0\leqslant t\leqslant t_1.$ Then for each positive integer k satisfying $1/k\leqslant t_1$ we find that $G_t\circ F_{1/k}|U$ gives a homotopy (in V) which joins $f\circ F_{1/k}|U$ to $g\circ F_{1/k}|U$ (in V), as we needed.

Thus to each morphism $\{f\}: X \to Y \text{ in } P \text{ we have shown how to assign a unique morphism } [\underline{f}]: I^{\infty}\backslash X \to I^{\infty}\backslash Y \text{ in } S, \text{ and we write } T(\{f\}) = [f].$ We now demonstrate that T is a functor and it is an isomorphism from P onto S. To show that $T(\text{id}) = \text{id choose an object } X \text{ in } P \text{ and } F \in F(I^{\infty}\backslash X),$ and let $\underline{f} = \{F_{1/k}, I^{\infty}\backslash X, I^{\infty}\backslash X\}.$ We must show that $\underline{f} \simeq i$, the identity fundamental sequence on $I^{\infty}\backslash X$. Choose an open set \overline{U} containing $I^{\infty}\backslash X$ and $t_1 \in (0,1)$ such that $F_t(U) \subset U$, for $0 \leqslant t \leqslant t_1$. Clearly $F_{1/k}|U \simeq \text{id}_{I^{\infty}}|U$ (in U), for all positive integers k satisfying $1/k \leqslant t_1$.

To show that T preserves compositions choose morphisms $\{f\}: X \to Y$ and $\{g\}: Y \to Z$ in P and choose $F \in F(I^{\infty} \backslash X)$, $G \in F(I^{\infty} \backslash Y)$. We must show that $\{g \circ f \circ F_{1/k}, I^{\infty} \backslash X, I^{\infty} \backslash Z\} \simeq \{g \circ G_{1/k} \circ f \circ F_{1/k}, I^{\infty} \backslash X, I^{\infty} \backslash Z\}$.

Choose open neighborhoods $U \subset I^{\infty}$ of $I^{\infty} \setminus X$, $V \subset I^{\infty}$ of $I^{\infty} \setminus Y$, and $W \subset I^{\infty}$ of $I^{\infty} \setminus Z$ such that $f(U \cap X) \subset V$ and $g(V \cap Y) \subset W$. Also choose $t_1 \in (0,1)$ such that $F_t(U) \subset U$ and $G_t(V) \subset V$, for $0 \leqslant t \leqslant t_1$. Then for each positive k satisfying $1/k \leqslant t_1$ we have $g \circ G_{1/k} \circ f \circ F_{1/k} \mid U \simeq g \circ f \circ F_{1/k} \mid U$ (in W).

To show that T is an isomorphism we show first that if $\{f\}: X \rightarrow Y$ and $\{g\}: X \rightarrow Y$ are morphisms in P such that $T(\{f\}) = T(\{g\})$, then $\{f\} = \{g\}$. Choose $F \in F(I^{\infty} \backslash X)$ and note that $\{f \circ F_{1/k}, I^{\infty} \backslash X, I^{\infty} \backslash Y\}$ $\cong \{g \circ F_{1/k}, I^{\infty} \backslash X, I^{\infty} \backslash Y\}$. Choose $B \subset Y$ a compact set and put $V = I^{\infty} \backslash B$. Then there exists an open neighborhood $U \subset I^{\infty}$ of $I^{\infty} \backslash X$ and an integer $n_1 > 0$ such that $k \geqslant n_1$ implies that $f \circ F_{1/k} | U \simeq g \circ F_{1/k} | U$ (in V) and $t \leqslant 1/n_1$ implies that $F_t(U) \subset U$. Clearly $f | U \cap X \simeq f \circ F_{1/k} | U \cap X$ (in V), for each $k \geqslant n_1$. Similarly $g | U \cap X \simeq g \circ F_{1/k} | U \cap X$, hence $f | U \cap X \simeq g | U \cap X$ (in V).

Choose an open neighborhood $U' \subset I^{\infty}$ of $I^{\infty} \setminus X$ such that $\operatorname{Cl}(U') \subset U$ and use the above remarks to obtain a homotopy $G \colon (\operatorname{Cl}(U') \cap X) \times I \to V$ which satisfies $G_0 = f \mid \operatorname{Cl}(U') \cap X$ and $G_1 = g \mid \operatorname{Cl}(U') \cap X$. Let $A = (\operatorname{Cl}(U') \cap X) \times I \cup ((X \setminus \operatorname{Cl}(U')) \times \{0, 1\}$, which is a closed subset of

 $X \times I$, and let $\alpha: A \to I^{\infty}$ be defined by $\alpha | (\operatorname{Cl}(U') \cap X) \times I = G$, $\alpha(x, 0) = f(x)$, and $\alpha(x, 1) = g(x)$, for all $x \in X \setminus \operatorname{Cl}(U')$. Extend α to a continuous function $\beta: X \times I \to I^{\infty}$. Then for $t \in I$ let $\gamma_t = F_{t(1-t)} \circ \beta_t$. We see that $\gamma: X \times I \to Y$ is a continuous function which satisfies $\gamma_0 = f$, $\gamma_1 = g$, and $\gamma(\operatorname{Cl}(U') \times I) \subset V$. This implies that $f \sim g$.

Now choose a morphism $[f]: X \to Y$ in S. We must show that there exists a morphism $\{f\}: I^{\infty}\backslash X \to I^{\infty}\backslash Y$ in P such that $T(\{f\}) = [f]$. Using techniques like those used above we can choose a representative $f = \{f_k, X, Y\}$ from the class [f] such that $f_k(I^{\infty}) \cap Y = \emptyset$, for all k > 0. Choose a sequence $\{U_i\}_{i=1}^{\infty}$ of open sets in I^{∞} such that $X = \bigcap_{i=1}^{\infty} U_i$ and $U_i \supset \operatorname{Cl}(U_{i+1})$, for all i > 0. Also choose a sequence $\{V_i\}_{i=1}^{\infty}$ of open subsets of I^{∞} such that $Y = \bigcap_{i=1}^{\infty} V_i$. We can pick a sequence $\{n_i\}_{i=1}^{\infty}$ of positive integers such that $n_1 < n_2 < \dots$ and for each $i \ge 0$ and $k, l \ge n_i$, we have $f_k|\operatorname{Cl}(U_{n_i}) \simeq f_l|\operatorname{Cl}(U_{n_i})$ (in V_i).

Let $\varphi_i\colon I^{\infty}\to [0,1]$ be a continuous function such that $\varphi_i(x)=0$, for $x\in I^{\infty}\setminus U_{n_i}$, and $\varphi_i(x)=1$, for $x\in \mathrm{Cl}(U_{n_{i+1}})$. Let $F^i\colon \mathrm{Cl}(U_{n_i})\times I\to V_i$ be a homotopy such that $F^i_0=f_{n_i}|\mathrm{Cl}(U_{n_i})$ and $F^i_1=f_{n_{i+1}}|\mathrm{Cl}(U_{n_i})$. Using tricks similar to those already employed we can additionally require that $F^i(\mathrm{Cl}(U_{n_i})\times I)\cap Y=\emptyset$, for all i>0. Then define $f\colon I^{\infty}\setminus X\to I^{\infty}\setminus Y$ by $f(x)=f_{n_1}(x)$, for $x\in I^{\infty}\setminus U_{n_i}$, and $f(x)=F^i_{\varphi_i(x)}(x)$, for $x\in \mathrm{Cl}(U_{n_i})\setminus U_{n_{i+1}}$. It then follows that f is a proper map. It remains to be shown that $T(\{f\})=[f]$.

To see this choose $F \in F(X)$ and note that $T(\{f\}) = [\{f \circ F_{1/k}, X, Y\}]$. Thus we must show that $f \simeq \{f \circ F_{1/k}, X, Y\}$. If V is an open neighborhood of Y, then we can choose i and $n \geqslant n_i$ such that $k, l \geqslant n_i$ implies that $f_k | U_{n_i} \simeq f_l | U_{n_i}$ (in V) and such that $0 \leqslant t \leqslant 1/n$ implies that $F_t(U_{n_l}) \subset U_{n_l}$. If we can show that $k \geqslant n$ implies that $f_k | U_{n_l} \simeq f \circ F_{1/k} | U_{n_l}$ (in V), then we will be done. For such a fixed $k \geqslant n$ we have $F_{1/k}(U_{n_l}) \subset \operatorname{Cl}(U_{n_l}) \setminus U_{n_l}$, for some j > i. We can now use a finite induction to conclude that $f | F_{1/k}(U_{n_l}) \simeq f_{n_l} | F_{1/k}(U_{n_l})$ (in V). In order to see the induction define functions g_l : $\operatorname{Cl}(U_{n_l}) \setminus U_{n_l} \to V$, for $i \leqslant l \leqslant j$, as follows:

$$g_l = \begin{cases} f, & \text{on } \operatorname{Cl}(U_{n_l}) \backslash U_{n_l}, \\ f_{n_l}, & \text{on } \operatorname{Cl}(U_{n_l}) \backslash U_{n_l}. \end{cases}$$

Note that $g_i = f_{n_i} | \operatorname{Cl}(U_{n_i}) \setminus U_{n_j}$ and $g_j = f | \operatorname{Cl}(U_{n_i}) \setminus U_{n_j}$. Thus all we need do is prove that $g_i \simeq g_{l+1}$ (in V), for $i \leqslant l \leqslant j-1$. To this end note that

$$g_{l+1}(x) = \begin{cases} f(x) , & x \in \mathrm{Cl}(U_{nl}) \backslash U_{nl}, \\ F_{\varphi_{i}(x)}^{l}(x) , & x \in \mathrm{Cl}(U_{nl}) \backslash U_{nj}. \end{cases}$$

Define h: $(C1(U_{n_i})\setminus U_{n_i})\times I\to V$ by

$$h_l(x) = egin{cases} f(x) \ , & x \in \operatorname{Cl}(U_{n_l}) ackslash U_{n_l} \ , \ F^l_{l_{\mathcal{O}_l}(x)}(x) \ , & x \in \operatorname{Cl}(U_{n_l}) ackslash U_{n_l} \ . \end{cases}$$

Then it easily follows that $h_0 = g_l$ and $h_1 = g_{l+1}$. Hence $f \circ F_{1/k} | U_{n_l} \simeq f_k \circ F_{1/k} | U_{n_l}$ (in V) $\simeq f_k | U_{n_l}$ (in V), and we are done.

- 5. Relative fundamental sequences. We will need to define a relative notion of a fundamental sequence. Let A and B be subsets of a space X. Then a relative fundamental sequence f from A to B in X consists of an open set G containing A and a sequence $\{f_k\}_{k=1}^{\infty}$ of continuous functions, f_k : $G \to X$, such that the following properties are satisfied.
- (1) f_k is homotopic to the inclusion map of G into X, for all $k \ge 1$ (we will incorrectly write this as $f_k \simeq \mathrm{id}_G$),
- (2) for each open neighborhood V of B there exists an open neighborhood $U \subset G$ of A and an integer $n_1 > 0$ such that if $k, l \ge n_1$ are integers, then $f_k | U \simeq f_l | U$ (in V).

If $X = I^{\infty}$ and $\underline{f} = \{f_k, A, B\}$ is a fundamental sequence, then it is clear that $\{f_k | G, A, B, G\}$ is a relative fundamental sequence, for each open neighborhood G of A. If A, B, G are subsets of X and $\{f_k, A, B, G\}$, $\{g_k, B, C, H\}$ are relative fundamental sequences, then there exists an integer $n_1 > 0$ and an open set G' satisfying $A \subset G' \subset G$ such that $\{g_k \circ f_k | G', A, C, G'\}_{k=n_1}^{\infty}$ is a relative fundamental sequence. We will agree to identify relative fundamental sequences $\{f_k, A, B, G\}$ and $\{g_k, A, B, H\}$ provided that there exists an open neighborhood $G' \subset G \cap H$ of A such that $f_k | G' = g_k | G'$, for all but finitely many values of k. Thus composition is well defined.

If $\underline{f} = \{f_k, A, B, G\}$ and $\underline{g} = \{g_k, A, B, H\}$ are relative fundamental sequences then we write $\underline{f} \simeq \underline{g}$ iff for each open neighborhood V of B there exists an open neighborhood $U \subset G \cap H$ of A and an integer $n_1 > 0$ such that $f_k | U \simeq g_k | U$ (in V), for all integers $k \geqslant n_1$. In analogy with [5] we say that A relatively fundamentally dominates B (in X) iff there exist relative fundamental sequences $\underline{f} = \{f_k, A, B, G\}$ and $\underline{g} = \{g_k, B, A, H\}$ such that $\underline{f} \circ \underline{g} \simeq \underline{i}_B$, i.e. for each open neighborhood V of B there exists an open neighborhood $U \subset V \cap H$ of B and an integer $n_1 > 0$ such that $k \geqslant n_1$ implies that U is in the domain of $f_k \circ g_k$ and $f_k \circ g_k | U \simeq \mathrm{id}_U$ (in V). In like manner we can also define what is meant by relative fundamental equivalence.

We now establish a result which plays a key role in the inductive step in the proof of Theorem 2. We do it in two steps.

Proof. Choose relative fundamental sequences $f = \{f_k, A, B, G\}$ and $g = \{g_k, B, A, H\}$ such that $f \circ g \simeq i_B$. Choose an integer $n_1 > 0$ and an open set U such that $A \subset \overline{U} \subset G$, $f_k(U) \subset H \cap W$, and $f_k|U \simeq f_l|U$ (in $H \cap W$), for all $k, l \geqslant n_1$. Using Lemma 3.7 we may assume that $U \cong U \times [0, 1)$. Now apply Lemma 3.6 to get an open embedding $\Phi: U \to W$ such that $\Phi \simeq f_{n_1}|U$ (in W). We can find an open neighborhood $V \subset H \cap W$ of B and an integer $n_2 \geqslant n_1$ such that $g_k(V) \subset U$, for all $k \geqslant n_2$, $g_k|V \simeq g_l|V$ (in U), for all $k, l \geqslant n_2$, and $f_k \circ g_k|V \simeq \mathrm{id}_V$ (in $H \cap W$), for all $k \geqslant n_2$. Now let $\varphi = \Phi|A$, $G' = \Phi(U)$, H' = V, $f'_k = f_k \circ \Phi^{-1}$, and $g'_k = \Phi \circ g_k|V$, for all $k \geqslant n_2$.

To see that $f'=\{f'_k, \varphi(A), B, G'\}$ is a relative fundamental sequence in W first note that for each $k\geqslant n_2$ we have $f'_k=f_k\circ \Phi^{-1}\simeq f_{n_1}\circ \Phi^{-1}$ (in $W)\simeq \Phi\circ \Phi^{-1}$ (in $W)=\mathrm{id}_{G'}$. Now let $V'\subset W$ be an open neighborhood of B and choose an open neighborhood $U'\subset U$ of A and an integer $n_3\geqslant n_2$ such that $f_k|U'\simeq f_l|U'$ (in V'), for all $k,l\geqslant n_3$. Then $\Phi(U')$ is an open set in W containing $\varphi(A)$ such that $f'_k|\Phi(U')\simeq f'_l|\Phi(U')$ (in V'), for all $k,l\geqslant n_3$.

To see that $g'=\{g'_k,B,\varphi(A),H'\}$ is a relative fundamental sequence in W we have $\overline{g'_k}=\Phi\circ(g_k|V)\simeq f_k\circ(g_k|V)$ (in $W)\simeq \mathrm{id}_V$ (in W), for all $k\geqslant n_2$. Now let U' be an open set in W containing $\varphi(A)$ and choose an integer $n_3\geqslant n_2$ and an open set $V'\subset V$ containing B such that $g_k(V')\subset \Phi^{-1}(U'\cap\Phi(U))$, for all $k\geqslant n_3$, and $g_k|V'\simeq g_l|V'$ (in $\Phi^{-1}(U'\cap\Phi(U))$), for all $k,l\geqslant n_3$. Then it follows that $g'_k|V'\simeq g'_l|V'$ (in U'), for all $k,l\geqslant n_3$.

To see that $f' \circ g' \simeq i_B$ choose an open neighborhood $V' \subset W$ of B. Now choose an open neighborhood $V'' \subset V' \cap V$ of B and an integer $n_3 \geqslant n_2$ such that $f_k \circ g_k | V'' \simeq \mathrm{id}_{V''}$ (in V'), for all $k \geqslant n_3$. Then it easily follows that $f_k' \circ g_k' | V'' \simeq \mathrm{id}_{V''}$ (in V'), for all $k \geqslant n_3$. Thus $\varphi(A)$ relatively fundamentally dominates B in W. It is clear that $\varphi = \mathcal{P}|A \simeq f_{n_1}|A \simeq \mathrm{id}_A$ and it follows from the remarks proceeding Lemma 3.1 that $\varphi(A)$ is a Z-set in X. Using a similar argument we can establish the following result.

LEMMA 5.2. Let X be a Q-manifold and let A, B be compact Z-sets in X such that A and B are relatively fundamentally equivalent in X. If W is an open subset of X containing B, then there exists an embedding $\varphi \colon A \to W$ such that $\varphi(A)$ is a Z-set, $\varphi \simeq \mathrm{id}_A$, and $\varphi(A)$ is relatively fundamentally equivalent to B (in W).

6. Proof of Theorem 2. We note that if $I^{\infty}\backslash X \cong I^{\infty}\backslash Y$, then $I^{\infty}\backslash X$ has the same weak proper homotopy type as $I^{\infty}\backslash Y$, and we can thus use Theorem 1 to conclude that Sh(X) = Sh(Y).

On the other hand assume that $\mathrm{Sh}(X)=\mathrm{Sh}(Y)$, where X and Y are compacta in s. We will inductively construct sequences $\{U_i\}_{i=1}^\infty$ and $\{V_i\}_{i=1}^\infty$ of open subsets of I^∞ and a sequence $\{h_i\}_{i=1}^\infty$ of homeomorphisms of I^∞ onto itself such that the following properties are satisfied.

(1)
$$X = \bigcap_{i=1}^{\infty} U_i$$
 and $U_{i+1} \subset U_i$, for all $i > 0$,

(2)
$$Y = \bigcap_{i=1}^{\infty} V_i$$
 and $V_{i+1} \subset V_i$, for all $i > 0$,

(3)
$$h_{2i-1} \circ \dots \circ h_1(X) \subset V_i, \quad \text{for all } i > 0,$$

(4)
$$h_j | I^{\infty} \setminus V_i = id$$
, for all $j > 2i-1$,

(5)
$$h_{2i} \circ \dots \circ h_1(U_i) \supset Y$$
, for all $i > 0$,

(6)
$$h_j|I_{-1}^{\infty}\backslash h_{2i}\circ...\circ h_1(U_i)=\mathrm{id},\quad \text{ for all }j>2i.$$

Before proceeding with the construction of these sequences we will show how to use them to construct our desired homeomorphism of $I^{\infty}\backslash X$ onto $I^{\infty}\backslash Y$.

For each $x \in I^{\infty} \setminus X$ we have $x \in U_i$, for some i > 0. Thus $h_{2i} \circ \ldots \circ h_1(x)$ $\in h_{2i} \circ \ldots \circ h_1(U_i)$ and we therefore have $h_j \circ \ldots \circ h_1(x) = h_{2i} \circ \ldots \circ h_1(x)$, for all j > 2i. This means that $h(x) = \lim_{j \to \infty} h_j \circ \ldots \circ h_1(x)$ is defined, for all $x \in I^{\infty} \setminus X$. It follows from (5) above that $h(x) \in I^{\infty} \setminus Y$. Thus we have defined a function $h: I^{\infty} \setminus X \to I^{\infty} \setminus Y$. To prove that h is onto choose $y \in I^{\infty} \setminus Y$ and choose an integer i > 0 such that $y \notin V_i$. By (4) above we have $h_j(y) = y$, for all j > 2i - 1. Put $x = (h_{2i-1} \circ \ldots \circ h_1)^{-1}(y)$ and note that (3) implies that $x \in I^{\infty} \setminus X$. Thus $h(x) = \lim_{j \to \infty} h_j \circ \ldots \circ h_1(x) = h_{2i-1} \circ \ldots \circ h_1(x) = y$, which implies that h is onto. To prove that h is one-to-one

... $\circ h_1(x) = y$, which implies that h is onto. To prove that h is one-to-one choose $x_1, x_2 \in I^{\infty} \backslash X$ such that $x_1 \neq x_2$ and an integer i > 0 such that $x_1, x_2 \in I^{\infty} \backslash U_i$. Thus $h_{2i} \circ \ldots \circ h_1(x_1)$, $h_{2i} \circ \ldots \circ h_1(x_2) \in I^{\infty} \backslash h_{2i} \circ \ldots \circ h_1(U_i)$. By (6) we have $h_j(h_{2i} \circ \ldots \circ h_1(x_1)) = h_{2i} \circ \ldots \circ h_1(x_1)$ and $h_j(h_{2i} \circ \ldots \circ h_1(x_2)) = h_{2i} \circ \ldots \circ h_1(x_2)$, for all j > 2i. Thus $h(x_1) = h_{2i} \circ \ldots \circ h_1(x_1)$ and $h(x_2) = h_{2i} \circ \ldots \circ h_1(x_2)$. Since $h_{2i} \circ \ldots \circ h_1$ is one-to-one we have $h(x_1) \neq h(x_2)$, as we needed. To prove that h is continuous choose $y \in I^{\infty} \backslash Y$ and an open neighborhood $V \subset I^{\infty}$ of y. Then there exists an open neighborhood $V \subset I^{\infty}$ of y. Then there exists an open neighborhood $V \subset I^{\infty} \cap I$ is continuous this implies that $h^{-1}(V') = (h_{2i-1} \circ \ldots \circ h_1)^{-1}(V')$. Since $h_{2i-1} \circ \ldots \circ h_1$ is continuous this implies that $h^{-1}(V') = (h_{2i-1} \circ \ldots \circ h_1)^{-1}(V')$. Since $h_{2i-1} \circ \ldots \circ h_1$ is continuous this implies that $h^{-1}(V') = (h_{2i-1} \circ \ldots \circ h_1)^{-1}(V')$. Since $h_{2i-1} \circ \ldots \circ h_1$ is continuous this implies that $h^{-1}(V') = (h_{2i-1} \circ \ldots \circ h_1)^{-1}(V')$. Since $h_{2i-1} \circ \ldots \circ h_1$ is a homeomorphism of $I^{\infty} \backslash X$ onto $I^{\infty} \backslash Y$.

- (i) $h_{2i-1} \circ \dots \circ h_1(U'_{ai}) \subset V'_{bi}$, for $1 \leqslant i \leqslant n$,
- (ii) $h_i | I^{\infty} \setminus V'_{b_i} = id$, for $1 \le i \le n$ and $2i-1 < j \le 2n$,
- (iii) $h_{2i} \circ \dots \circ h_1(U'_{ai}) \supset V'_{bi+1}$, for $1 \leqslant i < n$,
- (iv) $h_j | I^{\infty} \setminus h_2 | \cdots \cap h_1(U'_{a_i}) = id$, for $1 \leq i \leq n$ and $2i < j \leq 2n$,
- (∇) $h_{2n} \circ \ldots \circ h_1(X)$ is relatively fundamentally equivalent to Y $(\text{in } h_{2n} \circ \ldots \circ h_1(U'_{an})).$

We first show that there exist positive integers a_1 , b_1 and homeomorphisms h_1 , h_2 of I^{∞} onto itself such that $(\{a_1\}, \{b_1\}, \{h_i\}_{i=1}^2)$ satisfies property P_1 . Choose $b_1 = 1$ and use Lemma 5.2 to get an embedding $f_1: X \to V'_{b_1}$ such that $f_1(X)$ is a Z-set in V'_{b_1} and $f_1(X)$ is relatively fundamentally equivalent to Y (in V'_{b_1}). Then extend f_1 to a homeomorphism $h_1: I^{\infty} \to I^{\infty}$. Choose a_1 to be a positive integer large enough so that $U'_{a_1} \subset h_1^{-1}(V'_{b_1})$. Once more using Lemma 5.2 let $f_2: X \to h_1(U'_{a_1})$ be an embedding such that $f_2 \simeq \operatorname{id}_Y$ (in V'_{b_1}), $f_2(Y)$ is a Z-set in V'_{b_1} , and $f_2(Y)$ is relatively fundamentally equivalent to $h_1(X)$ (in $h_1(U'_{a_1})$). Since $f_2 \simeq \operatorname{id}_Y$ (in V'_{b_1}) we can extend f_2 to a homeomorphism $f'_2: V'_{b_1} \to V'_{b_1}$ which in turn can be extended to a homeomorphism $f''_2: I^{\infty} \to I^{\infty}$ which satisfies $f''_2|I^{\infty} \setminus V'_{b_1} = \operatorname{id}$. The construction of f'_2 requires an application of Lemma 3.5, where f''_2 is limited by an open cover of V'_{b_1} which is normal with respect to $I^{\infty} \setminus V'_{b_1}$. Then we put $h_2 = (f''_2)^{-1}$ and note that $(\{a_1\}, \{b_1\}, \{h_1\}_{i=1}^2)$ satisfies property P_1 (with (iii), (iv) being vacuously satisfied).

Now suppose that for some n>0 we have a triple $(\{a_i\}_{i=1}^n, \{b_i\}_{i=1}^n, \{b_i\}_{i=1}^n)$ which satisfies property P_n . We will construct integers a_{n+1} , b_{n+1} and homeomorphisms h_{2n+1}, h_{2n+2} of I^{∞} onto itself such that $(\{a_i\}_{i=1}^{n+1}, \{b_i\}_{i=1}^{n+1}, \{h_i\}_{i=1}^{2n+2})$ satisfies property P_{n+1} . To construct b_{n+1} note that $(\{a_i\}_{i=1}^{n+1}, \{b_i\}_{i=1}^{n+1}, \{b_i\}_{i=1}^{2n+2})$ satisfies property P_{n+1} . To construct b_{n+1} note that $(\{a_i\}_{i=1}^{n+1}, \{b_i\}_{i=1}^{n+1}, \{b_i\}_{i=1}^{2n+1})$ satisfies property P_{n+1} . To construct b_{n+1} note that $(\{a_i\}_{i=1}^{n+1}, \{b_i\}_{i=1}^{n+1}, \{b_i\}_{i=1}^{2n+1})$ shifts we can choose $b_{n+1} > b_n$ large enough so that $Y_{b_{n+1}} \subset h_{2n} \circ \ldots \circ h_1(U'_{a_n})$. Since Y is a Z-set in I^{∞} and $h_{2n} \circ \ldots \circ h_1(U'_{a_n})$ is a neighborhood of Y, it follows from the first paragraph of Section 3 that Y is a Z-set in $h_{2n} \circ \ldots \circ (U'_{a_n})$. Also $h_{2n} \circ \ldots \circ h_1(X)$ is a Z-set in $h_{2n} \circ \ldots \circ h_1(X)$ is a Z-set in $A_{2n+1} \simeq id$ (in $A_{2n} \circ \ldots \circ h_1(U'_{a_n})$, $f_{2n+1}(h_{2n} \circ \ldots \circ h_1(X))$ is a Z-set in $h_{2n} \circ \ldots \circ h_1(U'_{a_n})$, and $f_{2n+1}(h_{2n} \circ \ldots \circ h_1(X))$ is relatively fundamentally equivalent to Y (in

 $V_{b_{n+1}}'$). As in the construction of h_2 we can extend f_{2n+1} to a homeomorphism $h_{2n+1}\colon I^\infty\to I^\infty$ such that $h_{2n+1}|I^\infty\setminus h_{2n}\circ\dots\circ h_1(U_{a_n}')=\operatorname{id}$. Now choose $a_{n+1}>a_n$ to be an integer such that $h_{2n+1}\circ\dots\circ h_1(U_{a_{n+1}}')\subset V_{b_{n+1}}'$. Applying the same procedure once more we can construct a homeomorphism $h_{2n+2}\colon I^\infty\to I^\infty$ such that $h_{2n+2}\circ\dots\circ h_1(X)$ is relatively fundamentally equivalent to Y (in $h_{2n+1}\circ\dots\circ h_1(U_{a_{n+1}}')$) and $h_{2n+2}|I^\infty\bigvee b_{n+1}'=$ id. It is now easily seen that $(\{a_i\}_{i=1}^{n+1},\{b_i\}_{i=1}^{n+1},\{h_i\}_{i=1}^{2n+2})$ satisfies property P_{n+1} .

We have just shown above that we can inductively construct infinite increasing sequences $\{a_i\}_{i=1}^{\infty}$, $\{b_i\}_{i=1}^{\infty}$ of positive integers and a sequence $\{h_i\}_{i=1}^{\infty}$ of homeomorphisms of I^{∞} onto itself such that $(\{a_i\}_{i=1}^n, \{b_i\}_{i=1}^n, \{h_i\}_{i=1}^n)$ satisfies property P_n , for all n > 0. If we put $\{U_i\}_{i=1}^{\infty} = \{U'_{a_i}\}_{i=1}^{\infty}$ and $\{V_i\}_{i=1}^{\infty} = \{V'_{b_i}\}_{i=1}^{\infty}$, then these sequences together with $\{h_i\}_{i=1}^{\infty}$ satisfy the properties (1)–(6) as we wanted.

7. Proof of corollary. Let X be a FAR and without loss of generality assume that $X \subset s$. Using Theorem (7.1) of [7] we have $\operatorname{Sh}(X) = \operatorname{Sh}(\{\operatorname{point}\})$. Using Theorem 2 there is a homeomorphism $h \colon I^{\infty} \setminus W^{+} \to I^{\infty} \setminus X$. Then $I^{\infty} \setminus X = h \left[\bigcup_{i=1}^{\infty} \left(\left[-1, 1 - \frac{1}{i} \right] \times \prod_{i=2}^{\infty} I_{i} \right) \right]$. We note that each $h \left(\left\{ 1 - \frac{1}{i} \right\} \times \prod_{i=2}^{\infty} I_{i} \right)$ is a bicollared copy of I^{∞} in $I^{\infty} \setminus X$. Thus $I^{\infty} \setminus h \left(\left\{ 1 - \frac{1}{i} \right\} \times \prod_{i=2}^{\infty} I_{i} \right) = A_{i} \cup B_{i}$, where A_{i} and B_{i} are disjoint sets such that $\operatorname{Cl}(A_{i}) \cap \operatorname{Cl}(B_{i}) = h \left(\left\{ 1 - \frac{1}{i} \right\} \times \prod_{i=2}^{\infty} I_{i} \right)$ and $\operatorname{Cl}(A_{i}) \cong \operatorname{Cl}(B_{i}) \cong I^{\infty}$. Choose notation so that $\operatorname{Cl}(A_{i}) = h \left(\left[-1, 1 - \frac{1}{i} \right] \times \prod_{i=2}^{\infty} I_{i} \right)$ and thus we have $X = \bigcap_{i=1}^{\infty} \operatorname{Cl}(B_{i})$, a decreasing sequence of Hilbert cubes.

References

- R. D. Anderson, On topological infinite deficiency, Mich. Math. J. 14 (1967), pp. 365-383.
- [2] and R. M. Schori, Factors' of infinite-dimensional manifolds, Trans. Amer. Math. Soc. 142 (1969), pp. 315-330.
- [3] David W. Henderson and James E. West, Negligible subsets of infinitedimensional manifolds, Compositio Math. 21 (1969), pp. 143-150.
- [4] and T.A. Chapman, Extending homeomorphisms to Hilbert cube manifolds, Pacific J. of Math. (to appear).
- [5] K. Borsuk, Concerning homotopy properties of compacta, Fund. Math. 62 (1968), pp. 223-254.
- [6] Fundamental retracts and extensions of fundamental sequences, Fund. Math.
 64 (1969), pp. 55-85.
- [7] A note on the theory of shape of compacta, Fund. Math. 67 (1970), pp. 265-278.

- [8] T. A. Chapman, Dense sigma-compact subsets of infinite-dimensional manifolds, Trans. Amer. Math. Soc. 154 (1971), pp. 399-426.
- [9] On the structure of Hilbert cube manifolds, preprint.
- [10] Some properties of fundamental absolute retracts, preprint.
- [11] D. M. Hyman, On decreasing sequences of compact absolute retracts, Fund. Math. 64 (1969), pp. 91-97.
- [12] R. Y. T. Wong, Extending homeomorphisms by means of collarings, Proc. Amer. Math. Soc. 19 (1968), pp. 1443-1447.

MATHEMATICAL CENTER, Amsterdam

and

UNIVERSITY OF KENTUCKY, Lexington, Kentucky

Reçu par la Rédaction le 21. 1. 1971