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Product proximities
by

Frederick W. Stevenson (Tucson, Arizona)

Introduction. Let {X;: ¢ ¢ I} be a family of sets and let X represent
the Cartesian product of these sets. If G; is a topology on X;, then the
product topology B on X can be defined as the least topology which
makes the projection maps continuous. If Uy is a uniformity on X;, then
the product uniformity U on X can be defined as the least uniformity
which makes the projection maps uniformly continucus. If ¢; is a prox-
imity relation on X; it is natural to define the product proximity ¢ on X
as the least proximity relation on X which makes the projection maps
p-continuous. For this definition to be a good one the topology induced
by the produet proximity should be identical to the product of the topo-
logies induced by the coordinate proximity relations. Also the proximiiy
relation induced by the product uniformity should be identical to the
product of the proximity relations induced by the coordinate uniformities.
The definition of the product proximity relation suggested above satisfies
the former criterion but fails to satisfy the latter. It is possible, for example,
that there exist uniformities U and U on X which induce the same prox-
imity relation § on X and yet the product uniformities Ux U and U X U
induce different proximity relations on X x X. This paper examines this
phenomenon.

§ 1. Proximity classes of Product Uniformities. Isbell [4] observes that
the products of two non-totally bounded uniformities W and U induce
a proximity relation distinet from the relation induced by the totally
bounded uniformities U’ and U’ from the same proximity classes as U
and U respectively. We generalize this result to m-Dbounded nniformities.

DeFNITioN 1.1. Let m be an infinite cardinal number. A uniformity
U on X is m-bounded iff for any U ¢ U there exists a set 4 of cardi-
nality <m such that U(4)= X. )

DrriniTioN 1.2, Let (X, ) be a uniform space. A subset 4 of X is
uniformly discrete iff there exists U e U such that (z,9) ¢ U for any
,y € A, where & # y.
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LisMuA 1.3. A uniform space (X, ) is m-bounded iff every uniformly

discrete subset of X has cardinality <m.

Proof. See, for example, Reed and Thron [7], Theorem 1.2.

- Levma 1.4, Let {(Xs, Ux): t eI} be o family of uniform spaces ang
let X = X {Xi: 1 eI}. Then the product uniformity W on X has a subbase
consisting of sets of the form Hyyy = {(,y) ¢ XX Xt (24, y4) € U (4)}, where
U(i)eWs, iel and @ and yi denote the i-th- coordinate of x and ¥,
respectively.

In order to avoid awkward notation we shall employ the following
unorthodox but simplified notation. We let {U> denote the Proximity
relation induced by the uniformity U, (W, V) denote thé proximity
induced by WX U and, in general (W ieId denote the proximity
indueed by the product of the uniformities {Us: 4 e I}

THEOREM 1.5. Let U and U be uniformities on X and U and U’ be
uniformities on X', If W or W' is m-bounded and U and V' are mot
m-bounded, then (W, WS 3 (A, U,

Proof. We prove this in a more general setting in Theorem 3.10.

COROLLARY 1.6. Let Us and U be uniformities on X and W' and V' be
uniformities on X', If U or U’ 4s m-bounded, U and V' are not m- bounded
and Uy = (W) and (US = (V', then Wy W'y 5% <V, U,

It is not the case that boundedness is the only key to the formation
of distinet produet proximities. The following theorem shows, for example,
that the product of uniformities of the same bound may also induce

distinct relations. First we recall the standard ordering of uniformities

and proximity relations on a set X. If W and U are uniformities on X we
write W< U iff WCVU; if § and & are proximity relations on X we
write 6 << &' iff 6D ¢. Now it is easily shown (and will be shown in a more
“general setting in Theorem 3.1) that if, U < OV, then Wy < KUY It s
not necessarily true, however, that U < QY implies (W) < (VY5 it is

possible that WU < U and W) = (V). For products we have the following
theorems. :

THEOREM 1.7. If U, U’ and U are uniformities on X such that WU or
W < U, then ¢, W'y U, U, :

P-roof. Without loss of generality we. assume that U, < .

Since W< U there exists a Symmetric member ¥ ¢V such that U cy

for any U e U. Let K be a Symmetric entourage such that K o K o K C V.,

Letting M = (Xx X)—V we shall show that (K, M) e (W, U’> and
(&, M) ¢ <V, UY. This will imply that (W, Uy 5 ¢V, V.

Let WeUx W, Thus W= Hy ~ Hy, for some U e U and U’ e U’
Now let (,9) ¢ U be such that (2, y) ¢ V. Such an (@, y) exists because
UCYV. Now (z,7) ¢ U’ so ((, 2), (y, @)} e W. Since (7, ) ¢ K we have
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(y, ) e W(K). Bub (y,#) ¢V because (#,y)¢V and V is symmetric so
W(K)gV. Thus W(E)~ M 0. Since W was arbitrary (K, M)
€ <CUJy ql”)‘ v

Let W = Hg ~ Hg and leb (z, y) ¢ W(K). Then there exists (a, b) ¢ K
such that ((a, b), (¥, y)) ¢ W. Thus (a, b), (¢, z) and (b, y) ¢ K. Since K is
symmetric we have (#,a), (a,b) and (b,y)e K and therefore (x,y)
eK oK oK CYV. Since (%, y) was an arbitrary member of W(K) we have
W(K)CV. We may conclude that W(E)n M =@ and so (K, M)
¢ (U, V).

CoroLLARY 1.8. If W, W' and U are uniformities on X such that U
and U’ < U, then (W, W'y < (V, V.

CorROLLARY 1.9. If W, W' and U are ni-bounded uniformities on X such
that W or U’ < U, then (U, W) # (U, Ud.

Im= .\10' the hypotheses of 1.9 cannot be satisfied because there is
one and only one totally bounded uniformity compatible with 6. However,
Reed and Thron [7] have shown that if § has a compatible m-bounded
uniformity U and m # &, then there is an infinite decreasing sequence
of compatible m-bounded uniformities less than L. :

§ 2. Product Proximities. As explained in the introduction there is
a natural definition of a product proximity.

DEFINITION 2.1. Let {(Xi, 6:): ¢ e I} be a family of proximity spaces
and let X= X {X;: 1 e I}. The proximity relation 6(1) is the least proximity
on X such that each projection map is -continuous.

Leader [5] and Csaszar [3] offer a different definition of a product
proximity relation. We give Leader’s version here.

DErFINITION 2.2. Let {(X, 6;): ¢ ¢ I} be a family of proximity spaces
and let X = X {Xy: 7 e I}. The proximity relation 6(2) on X is defined as
follows. If 4, BCX, then (4,B)ed(2) iff for every finite cover ¢
={Cp: j=1,..,n} of A and D= {Dp: k=1,..,m} of l?, there exists
C;,€C and D, D such that (p;(O'ju),pt(Dko)) ed; for all ieI (where p;
denotes the projection map from X to Xj).

Csaszar’s definition is essentially the same as Leader’s, the only
difference being that Csaszar considers finite decompositions rather than
finite covers of sets A and B. .

There is a third definition which arises from a product of uniformities
definable on (X;, ;). Each proximity relation has at least one compatible
uniformity, the totally bounded uniformity whose base is generated b_y
sets of the form {dzX As: %=1, ...,n}, where 42 By and‘Bl, ...,.B,. is
an arbitrary finite cover of the space (2 is the relation associated with &,
where A3 B iff (X—.4), B} ¢9).
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DeFInrrioN 2.3. Let {(Xi, di): ¢ e I} be a family of proximity spaces,
lIet X = X {Xi: ieI}and let Wy be the totally bounded uniformity as.
sociated with é;. The proximity relation 6(3) on X is the proximity relation
induced by the product of the uniformities Ws; i.e., 6(3) = (W i e I.

These three definitions are, in fact, equivalent. Leader [5] shows
for his definitions (Theorem 9 ii) that the topology induced by the product
proximity is identieal to the product of the topologies induced by the
coordinate proximity relations. Thus all three definitions satisfy the firgt
criterion of a good definition for a product proximity. We show these
faets in a more general setting.

DEFINITION 2.4. Let m be an infinite cardinal number. A proximity
relation 6 on X is called an m-prowimity relation iff (A, | {Bs: i<¢I})es
implies that (4, B) e 6 for at least one ¢ e I, where I is of cardinality <.

Derivrrion 2.8. Let {(Xy, di): ¢ «I} be a family of my-proximity
spaces, where 1; > m for all < eI and some infinite cardinal number m,
Let X ='X {X;: 1 e I}. Then the proximity relation 6™(1) on X is the least
m-proximity relation on X such that each projection map is p - continuous.

DEFINITION 2.6. Let {(X;, &): i eI} and X Dbe defined as in 2.5. The
prozimity relation 6™(2) on X is defined as follows. If A, BCZX, then
{4, B) « 6™(2) ift for every cover {C,: a<< n'< m} of 4 and {Dy: f< n” < m}
of B there exists oy and f, such that (pt(G’.,,,), pi(Dﬁo)) «§; for all iel.

These two definitions are obvious generalizations of 6(1) and 8(2)
respectively. We may generalize 6(3) because every n-proximity has
a unique m-bounded, m-uniformity compatible with 6 for m < n.

DEFINITION 2.7. A uniformity U on X is called an mn-uniformity
iff [V {Us: 1 eI} e U, where I is of cardinality <<m.

TEROREM 2.8. If § is an n-prowimity on X, then for each m < 1 there
exists a unique m-bounded, m-wniformity W on X such that {Uy = 4.
This uniformiiy has as its base seis of the form {4 X Ag: ke I}, where AxD By,
U{Br: kel}=X, and I is of cardinality <m. '

Proof. The proof is a straight forward generalization of the proof
of Theorem 21.20 in Thron [8].

DEFINITION 2.9. Let Uy be an 11, uniformity on Xy, where ;< m
and tel,let X=x {Xy: 4T}, let Hyy, be as in Lemma 1.4, and let $
consist of sets of the form () {H oy & €J C1}, where J is of cardinality <m.
The m-product U on X is defined to be {U: UD B, B « B}, Thus B is
a base for Q. -

DrFmNITioN 2.10. Let {(X;, 6y): i eI} be a family of n;-proximity
spaces, where 1 >m, let X = X {X;: i eI}, let U be the mm-bounded
uniformity associated with d¢ and let U be the m-product uniformity

gf {‘IL; i € I}. The prozimity relation 6™(3) on X is defined to be the prox-
imity induced on X by AU,
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THEOREM 2.11. Let {(Xi, &;): ¢ e I} be a family of Mg~ proximity spaces,
where nizm for all iel, and let X = X {Xy: i e I}; then s™(1) = o™(2)
= §™(3) on X. :

Proof. We prove this theorem by showing that 6™(1) C §%(2) C o™(3)
C ™).

First we show that 6™(1) C 6™(2). Let (4, B) € 8™(1). 1t is easily shown
that (pi(4), pi(B)) e & for all ieI. Suppose that {0, a< w<m} and
Dy p< ' < m} are coverings of 4 and B respectively. Now
(J{0s a< '}, B) e 6™(1) 50 (pi(|UC,), pi(B)) € §; for all i e I. Hence for
at least one g, call it a,<n’, we have (pi(C,),sB))ed; for all iel.
Similarly (Ch, U {Ds: f<<n”'}) e 6™(1) so there exists f,<< 1"’ such that
(pi(Clp), PilDg,)) € 8¢ for all i e I. Thus (4, B) e 6™(2).

Next we show that 6™(2) C™3). Suppose that (4, B)¢ 6™(3).
Letting 4 denote the m-product of the m-bounded m-uniformities
associated with the d; we have UeW such that U(4)~ U(RB) =@.
Now U =[){Hpqy: ¢e¢J CI}, where J has cardinality <m. Also

U(i)y= J{0@G, k)x O(t, k): keK (i)},

where K (i) has cardinality <m, C(i,%) 3 D(i, k) and {_J {D (i, k): k ¢ K (i)}
= _Xl. Let ’

M) = {k « E(i): Dii, k) ~pi(4) = 0}

and N (i) = {k e K(i): D(i, k) n ps(B) O

Now cover A with elements of the form M\ {D(i, %)": % € M (), 7 eJ},
where D(i, k) = {# e X: w;e D(i, k)} and cover B with elements of the
form {D(%,8)": s e N(3), © eJ}. Note that there are <m elements in these
covers. Now suppose there exists elements # and F from the covers of A
and B respectively such that (pi(E), pi(F)) ed; for all 7 e I. We complete
the proof by showing that this is impossible. Letting p(E) = D (i, k)
and pF) = D(i, s) we have (D('i, k), D(i, s)) e d; for 7 eJ. Since D(i, k)
€C0(i, k) and D(i,8) € C(i,8) we have C(Z, k)~ 0(%,8) #@; denote
a point in this intersection by @(2). Now let # ¢ X be such that pi(z) = = ()
for all ¢ eJ and py=) be arbitrary for ¢ ¢J. Noting that B ~ A # @ and
FAnB#0 we let ye B~ A and z¢F nB. Now @z, y:¢ C1, k) s0 we
have (ys, %) € U(2) and hence (y, z) e U and ¢ ¢ U(4). Similarly (2, 2)e U
50 % € U(B). But this contradicts the fact that U(4) ~ U(B) =@ and
s0 we may conclude that (4, B) ¢ 6™(2). )

Finally we show that 6™(3) C 6"™(1). Clearly U is an m-uniformibty
s0 §™(8) is an m-proximity. Furthermore the projection maps p; are
uniformly continuous from (X, d) to (Xj, 6;) and hence p; is p-continuous
from (X, 6™(3)) to (Xy, ;). Now since 6™(1) is the least m-proximity on X
such that the projection maps are p-continuous we have 3™(1) << 8™(3);
ie., 6™(3) C &™(1).
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Letting m =y, we have the promised equivalence of the different
definitions of a product proximity.

CoroLLARY 2.12. If {(Xi,8:): i eI} is a family of Dprovimity Spaces,
then the product prowimity relations 6(1), 6(2), and 8(3) are all equivalen;
on X {Xg iel}

The topological counterpart to the m-uniformity and the M- prox-
imity is the m-additive topology. A topology ® is m-additive iff
M {Gi:ieI, Gi e T} e T, where I is of cardinality<m. It is clear that if § i
an m-proximity, then G, is m-additive and if U is an m-uniformity, then
(W) is an m-proximity and By, is m-additive. If {(X;, G): iel} ig
a family of n;-additive spaces. for n; > m the m-product topology on
X {X: i e I} has as its base sets of the form M) {G(3)": 5 eJ C I, G(i) By,
where G (i)' = {@: #; ¢ G(¢)} and J has cardinality <m. It is eagsily shown
that 6™(3) and hence 6™(2) and 6™(1) satisty the first criterion of a good
definition of the m-product proximity.

TErOREM 2.13. Let {(Xy, 6:): © ¢ I} be a family of Ti-Prowimity spaces -

Jor niz m. The m-product of the associated ;- additive spaces Ty, is the
same s Byng,. S

§ 3. Weak and Strong Product Proximities. Letting {(Xy, 8i): i eI}
be & family of proximity spaces, letting X = X {X;: 5 ¢ I} and letting Uy
be an arbitrary uniformity X; compatible with 8, we now consider the

* proximity relation (Uy: i eI> on X. In § 1 we observed that (Uy: i)
and (Us: 4 e I> may be different for different choices of U and Uy on X;.
In § 2 we concentrated on the particular relation (‘s ¢ € I, where Uy is
the totally bounded upiformity on X; compatible with 6;. Recalling the
ordering of proximities and the ordering of uniformities on X we prove
the following convenient relationship between them. Asin § 2 we generalize
to arbitrary cardinality. For notation we shall use (UWy: ¢ e I3™ to mean
thg m-proximity relation generated by the m-product uniformity on
{We: i eI} '

TEEOREM 3.1. If U and Vs are 1is- uniformities on X respectively,
where Us < Vs and 1> m for all i « I, then (W: 4 e IY™ < (Vs 4 e IY™

Proof. We shall show that ¢aJ;: 4 eID™C (Us: 4 e IY™. Suppose that
ﬁﬁr ;th) so(‘UiL{L z.e‘I)‘“ and let W be an entourage of the m-product uni-

’ ¥ on {Ws: i e I}. Thus W= {Hyy: ieJ CI, U(i) e Uy}, where J is
o cardma:hty <m. Let V(i) C U(i), where V() Vi, 1ed and let W'
= {H,‘-m:‘z ed}. Now W' is an entourage of the m-product uniformity
on {Us: i e I}. Also W(4)~ B # 0 sinee (4, B) € {Vs: i e I>™, Therefore

W4)nB 0 and si .
Qe derym, e T was abiftary we conclude that (4, B)

icm®

Product proxvimities 163

COROLLARY 3.2. If Uy and Vs are uniformities on X; and U < Vi
for all i el, then (Usu: ¢ el) < (Vi eI,

Because of 3.2 we can legitimately speak of “weak” and “strong”
product proximity relations. The weak product would naturally be the
proximity induced by the product of the weakest (smallest, coarsest)
uniformities on the coordinate proximities §,. Since the weakest uni-
formity is the totally bounded uniformity generated by 6; the weak
product proximity on X {Xj: i € I} would be §(3). The strong proximity
would be the proximity induced by the strongest (largest, finest) uni-
formity on the coordinate proximities 6;. Such uniformities do not always
exist, however, as Theorem 3.12 indicates. Alfsen and Fenstad [1] con-
structed the first example of a proximity relation which does not admit
a strongest compatible uniformity. Below we formalize the concept of
weak and strong product of proximity spaces for arbitrary cardinality.

DerINITION 3.3. Lebt {(Xy, 8i): i1} be a family of - proximity
spaces such that 1; > m for all i ¢ I and let X = X {X;: i e I}. Letting Us;

" be the smallest m-uniformity compatible with §; on X; and U; be the

largest m-uniformity (assuming it exists) compatible with é;, then
Wiz 2 eI)™ is the m-weak product proximity and. (VUi ielIY™ is the
m-strong product proximity.

A uniformity is called total if it is the largest member of its proximity
class. For example, a uniformity which has a linearly ordered base is
total (see [2]). In fact if the least cardinality of a linearly ordered base istn,
then the uniformity U is an m-uniformity and is largest in the proximity
class of the nt-proximity (). For the sake of convenience rather than
for the sake of confusion (we hope) we use the word total for prox-
imities also.

DEFINITION 3.4. A proximity relation is an m-fotal prowmimity re-
lation iff it admits a largest m-uniformity. This largest m - uniformity we
shall call an m-total uniformity.

THEOREM 3.5. Let §; be an ty-total proximity on X, where y >m
and 1 eI, let U be the my-total uniformity compatible with 8i, and let
X=X {Xsy: ieI} Then (Uy: ieId™ is an m-iotal prozimity on X.

Proof. We prove this by showing that W, the m-product of the
uniformities U is an m-total uniformity on X. Suppose that there exists
an m-uniformity U on X such that U C U. Therefore there exists ¥ e U
such that W ¢ ¥V for any W e W. Letting V= {(z;, ¥5): (%, %) ¢V} we
see that we have two cases: 1) There exists j I such that U & V7 for
all U e Uy, and 2) There exists a set K C I such that V* s Xz x Xy for
all k e K, where K has cardinality >>m. Now in both cases we shall find
(U # (W) thus completing the proof that (Up is m-total.
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For case 1) this may be seen as follows. Since U CV7 for all 7 ¢ Uy Let W denote the m-produet of {Ws: i e I} and let W be an arbitrary

we have U; & Uy (where V;= {V’: V eV}). Now V; is a uniformity |

on X; and since Uy is an m-total proximity it follows that <U;) == U,
Thus there exists subsets 4 and B of X; such that (4, B) e (Uy> ang
(4, B) ¢ (Uy). Letting 0= {weX: ¢ A} and D= {zeX: x;¢B) we
have (€, D) e (Uy and (€, D) ¢ (V). Hence (W # (V.

For case 2) we need only note that the topology induced by U on ¥
is not the m-product topology and so (W) # (U).

COROLLARY 3.6. Let Wy be an vu-total uniformity on Xy, where iy >y
and i € I. Then the m-product of the v;- uniformities s an m-total uniformity
on X {X;: iel}. '

CoROLLARY 3.7. Let Uy be a uniform space with o linearly ordered
base of least cardinality 1; on X'y, where 1> m and ¢ e I. Then the m-produc
of the uniformities is an m-total uniformity on X {X;: iel}.

CoROLLARY 3.8. Let U be a wniform space with a linearly ordered base
on Xy. Then the product of the uniformities is a total uniformity on
X {Xi: i eI}

The m-weak product proximity is clearly the proximity §(3) (and
hence §™(2) and 6™(1)) studied in § 2. Here we show that this proximity
is, in general, not an m-total proximity. More precisely, if a least two
m-proximities, d; and & of a family {8i: i eI} of proximities admit
compatible non m-bounded -m-uniformities, then the m-weak product
proximity is not m-total. This fact was stated in Isbell [4] for the special
case of the product of two ordinary proximity spaces which admit non-
totally bounded uniformities. ’

Our first theorem in this regard is a straight forward generalization
of the analogous theorem for total bounded uniformities. We omit its
proof here.

TrEOREM 3.9. Let {(X;, Usy): tel} be a family of ny-uniform spaces,
where 1y >, let X = X {Xy: i e I} and let U denote the m- product w-uni-

Jormity on {U: 7 I}, The m-uniformity (X, W) 45 m-bounded iff (Xip W)

is m-bounded for all ie1.

THEOREM 3.10. Let W and Uy be Tu-uniformities on Xy, where ng > m
and i e L. If for some j e I, Uy is ni-bounded and V; is not 1n-bounded and
for some ks£jel, Uy is not n-bounded, where 1t > m, then {Usgz 1 € ™
# (VUi ieIy™

Proof. Notice that this theorem is a generalization of Theorem 1.5.
Since U; and VU are not n-bounded there exists uniformly discrete sets
4 = {#,: a<n} in (Xy, V) and B= {U: a<m}in (X%, VUx) of cardi-
nality . Letting X = x X del}, O={ceX: p5(e) = x, and pi(e) = ¥,
for some a << 1} and D = {deX: pyd) = w, and py(d) = g for some a, §,
where a # 8} we show that (0, D) e (Uy: § e )™ and (0, D) ¢ (Vs: 1 e IY™

member of W. Thus W= {Hpyu: U(i) e Uy and 5 e C I}, where J is
of cardinality <m. Since W; is n-bounded there exists a,a"<n such
that (¢, 2) € U(J) (if j ¢J, then U(j) = Xj). Now we have (a,d)c W,
where pj(a) = o, P;(b) = %, and pi(a) = y, = pu(b). But ac € and b ¢ D
s0 W(C)n D # @. Since W was arbitrary we have (C, D) e (Uy: 5 eIym,

Since A and B are uniformly diserete sets there exists V(i) e V;
and V(%) € Uy such’ that (x,,x,) ¢ V(j) for all « # o’ < 1t and (s, ¥p)
¢V (k) for all §, p'<<n. Let W = Hyy ~ Hyy,. Now suppose be W(C).
Thus there exists a e C such that (a, b) ¢ W. Since a € ¢ we have pila) ==z,
and px(a) = ¥, for some o < n. Since (a,b) ¢ W we have py(b) = =, and
px() = ¥, for the same a. Thus b = a ¢ D. Therefore W ()~ D =@ and
we have (O, D) ¢ Uy i e ID™. .

TeeoREM 3.1L. If W and W' are m-uniformities on X, such thai
Wy = (W) and if U is the m-bounded m-uniformity on X,, then U, VY
= (W', VY. :

Proof. We shall show here that <, UY > (U, VY. Since W and U/’
play & symmetric role in our proof we also have the result that (W, U
< W', Uy and thus the equality we seek. We accomplish our proof
that (W, VY < (W', U by showing that (W, Uy C (W, VUY; that is,
it (4, B) ¢ (W, U, then (4, B) ¢ (W, V.

Suppose that (4, B) ¢ W, UY. Thus there exists W’ e U’ X U such
that W'(4) n W' (B) = @. Now W' = Hy ~ Hy, for some U’ ¢’ and
Ve V. We may assume that U’ and V are symmetric entourages. Letting
Ay =py(4), By=1p,(B) and K ¢V such that K is symmetric and
KoK oKCYV there exists a sebt 0 = {y,: a<<n<m} such that K(0)
DA4,nB,. This is true because (X,, V) is m-bounded. We denote
{(#,9): ¥ <V (y,) and (z, ) e 4} by A* and {(@, 9): y ¢ V(y,) and (s, ) € B}
by B~

’ Letting p,(A4%) = A (a,1) and p(B*) = B(«,1) we first show that
{4(a,1), B(a, 1)) ¢ Wy, We accomplished this by proving that
U(d(a, 1))~ U(B(a,1))=@. If » is in this intersection we have
2eU'(A(a,1)) and @ € U'(B(a, 1)). Thus there exists # and # such that
ted(a,1), 2 c¢Bla, 1), (2,2) e U, (#,x) e U’ and there exists ¥,y € X,
such that (2,9)ed, (#,9)eB, (¥,v,) eV and (¥, v, V. This means
that (@, y,) e W(4) ~ W'(B) which contradicts the hypothesis that
WAy~ W(B) = @. )

We complete the proof by showing that (4, B)¢ (W, ‘U}. Sxpce
(W = (W) we know that (4(a,1),B(a,1))¢ (U and so there exists
UpeW such that Uyd(a,1))n U B(a,1))=@. Letting U= {Ux:
e<<n} (and recalling that U is an m-uniformity so U €U) we show
that W(4) ~n W(B) = @, where W = Hy ~ Hg. This will show that

i
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(4, B) ¢ (U, V). Suppose that (a, b) ¢ W(4) ~ W(B). Since (a, b) ¢ W(4)
there exists (z,y) e A such that ((a,D),(#,9))<W. Hence (a,s)ey
and (b,y) < K. Similarly there exists (2,y’)eB suc.h that (a,a") ey
and (b,9') e K. Now since (b, ), (b,y’) e K there exists e, &' < 1 sucp
that (4, Ya); (4's Yor) € K. Thus we have (y', ), (', ), (¥, 4.) €« K so0 (y', y)
eE-K-KCV. Since (z,9) ¢ A and (#',9) ¢ B we have (,y) e A° anq
(@',y) e B®. Now z¢ A" «' ¢B® and (a,2),(a,2) e U 80 a ¢ U(d(a, 1))
and a ¢ U(B(a,1)). But U C U, so we have ac U,{A(a, 1))~ U,{B(a, 1))
This contradicts the hypothesis that U,(4(a, 1))~ U B(a,1))= @ and
50 we obtain W(4)n W(B)=@. ’ :

TaEOREM 3.12, If &; 48 a family of m-proximities on X, respectively
(where i eI) such that at least two admit non- m-bounded - uniformities,
then the weak m-product prozimity 6™3) is not an m-total proximity.

Proof. Let §; and 6; be two proximities which admit non-m-bounded
uniformities. Let (Us: ¢ e I)™ = U, where Uy is the m-bounded m-uni-
formity compatible with é; for all 4 = § and Uy = U;. Let Uk be similarly
defined with j replaced by %. It easily follows from Theorems 3.9 and 3.11
that (W) = 6™3) = ¢U*). Suppose that U’ is compatible with §™(3),
Now U’ is the m-produet of {Usj: 4 € I} and it follows from 3.10 that Us;
must be m-bounded for all but at most one i e I.If 5 5 &, then U’ ks
if i = %, then U’ 3 U’. Thus U’ is not an m-total proximity. We conclude
that 6™(3) is not an m-total proximity.

If m =y, we have the following corollary.

COROLLARY 3.13. If 8 is a family of prozimities on X; respectively such
that af least two admit more than one compatible uwiformity, then the weal
product prozimily does not admit a strongest compatible uniformity.
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On the topology of curves IV
by
H. Cook and A. Lelek (Houston, Texas)

As iy well-known, each arc is an acyclie and atriodic curve, and these
two properties characterize arcs within some considerably large classes
of curves, for instance the class of locally connected curves. The second
author has proved that all acyclic Suslinian curves possess 'a qemmpo-
sition property (see [5], Theorem 2.2). An analogue for atriodie curves
is established in this paper (see § 1). Actually, we show the deeompOS}thn
property to be possessed by all Suslinian curves Whie.h.z*ure locally atriodic
in a weak sense, and we derive a stronger decomposition property for all
atriodic Suslinian curves (see § 3). The latter property, however, is not
necessarily possessed by all acyclic Suslinian curves (see § 4). A.ltvhough
the general question remains unsolved (see [6], Problem 1‘0),.1‘5 seems
now to be answered almost completely for the class of atriodic curves,
which comprises some interesting cases: a clagsical example of a p}ajne
curve constructed by G. T. Whyburn [10] as well as other curves obtained -
by means of the method of R. D. Anderson a:];ld Gustave Choquet [1].
The topological structure of atriodic hereditarily decomposable curves
is esgential in our approach (see § 2). Also, at the end of_ the paper, we
provide an example of a chainable Suslinian curve that is not rational.

§ 1. Hereditarily discontinuous subsets. A~ space is cglled hereditarily
discontinuous provided each continuum contained in it is degenerate ().
A curve X is called atriodic provided, for each three subcurves Cp, C,, Gy
of X such that

00: Olr‘\ ng 02003= Olﬁos?':g

is connected, O, coincides with at least one of the curves Cyy Oy, C’s._ We
follow [3] to mean by a clump any non-degeneratie colleci‘no,n C of continua
whose union is a continunum and for which there exists a non-empty
continuum 0y, called the core of C, such that C, is a proper subset of every

(*) Hereditarily discontinuous spaces were called “pf)netiform”’ i1.1 [5] but now we
adopt the terminology of [4] which seems to be more suitable for this paper.
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