A characterization of locally compact fields of zero characteristic

by

W. Więsław (Wrocław)

0. In this note we shall give a characterization of locally compact fields of zero characteristic which seems to be new. Let us recall some definitions. A field topology \(\mathcal{C} \) is said to be locally bounded if there exists a bounded neighbourhood \(A \) of zero, i.e. if for every neighbourhood \(U \) of zero there exists another one, \(V \), such that \(AV \subseteq U \). For any topological field \(F \) we write \(G(F) \) for the group of all its continuous automorphisms. Moreover, \(\mathcal{C} \) is called a full topology if the completion \(\hat{F} \) of \(F \) in it is a field. It is well known (see [8], [10]) that the only full, locally bounded, non-trivial topologies on a field are topologies of type \(V \), that is topologies induced by Krull-valuations (i.e. valuations taking values in linearly ordered groups instead of the reals).

I am indebted to W. Narkiewicz for valuable remarks concerning this paper.

1. The aim of this paper is to prove the following

Theorem. Let \(K \) be a non-discrete topological field. Then the following conditions are equivalent:

1. \(K \) is a locally bounded, complete field and for every closed subfield \(F \) of \(K \), \(G(F) \) is finite.
2. \(K \) is a locally compact field of characteristic zero.
3. \(K \) is a finite extension of the reals \(R \) or of some \(p \)-adic number field \(Q_p \) with the usual locally compact topologies.

Proof of the theorem. The equivalence \((2) \iff (3)\) is the classical theorem of Pontryagin–Kowalsky–van Dantzig (see [4], [7], [15]). \((3) \implies (1)\). Since every automorphism of \(R \) and \(Q_p \) is trivial, \(G(K) \) is finite as a subgroup of the Galois group \(G(K/R) \) or \(G(K/Q_p) \). Moreover, \(K \) is complete in the locally bounded field topology induced by an absolute value \(|\cdot|\) or by a \(p \)-adic norm \(|\cdot|_p\).

It remains to show that \((1) \implies (3)\).
Case I. K is not algebraically closed.

A. Suppose K is connected. Every locally bounded, complete and connected topological field is topologically isomorphic to R or C (see [9], [16]). This gives $K = R$ topologically.

B. Suppose that K is disconnected and of characteristic zero. Then K is totally disconnected (see [2], Theorem 1). Let L be a fixed field of $G(K)$. From Lemma 2 of [16] it follows that L is closed and the topology \mathcal{T} of K is the product topology induced from L_1 moreover, L is complete. The completeness of \mathcal{T} implies that \mathcal{T} is a full topology and the local boundedness of \mathcal{T} implies that \mathcal{T} is induced by a suitable Krull valuation (see [8], [10]).

Suppose at first that the topology
\[\mathcal{T}_1 = \mathcal{T}(Q) \text{ is non-discrete.} \]

Since K is totally disconnected, its topology is given by the open subgroups of Q, i.e., by open Z-submodules in Q. But Q is the quotient field of the principal ideal domain Z and so we can apply the following.

Lemma 1 (see [3]). Let A be a principal ideal domain and K the quotient field of A. If \mathcal{T} is a non-discrete field topology on K, then (K, \mathcal{T}) is a topological field for which the open A-submodules form a fundamental system of neighborhoods of zero if and only if \mathcal{T} is the supremum of a family of p-adic topologies (p is an irreducible element in A).

Lemma 1 implies now that \mathcal{T}_1 is the supremum of a family of p-adic topologies. But the supremum of a family of locally bounded topological fields is locally bounded if and only if that family is finite (§). Moreover, \mathcal{T} is a full topology, and so \mathcal{T}_1 is also full. We claim that our family of topologies consists of a single element which is a p-adic topology. Indeed, let \mathcal{T}_p be the supremum of p-adic topologies for $i = 1, 2, ..., m$. The approximation theorem for valuations implies that the completion \hat{Q} of Q in \mathcal{T}_1 is a direct sum of fields $Q_{p_1}, ..., Q_{p_m}$:
\[\hat{Q} \cong Q_{p_1} \oplus ... \oplus Q_{p_m}. \]

But \mathcal{T} is a full topology and so \hat{Q} is a field; thus $m = 1$.

We are going to prove that L is an algebraic extension of Q_p. Suppose the contrary. Let t^i be transcendental over Q_p. Denote by L_i the closure of $Q_p(t)$ in L. We define an automorphism of $Q_p(t)$ by the formula:
\[\varphi_p(f(t)) = (\varphi(t))^i (\varphi(t))^{i-1} \]
where t is a fixed unit in Q_p, and so $|t|_{p} = 1$. Let us remark that the topology \mathcal{T} is induced in L by a non-Archimedean valuation. Indeed, since $Q_p \subset L$ topologically and $p^n \to 0$ in \mathcal{T} as $n \to \infty$, the set T of all topological nilpotents in L is non-void, whence open (see [16], Lemma 5).

Since \mathcal{T} is induced by a Krull valuation v, $(L, \mathcal{T})^{-1}$ is bounded. From the Safronov Theorem (15) it follows now that v is a valuation taking values in an Archimedean ordered group, i.e., v can be assumed to be a real valuation. Let us denote this valuation by $|a|$. We have
\[|t|_{p} = |t|^i |t|_{p} = |t|^i |t| = |t| \]
and so $|t|^i = |t|_{p}$ for every $a \in Q_p(t)$. It follows that $\varphi_p \in G(Q_p(t))$ since φ_p is an isometry.

Let us extend φ to an automorphism $\varphi_p \in G(L_1)$ by putting, for every sequence $x_n \to x \in L_1$, $x_n \in Q_p(t)$
\[\varphi_p(x_n) = \lim_{n \to \infty} \varphi_p(x_n). \]

Prove the lemma. If $[E:F] = \infty$, then there would exist a sequence $a_1, a_2, ... \in E$ with
\[a_j \neq F(a_1, a_2, ..., a_j) \text{ for } j = 1, 2, ... \]
The separability assumption implies that with a suitable base $b_j \in E$ we have $F(b_j) = F(a_1, a_2, ..., a_j)$ and, in view of the obvious inequalities
\[[F(b_j):F] < [F(b_i):F] < ... \]
we infer that E contains elements of an arbitrary large degree over E, against a theorem of Ostrowski (see [12], Theorem 3). (If E/F is algebraic, E and F being valued complete fields, then the degree over F of elements of F are bounded.)

From Lemma 2 we have $[L:Q_p] < \infty$, whence K is a finite extension of the p-adic number field Q_p.

Now we consider the case
\[\mathcal{T}_1 = \mathcal{T}(Q) \text{ is discrete.} \]
Then there exists an $a \in L_1$ transcendental over Q_p since otherwise otherwise the extension L/Q_p would be algebraic and, as the topology \mathcal{T} is discrete on Q_p, it would remain discrete on every finite (algebraic) extension of Q_p and so on L_1 which gives a contradiction. If \mathcal{T} were discrete on $Q(a)$, then the
closed subfield \(Q(x) \) of \(L \) would have infinitely many (continuous) automorphisms of the form

\[
x \mapsto \frac{ax + b}{cx + d},
\]

where \(a, b, c, d \in Q, \ ad \neq bc \), which is a contradiction. Hence \(\mathcal{C} \) is non-discrete on \(Q(x) \). But the local boundedness of \(\mathcal{C} \) implies that \(\mathcal{C} \) is induced on \(Q(x) \) by a real valuation. This results from the following lemma:

Lemma 3. Let \(F(x) \) be a transcendental extension of a field \(F \) and \(\mathcal{C} \) a non-discrete, locally bounded, full topology on \(F(x) \), discrete on \(F \). Then \(\mathcal{C} \) is induced by one of the following valuations: \([a]_{p(x)} \), where \(p(x) \in F[x] \) is an irreducible polynomial, or \([a]_{\infty} \).

(We recall the definitions of these valuations. Let \(\frac{f(x)}{g(x)} \in F(x) \) be any non-zero element. We put

\[
\frac{f(x)}{g(x)} = e^{o_{\mathcal{C}}(f(x)g(x))} \quad \text{and} \quad \frac{f(x)}{g(x)} = e^{-N},
\]

where \(f(x) = p(x)^N f_1(x) \) and \((p, f_1) = (p, g_1) = 1 \.)

Proof of the lemma. As the topology \(\mathcal{C} \) is full and locally bounded, it is induced on \(F(x) \) by a Krull valuation \(v : F(x) \to \Gamma \), where \(\Gamma \) is a multiplicative linearly ordered group with added \(0 \). Denote by \(e \) the unit element of \(\Gamma \). If \(v(x) > e \), then

\[
v(a^k) = v(x^k) = v(ax^k) = v(dx^k) \quad \text{for all} \ k > 1
\]

and \(e, d \in E, cd \neq 0, \) since \(v(x) > e \) implies \(v(x)^N = v(x^N) > e \) for every \(N \in N \). This valuation \(v \) is non-Archimedean since it extends a trivial valuation. As for \(v(a) = v(\beta) \), we have

\[
v(a + \beta) = \max(v(a), v(\beta))
\]

if it follows that

\[
\frac{f(x)}{x} = v(a_1 x^N + \ldots + a_0) = v(x^N) = v(ax^N)\quad \text{for every} \ f(x) \in F(x).
\]

Thus

\[
\frac{f(x)}{g(x)} = v(ax^N - bxy^N).
\]

However, if \(0 < v(x) < e \ (0 < v(x) < e \) for every \(\gamma \in \Gamma \) by definition), then \(v(x) < e \) for every \(h(x) \in F(x) \). Let

\[
R_v = \{ f(x) \in F(x) : v(f(x)) < e \}.
\]

Observe that we must have

\[
v \left(\frac{f(x)}{g(x)} \right) = v(p(x))^N, \quad \text{where} \quad \frac{f(x)}{g(x)} = p(x)^N \frac{f_1(x)}{g_1(x)}
\]

and \(f_1, g_1 \) are prime to \(p(x); \) \(p(x) \in F[x] \) is a suitable irreducible polynomial. Indeed, since \(K \) is a prime ideal in \(F[x] \), it is generated by an irreducible polynomial \(p(x) \). So \(v(p(x)) = e \) if and only if \((k, p) = 1 \) and

\[
v \left(\frac{f(x)}{g(x)} \right) = v(p(x)^N \frac{f_1(x)}{g_1(x)}) = v(p(x))^N = v(p(x))^N, \quad \gamma = v(p(x)) \leq 0, \ \gamma \in \Gamma.
\]

In both cases the value group consists of powers of a fixed element of \(\Gamma \).

Since \(\Gamma \) is cyclic, its ordering must be Archimedean and so \(\Gamma \) can be regarded as a subgroup of the reals with the usual ordering; hence we may assume that \(v \) is a real valuation. This proves Lemma 3.

If \(\mathcal{C} \) is discrete on \(Q \) but non-discrete on \(Q(x) \), then Lemma 3 shows that \(\mathcal{C} \) is induced on \(Q(x) \) by a real valuation. Then the closure of \(Q(x) \) in \(L \) is the topology \(\mathcal{C} \) has infinitely many continuous automorphisms. In fact, let us extend the mapping \(x \mapsto ax^2, \ a \neq 0, \ a \in Q \), to a continuous automorphism of \(Q(x) \) and then to a continuous automorphism of the closure of \(Q(x) \) in \(L \) (compare with (a)).

Hence \(\mathcal{C} \) is impossible and \(\mathcal{C}_L = \mathcal{C}Q \) is non-discrete.

It remains to consider the case

\[C: K \text{ is a disconnected field of a finite characteristic} \ p \neq 0. \]

We will show that this case never arises. As before, let \(L \) be a fixed field of \(G(K) \). Obviously \(L \) is complete in our topology. There exists an element \(x \in L \) which is transcendental over the field \(Z_0 = Z/pZ \) since otherwise no locally bounded non-discrete field topology would exist in \(L \) (see [5], Theorem 6.1). An element \(x \in L \), transcendental over \(Z_0 \), can be chosen in such a way that the topology \(\mathcal{C}_0 = \mathcal{C}_0\mathcal{Z}_0(x) \) is non-discrete. In fact, let \(L = Z_0(b) \) the Steinitz decomposition of \(L \), where \(\mathcal{S} \neq \emptyset \) is the transcendental base of \(L \) and \(\mathcal{A} \) is the set of all algebraic elements of \(L \) over \(Z_0(b) \). Suppose at first that \(\mathcal{S} = (\beta_1, \beta_2, ..., \beta_m) \) is finite and that the topology \(\mathcal{C} \) is discrete on every \(Z_0(b) \) (\(j = 1, 2, ..., m \)). A discrete topology is induced by a trivial valuation \(v_0; \)

\[v_0(a) = 1 \quad \text{for all} \ a \neq 0, \ v_0(0) = 0. \]

Let \(c \in Z_0(b) \). Clearly, \(v = v_0(b_1, b_2, ..., b_m) \), where \(r, s \) are polynomials over \(Z_0 \). Since

\[v(d b_1^{N_1} ... b_m^{N_m}) = v_0(d) v_0(b_1)^{N_1} ... v_0(b_m)^{N_m} = v_0(b_1)^{N_1} ... v_0(b_m)^{N_m} = 1 \]

for \(d \in Z_0, d \neq 0, \)
we have \(v(b_1, b_2, \ldots, b_n) = 1 \) for all non-zero \(v \), and finally \(v(0) = 1 \) for all non-zero \(e \in \mathbb{Z}_p(\mathfrak{p}) \). This implies that \(\mathfrak{p} \) is discrete also on \(L \), which is impossible.

If \(\mathfrak{p} \) is infinite, then the discreteness of \(\mathfrak{p} \) on every \(\mathbb{Z}_p(L) \), \(b \in \mathfrak{p} \), implies the discreteness on \(\mathbb{Z}_p(\mathfrak{p}) \). This is again possible since the closed subfield \(\mathbb{Z}_p(\mathfrak{p}) \) of \(L \) would then have infinitely many (continuous) automorphisms induced by any automorphism of \(b \in \mathfrak{p} \).

Hence let \(x \in L \) be transcendental over \(\mathbb{Z}_p(\mathfrak{p}) \) such that \(\mathbb{Z}_p(\mathfrak{p}) = \mathbb{Z}_p(x) \) is a non-discrete topology. Lemma 3 implies that the topology \(\mathfrak{p}_x \) is induced by a real valuation on \(\mathbb{Z}_p(x) \). By the same lemma \(L \) must contain either the (closed) field \(\mathbb{Z}_p(x) \) of formal power series over \(\mathbb{Z}_p \) or the closure \(\mathbb{Z}_p[x] \) of \(\mathbb{Z}_p(x) \) in \(L \) with respect to the valuation \(\mathfrak{p}_x \). Let us note, however, that for every unit \(e \) from the valuation ring of our valuation the mapping \(x \to ex \) can be extended to a continuous automorphism of \(\mathbb{Z}_p(x) \) (or \(\mathbb{Z}_p(x) \)), which is impossible since \(G(\mathbb{Z}_p(x)) \) or \(G(\mathbb{Z}_p(x)) \) has to be finite by the assumption.

Case II. \(K \) is algebraically closed.

In [16] it was shown that if \(K \) is a locally bounded, complete topological field with torsion and a non-trivial \(G(K) \), then \(K \) is topologically isomorphic to the complex number field.

We will show that \(G(K) \) is always non-trivial. The topology \(\mathfrak{p} \) is induced in \(K \) by a non-trivial Krull valuation since otherwise \(G(K) \) would be infinite (see [16], Theorem 3). If \(K \) is of characteristic \(p \), then the previous remark implies the existence of an element \(x \in K \) which is transcendental over \(\mathbb{Z}_p \) and such that our valuation \(v \) is non-trivial on \(\mathbb{Z}_p(\mathfrak{p}) \). As in Case I, it can be shown that this is impossible. Hence \(K \) is of characteristic zero.

But then there is an involution in a group \(\text{Aut}(K) \) of all automorphisms of \(K \) (see [1], Theorem 1), i.e. an element \(g \neq 1 \), \(g^2 = 1 \). Let \(L \) be the fixed field of the group generated by \(g \). Obviously \(K = L(i) \). If \(L \) is complete in our topology, then the topology \(\mathfrak{p} \) is the product topology induced from \(L \) and \(g \) is continuous in it since \(g(a+b) = a \pm b; a, b \in L \). Indeed, if \(x_k \to x + iy \to x + iy = z \), then \(x_k \to x \) and \(y_k \to y \) and so \(g(x) \to g(x) \). It follows from a theorem of Matyús ([11], Theorem 5) that \(K \) must contain topologically either \(R \) or \(Q_p \) (for some prime \(p \)) because \(G \) is a non-discrete subfield of \(K \). In the first case \(K \cong \mathbb{C} \) since \(R \) and \(C \) are the only locally bounded extensions of \(R \) (see [11], Theorem 5). In the second case the degree \([K : Q_p] \) must be finite since otherwise there would be a closed subfield \(M \) of \(K \) with infinite \(G(M) \) (compare B, Case I). But no finite extension of \(Q_p \) is algebraically closed. If \(\nu \) is discrete on \(Q_p \), we obtain a contradiction, just as in (b). Hence \(G(K) \) is always non-trivial. So the proof is achieved.