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On decompositions of smooth continua (¥
by
G. R. Gordh, Jr. (Riverside, Cal.)

Introduction. In [2] Charatonik proved that for 'ével‘y A-dendroid M

there exists & decomposition D of M such that
(i) D is upper semicontinuous, ‘

(ii) the elements of D are continua,

(iii) the decomposition space of D is a dendroid, a.nd

(iv) D is the finest decomposition among all decompositions satis-
fying (i), (ii), and (iii).

Tt is the main purpose of this paper to prove a similar decomposition
theorem for a class of compact Hausdorff continua which will be called
smooth. Althongh for certain i-dendroids (called monostratiform) the
decomposition defined by Charatonik econsists of a single element [3],
the decomposition obtained for smooth continua is never degenerate;
in fact, each element of the decomposition has void interior.

In order to obtain the above-mentioned result it is necessary %o
extend the notion of smoothness (e.g., [4]) to a more general class of
continua than dendroids. Mohler [9] has observed that the definition
of smoothness is valid for the class of hereditarily unicoherent continua.
However, it is easily seen that the definition is applicable more generally
to any continuum M satisfying
(*) There exists a point p e I such that for each point @ ¢ M there

exists a unique subeontinuum which is irredueible between p and 2.

A second purpose of this paper is to discuss some of the basic proper-
ties of continua which satisfy (x) and the smoothness condition. Some
of the theorems obtained are generalizations of known results concerning
smooth dendroids and generalized trees.

The author wishes to express gratitude to Professor F. B. Jones
and to Professor A. R. Stralka for many helpful sugges’mons during the
development of this research.

() This work was supported by a National Science Foundation Traineeship.
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1. Definitions and preliminary remarks. A confinuum is a compact
connected Hausdorff space. An arc is a continuum (not necessarily metriz-
able) which is irreducibly connected between some pair of points. The
continuum M is unicoherent provided that the intersection of any two
subcontinua whose union is M is connected. The continnum M is heredi-
tarily unicoherent in case every subcontinuum of M is unicoherent.

In order to generalize the notion of hereditary unicoherence we
make the following definition:

The continuum M is hereditarily unicoherent at p in case the intef-
section of any two subcontinua, each of which contains p, is connected.

The following theorems are immediate consequences of the above
definitions. Note that Theorem 1.3 states that (%) is equivalent to
hereditary unicoherence at a point. :

TueoREM 1.1. The continuum M is hereditarily unicoherent if and
only if M is hereditarily unicoherent at each poini.

" TerROREM 1.2. The continuum M is hereditarily unicoherent if and

only if given any two points of M there exists a unique subcontinuum which
18 irreducible between them.

THEEOREM 1.3. The continuum M is hereditarily unicoherent at p if
and only if given any point x € M there exists a unique subcontinuum which
18 irreducible belween p and . ,

Notation. If the continuum M is hereditarily unicoherent at p
and g e M~ {p} then pg will denote the unique subcontinuum which is
irreducible between p and g¢.

If {4a, n € D} is a net of subsets of a topological space X then Lid,
= {x ¢ X; every neighborhood of # intersects A, for almost all #} and
LsAn = {r e X; every neighborhood of x intersects A, for arbitrarily
large n}. A net of subsets {4,,n e D} is said to converge to a set A (de-
noted by Lim 4, = 4) in case Lid, = 4 = Ls4,. The reader is referred
to [7] for a general discussion of nets, and to [10] for properties of nets
of subsets.

The following definition is a natural generalization of the definition
of smooth dendroid given in [4]. )

A continuum M is said to be smooth at the point pin cage M is he-
reditarily unicoherent at p and for each convergent net of points {a,,n e D}
in M the condition

(i) Iimay, = a
implies that
(i) {pan,n e D} is convergent, and
(iii) Limpay, = pa.
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For an arbitrary continuum M the set {p € M; M is smooth at p}
is called the initial set of M and will be denoted by I(M). If I(M) # @,
then I is said to be smooth.

A tree [12], Theorem 9, page 803, is a hereditarily unicoherent and
locally connected continuum. A generalized tree is a hereditarily uni-
coherent, arcwise connected continuum which is smooth. Aecording to
a theorem of Koch and Krule [8], the above definition of generalized
tree is equivalent to the definition originally given by Ward [12].

2. Some properties of nets of sets. The first two theorems of this section
are generalizations of known results concerning convergence of sequences
of subsets.

THEOREM 2.1. Let {An, n € D} be a net of connected sets in a compact
Hausdorff space 8. If Lid, =@ then Ls Ay is a continuum.

Proof. The proof is obtained by generalizing the argument of [6],
Theorem 2-101, page 101, so that it applies to nets. The details will be
omifited.

THEOREM 2.2. Let the continuum M be hereditarily unicoherent at p.
If {An, n e D} is a net of connected sets each of which contains p, then Lid,
is a confinuum.

Proof. The argument contained in [1], Lemma 1, page 6, is easily
generalized to nets.

LemMmA 2.1, Let {4,, n € D} be a net of subsets in a topological space 8.
If a eLidy, and beLsAy then there exist nets {Am,m e B}, {0m, m e H},
and {bm,m e B} such that

(i) {dm,m e E} is a subnet of {4dn,n eD},
(i) {@m,m € B} converges to a,
(ifi) {bm,m e B} converges to b, and
(iv) for each m € B, am € A and bm e Ap,.

Proof. The proof is obtained by applying standard techniques in- ‘
volving nets (see, for example, [7], Lemma 5, page 70).

TEEOREM 2.3. Let the continuum M be hereditarily unicoherent at p.
If M is not smooth at p then there exist nets {am, m €« B} and {by,m e B}
such that

(i) {am, m e E} converges to a,
(ii) {bm,m e B} converges to b,
(iif) bm € pam for each m e B, and
(iv) b e M—pa.
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Proof. Since M is not smooth ab p there exists a convergent net
{@s,n € D} such that lima, = a and either

(a) {pan,n ¢ D} is not convergent,
or '
(b) {pam, n e D} is convergent and Limpas # pa.
Since Lid, is a continuum containing p and & we have

pa C Lipay, C Lspay .
Thus for either case (a) or (b) it follows that
pa #* Lspay .

Choose b e Lspay,— pa.- Now the conclusion of the theorem follows
immediately from Lemma 2.1.

3. The initial set. This ‘section containg a number of theorems con-
cerning the initial set I(M) of an arbitrary continuum M. In pa,rticula;r
we obtain generalizations of each of the following results:

{a) A generalized tree is locally connected at each point of I (M) [8].

(b) A dendroid M is a dendrite if and only if I(M)= M [4].

TrrorEM 3.1. Let M be a smooth continuum and let N be a sub-

continuum of M such that N ~ I{M) 5= @. Then for each open set V which
contains N there exists  connected open set U such that NC UCV,

Proof. Let p e N ~nI(M) and define
= {xeM; pz~n (M—V)=0}.

Clearly NCUCYV and U is connected. It remains to be shown
that U is open. ’
Let {xs,n ¢ D} be a net in M— U which converges to z. Since
it follows that )
Limpz, n (M—V) #0.
‘Since M is smooth ab Py

e (M=V)+0.

Consequently # e M—TU. Thus M—T is closed, i.e., U is open.

COROLLARY 3.1. 4 smooth continuum M is locally connected at each
point of I(M).

TeEEOREM 3.2. The continwum M is o tree if and only if I(M)=

Proof. Suppose that M is a tree and p e M. That pel(M

) follows
immediately from the fact that M is locally connected.
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If I(M)= M then by definition M is hereditarily unicoherent at
each point. According to Lemms 1.1, M is hereditarily unicoherent; by
Corollary 3.1, I is locally connected. Consequently M is a tree.

THEOREM 3.3. Let M be a smooth continuum and suppose that N is
a subcontinuum of M such that N ~I(M) #G. Then, for each sub-
continuum H of M, N ~ H is a conlinwum.

Proof. Suppose, on the other hand, that ¥ n H = K, v K, (sepa-
ration). Let J denote a subcontinnum of H which is irreducible between
K, and K,. For ie{l,2}, let ke KinJ. Let {as,neD} be a net of
points in the %;-composant of J which converges to k,. (The existence
of such a net follows from [6], Theorem 3-44, page 140.)

Let U be a relatively open subset of J v N such that el(U) CJ—N.
Since J is irreducible between k, and %,, it follows that cl(U) separates J
into two relatively open sets, one containing K, n J the other containing
K, ~d.

Choose p e I(M)~N. Now there exists an 7,¢D such that for
w2 Ny, .

panncl{(U)# 0.

Consequently
Limpas, ~cl(U) # 0,
that is,
phynel(U) #0.
But

pks CN C M—cl(T),

which is a contradiction.

COROLLARY 3.2. Every smooth continuum 18 unicoherent.

COROLLARY 3.3. Ewvery indecomposable subcontinuum of a smooth
continuum has void interior.

Proof. Suppose that M is a smooth continuum and N is an inde-
composable subeontinuum with non-void interior. Let p eI(M). If
p e M—N, let Cp denote the closure of the component of M — N which
contains p; if p e N, let Op = {p}. Choose g ¢ N—Cp, and let ¥ be an
open set such that

0, CV Cel(V)C M—{q}.

According to Theorem 3.1, we may assume that ¥V is connected.
By Theorem 3.3, the set cl(V) ~ ¥ is a continuum. But cl(V) ~ ¥ hag
non-void interior relative to N. This contradicts the fact that N is inde-
composable [6], Theorem 3-41, page 139.
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It is perhaps worth noting that there exists a metric continnum I
which is smooth with respect to a point p and such that M— {p} is the
union of a pairwise disjoint collection of nondegenerate indecomposable
continua. An example of such a continunm may be obtained as follows.
Let N denote a continuous arc of pseudo-arcs as described by Thomas
in [11], page 59. The continuum N is an irreducible plane continuum and
there exists a monotone map f: N—[0,1] such that

(@) f1(t) is a pseudo-arc for each te[0,1], and

(ii) f~1(t)* = @ for each te[0,1].

Now define M = N[f~'(0). The continuum M has the desired
properties.

4. Monotone mappings on smooth continna. In’ this section we study
monotone mappings on continua which are hereditarily unicoherent at
some point and prove that smoothness is an invariant of such mappings.

THEOREM 4.1. Let M denote a continuwm which is hereditarily wuni-

coherent at a point p. Let f: M —H be a monotone map from M onto a Haus-
dorff space H. Then

@) H is hereditarily unicoherent at f(p),

(i) f(p2) = f(p)f(2) for each o e M, and

(i) f{Z(20)C I(H).

Proof, (i) Suppose that H is not hereditarily unicoherent at f(p).
Then there exist subeontinua B and § such that f(p) e R~ S and R~ S
is not connected. Since f is monotone, f~*(R) and f~%(S) are continua

containing p. But f(8) ~f(R) is not connected which is a contra-
diction.

(ii) Clearly f(p)f(@)C f(px). Suppose that there exists a point

Y € f(px)—f(p)f(x), and choose z ¢ px such that f(2) = y. Then f~*(f(p)f(x))
is & continuum containing p and z but missing 2. Since M is hereditarily
unicoherent at p, f™(f(p)f(#)) ~ p» is a continuum containing p and
which misses z. This is a contradiction.

(iif) Suppose that M is smooth at p. According to (i), H is hereditarily
unicoherent at f(p). Now suppose that H is not smooth at f(p). By Theo-
rem 2.3 there exist nets {am; m ¢ B} and {bn, m ¢ B} such that limay, = a,
limbm =b, bm epam for each m e FE, and b ¢ H—f(p)a.

By using standard techniques involving nets it is possible to find
convergent nets {e,,n ¥} and {ds,n ¢ F} in M such that

(a) if limey = ¢ then f(c¢)=a,

(b) {f(cn), n e F} iy a subnet of {am,m ¢ B},

{f(dn),n e F} is a subnet of {bm,m ¢ B}, and

(c) for each n eF, d, e pe,.

icm®

7

ot

On decompositions of smooth continua

From (a) and (ii) it follows that f(pe) = f(p)a. Since M is smooth
at p it follows from (c¢) that

if limd, = d then depec.
Consequently
(@) ef(pe) = f(p)a.
Applying (b) we have
f(d) = limf(dy) = limby, = b .

Thus b ¢ f(p)a; but b was chosen in H—f(p)a. This is a contradiction.
It follows that H is smooth at f(p).

5. The canonical decomposition of smooth continua. The following result
summarizes several theorems from [5].

TEEOREM 5.1. Let M denote a continuwm which is irreducible between
wo points. If each indecomposable subcontinuum of M has void inierior
hen there exists a decomposition & of M such thal

(i) & is upper semicontinuous,

(ii) the elemenis of & are continua,

(ili) the decomposition space of & is an arc, and

(iv) if ¥ is a decomposition satisfying (i), (i), and (iii) then &< F
(i.e., refines &).

Furthermore, each element of & has void interior.

In this section we will apply Theorem 5.1 to obtain an analogous
decomposition for smooth continua. For smooth continua the decompo-
sition space is a generalized tree.

Throughout this section let 3 denote a smooth continnum and let p

be a fixed point in I(M). We define an equivalence relation ¢ by the
condition

(#,9) e o if and only if pz = py.
Let ¢= M—>3Jo denote the natural map and let
D= {p7'(t); t e M/g}.

Levwa 5.1. Let M be an irreducible continuum. Then the decomposi-
tion D described above coincides with the decomposition & of Theorem 5.1.

Proof. For each e M, let D(x) (resp. FH(x)) denote the element
of D (resp. &) which contains x. According to Corollary 3.1, M is locally
connected at p. Consequently D(p) = {p} = E(p).
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Let f: M--[a,b] ([¢,D] denotes an arc) be the monotone map
associated with the decomposition &, i.e.,

8= {f(t); a<t<b}.

Suppose that e M—{p} and that f(p)<f(2). We may assume
without loss of generality that

z e cl{f{la, f(@)))} ~ A{f(f(=), b])}
since B(z)' =0
Tt will now be shown that F(z) C D(z), ie., for each y ¢ E(x), py = px.
Suppose, without loss of generality, that y ¢ ps. Lebt {#n, 7 € D} be a net
in f7((f(«), b]) which converges to . According to [5], Theorem 2.3,
it follows that E(z) C px, for each n e D. Consequently

y € Limpz, = po.

This is a contradiction; thus FE(z) C .D(z).

Suppose that w e D{(z)— F(z). Without loss of generahty we may
assume that f(p) < flw)<f(a). Then FHF (@), flw ) is a econtinuum
containing p and w which misses . This contradicts the definition of D(x).
Consequently D(x)= F(xz).

We are now ready to prove that the decomposition D (called the
canonical decomposition of M) has the desived properties. Although D was
defined in terms of a particular point p e I(M) it will be seen that D is
actually independent of the choice of p.

TeeoREM 5.2. If M is a smooth continuum then there exists a de-
composition D of M such that

(i) D is upper semicontinuous,

(i) the elements of D are continua,

(ili) the decomposition space of D is arcwise connected, and

(iv) if & is a decomposition satisfying (i), (i), and (iii) then D < &
(i.e., D refines §). '

Moreover, the decomposition space of D is a generalized tme and each
element of D has void interior.

Proof. Let D denote the decomposition of M described above. (i) In
order to prove that D is upper semicontinuous it suffices to show that

¢ is a closed subset of M X M. Let {(2s, ¥x), n e D} be a net in p which
converges to (z,y). By smoothness

pe = Limpr, = Limpy, = py .
Thus (x,y) € o and p is closed.
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(ii) That the elements of D are continua, indeed continua with void
interior, follows immediately from Lemma 5.1 and Theorem 5.1.

(iii) Let ¢(x) denote an arbitrary point in Mfo— {p(p)}. Applying '
Lemma 5.1 to the continuum pz it follows that ¢(px) is an are containing
@(p) and @(x). Thus M/o is arcwise connected.

(iv). Suppose that there exists a mapping y: M —H such that the
decomposition § = {y~*(h); h e H} satisties (i), (i), and (iii). If D does
not refine § then there exists an element D ¢ D and elements E, and B,
of & such that

EinD#0, ie{l,2}.

Since H is arcwise connected we may assume that there exists an
are A in H which contains the points p(p) and ¢ (F,) but misses y{H,).
Now v '(4) is a continuum which contains p and intersects D properly.
This contradicts the definition of Dj consequently D < &.

In order to prove that Mo is a generalized tree we must show that
M]p is hereditarily unicoherent. If /o is not hereditarily unicoherent
then there exist subcontinua H and K of M/e such that H ~ K is not
connected. Let A denote an arc from g(p) to H v K such that

An~(HoE)={}.
Assuming that 2z € H, define
=AUH.

Then H' nK = H ~ K; hence H n K is not connected. Since ¢ is
monotone ¢ (H’') and ¢ '(K) are subcontinua of M such that ¢~ (H') »
~ @ Y(K) is not connected. However ¢ *(H') ~ I (M) = @ which contra-
dicts Theorem 3.3.

Thus MJp is hereditarily unicoherent and arcwise comnected (iii).
By Theorem 4.1, 3o is smooth; hence B3/ is a generalized tree.
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Fixed point theorems
for non-compact approximative ANR’s*

by
Michael J. Powers (Dekalb, Ill.)

1. Introduction. Compact approximative ANR’s were first introduced
by H. Noguchi and in 1968 A. Granas proved that they were Lefschetz
spaces. More recently J. Jaworowski proved the -Lefschetz fixed point
theorem for upper semi-continuous, acyclic multi-valued maps of these
compact approximative ANR’s.

On the other hand there is much recent interest in Lefschetz fixed
point theory for compact maps of non-compact spaces. A space X is
a A-space if for every compact continuous map f: XX, the Lefschetz
number A(f) exists and f has a fixed point whenever A(f) = 0. For
example, ANR’s are s-spaces ([2], [4]). The corresponding concepts, M-
Lefschetz space and MA-space, for certain multi-valued maps have been
studied. (The maps used need not be acyclic; it suffices to require that
they be compositions of acyclic maps.) ANR’s are known to be M A-spaces.
(See [7].)

In this note, it is shown that (non-compact) approximative ANR’s
are /A-spaces. It is also proved that a second related class of spaces are
M A-spaces. ;

2. Preliminary definitions. In this section we recall the pertinent facts
about multi-valued maps, establish the homology theories under which
we will be working, and recall the definitions of A-space and MA-gpace.
The reader is referred to [7] for the details of this section. )

A map is said to be compact if its image is contained in a compact
set. A multi-valued map F: XY is upper semi-continuous (u.s.c.) if

(i) F(x) is compact for each z in X and

(ii) for each # in X and each open set V containing F(x), there is
an open neighborhood U of # such that F(U)CV.

* AMS 1970 subject classifications. 54C55, 54C60, 55C20.
Key words and phrases. Absolute neighborhood retract, approximative absolute
neighborhood retract, Lefschetz fixed point theorem, multi-valued map.
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