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onto a regular Ty-space having a A-base. Both of these theorems may
be proved from a unified point of view which encompasses certain non
first countable situations. This is carried out in [14]. Here it seems prefer-
able to give a direct proof with appropriate references to [13] rather

than use the general mapping lemma of [14].
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Models of second order arithmetic with
definable Skolem functions

by
Andrzej Mostowski (Warszawa)

Let A, be the axiomatic system of second order arithmetic as de-
scribed in [2].
In the study of the problem whether the standard part of a model

E% g %aﬁjéiﬁ’ Zﬁ;ﬁ;&;ﬁ‘”’g& I;m"]‘;’?;n”fo; v 1935 of A, is itself a model of 4, we introduced the following model theoresic
. s s .» Berlin—Leipzi, . . N ) .
[8] J.G. Hocking and G- 8. Young, Topology, Rea,d%ng 1961, concept: Let A be a structure of type o and P a sggular predicate of o.
[9] J.L. Kelley, General topology, Princeton 1955. Let B be another structure of type ¢’ such that 4 is a reduct of B. We
[10] K. Kuratowski, Topology I, New York 1966. say that B is an S-struciure for A and P if
(11] (13%0111[1 '13?1 ; Oghlfogzztwm of point set theory, revised edition, Amer. Math. Soc. 1° all the Skolem functions of B are definable in B;
[12] N. Vedenisov (= Wedenisoff), Sur les espﬁoes métriques complets, Journal de 2° each subset of P4 (the interpretation of P in 4) which is para-
Mathématiques, Ser. 9, vol. 9 (1930), pp. 377-381. metrically definable in B is so definable in 4. (See [3].)
18] ?-ﬁgﬁge{l g’g:) Ttipggkngztl’p:r;;ammuous images of complete metric spaces, Pac. Using Lévy’s model for A, (see e.g. [4], pp. 241-247) we can easily
(4] — Open continuous images of certain kinds of M- spaces and. completenass of mappings exhibit an ®-model A in Whl(ﬂ% all the axioms of 4, with the ‘exceptlon
and spaces, General Topology and its Applications, 1 (1971), pp. 85-100. of the axiom of choice are valid such that no § -structure exists for 4
[15] — and J. M. Worrell, Jr., Open continuous mappings of spaces hawing bases of and the predicate N (-). For w-models of the full system A, the situation
18] comiab(l; h;rdetr, 'Dub-}{e Mat;. J. 84 (1967), pp. 255-272; errata pp. 813-814. is different: we shall prove the following .
—_ TACLETI2) 1
risations of developable topological spases, Canad. J. Math. 17 (1965), THEOREM. If M is a denumerable w-model for A, then there ewists

an 8-structure for M and the predicate N (-).

Proof of this theorem will occupy the rest of this paper. We shall
use a very primitive form of the forcing argument. Our proof was in-
fluenced mainly by the result of Felgner [1].

Levya 1. The following scheme is provable in A, (cf. (iii) below for
the meaning of £™):

8(w) & C(w) & (n)n(e)s{C (¢) > (Ee)g[C(C) & B(c, ¢) & D(n, )1}
- (B2)g{(z® = w) & (n)5[C (™) & B(e™, 2*+) & D (n, £} .

Read “c is a vertex” for C(c) and “C is an nth extension of ¢” for
B(¢,?) & D(n,c). .

The scheme can then be expressed as follows. If for every integer n
every vertex has an nth extension which is also a vertex then for every
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vertex w there is a z such that 2@ =w,2®,..,2M, .. is an infinite
sequence of vertices and 2™ is an mth extension of ™. Tn thig formu-
lation the scheme becomes obvious apd one sees immediately how to
prove it with the help of the axiom of choice. Scrutinizing the proof we
convince ourselves that it can be repeated in the formal system A,.

Let L be the language of A, as described in [2]. We assume that the
logical constants of L are &, v, -, =, 71 and the existential and general
quantifiers. In the formulae of L we shall admit only limited quantifiers
(Bz)y and (Ba)g: “there is an integer” and “there is a set” and limited
general quantifiers: (»)y, (@)g. If the formula (Bla) Az, y, .., 1)
is provable in A4,, then we shall allow a new term (Y, ..., t) and an
axiom A(a(y,..,t),¥, .., t). The system A, enriched by the new
terms and axioms is an inessential extension of A,. We ghall treat
formulae containing the defined terms ag abbreviations of formulae
of the language L.

An w-model M of 4, will always be identified with the family of
its sets. If @ is a formula with, say, 3 free variables, then we denote
by @i & ternary relation which holds Detween 3 elements of the model
(integers or sets) if they satisfy & in M. An n ary relation R is parametric-

ally definable in A/ if there is a formula @ with & = n free variables and,

elements p,,,, ..., p, of the model such that for arbitrary @y ey @y the
relation B holds between a,, -3 &y if and only if they belong to the model
and M EOlay, ..., 4, D, .., Pr)-As no other kind of definability will
be involved in our discussion, ‘we shall often omit the word “parametric-
ally”.

We now introduce a series of abbreviations:

(8) Pairs of integers. A pair of integé_rs my 1 i3 defined as J(m, n)
= t(m+n)(m+n+1)4m, '

(ii) Pairs of seis (cf. [5]). A pair of sets z,y C N is defined as the
set a4 = {20-+1: @ ea} U {20: b e y}. Bach set ¢ can be uniquely repre-
sented as #; y and we put z - (B, Y = (2),.

(iii) Coding of infinite sequences of sets. For any integer » and set o
we pub 2™ = {m: J(n, m) ez}. Instead of (En)(y = o) we write ysa.

(iv) Relations, domains and ranges. We write man for J

; ‘ (m, n) ewx;
this formula is read: m bears the relation z to n. Thus every seb of integers

can be conceived as a binary relation. We define Dom (z) (domain of @)
and Rg(#) (range of ) in the usual way. ’

() One-fme MAPPINGs; isomorphism. We shall abbreviate as Fn(f)
a forpmla ‘which says that f maps a get of integers onto a set of integers
and is one-to-one and ag %1y %, the formula Fn(f) & () {the) (0, v (Vs v
’{[(ulfuz)&(vlfvz)]—%»[(ulwlvvl) = (12,%:)]}; this formula says that f es-
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tablishes an isomorphism between z, restricted to the domain of f with =,
restricted to the range of f.

(vi) Well ordering. Formulae B and B. We abbreviate the formula
“z is an irreflexive well-ordering of N” by Bord (z). Moreover we define

B(fy 2, m): Fu(f) & (w][j « Re(f)) = (jom)],
B(f, 2, n): Fo(f) & (i)w[[i « Dom(f)) = (izn)].

These formulae say that the range (or domain) of f coincides with
the set of z-predecessors of n.

Levwa 2. The following formula is provable in Ayt
Bord(z) & Bord(y)—>(E!f)[(w7y) & (AvBv0)]

where A, B, O are formulae: Rg(f) = Dom(f)= N, (Dom(f) = N) &
& (Br)wR(f,y, n), (Re(f) = N) & (BEn)w R (f, 2, n).

The formula says of course that if ,y are two well-orderings of N ,
then they are either similar, or one is isomorphic to an initial segment
of the other. In all cases the isomorphism is determined uniquely. A formal
proof of the formula is essentially the same as the one given in elementary
set theory.

(vii) Let Cond be the formula (with one free variable )

Bord((#)) & (@)w(j)[(i = ) V(@) = (2)7)] .
Intuitiveh; speaking a condition iz a sequence (2)P, (x){, (#)Q, ...
well ordered by the relation: (#){ precedes (#){ if J (i, §) ¢ ().
(vili) Partial ordering of conditions. Let # <<y be the formula:

Cond (¢) & Cond (y) & (Bf )5(Br)y{[(2) ()] & (Dom(f) = ) &
& B(f, (), ) & @i [(f) > (@5 = )P} -

The intuitive meaning of this formula is that the well-ordering (),
is similar to an initial segment of (y), and that (2)¥® = (y){'® where f is
an isomorphic mapping of N into N which establishes the isomorphism
of (z); and a segment of (y),.

Lzansta 3. The following formulae are provable in A,

() (2<y) &y <2)->(n<2);

(b) Cond(a)-> T(z << x);

(¢) Cond(z) & S(s) & T (se(@)y)~ (By)s[(x < y) & (se(¥)y)];

(@) 8(z) & (n)n(a™ < D) (By)g(n)y(2™ < y).

(a) and (b) are obvious; (e) is proved by taking ¥ so that the order
type of (y); be a-+1 where o is the order type of (#), and that under the
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ordering (y), the last term of the sequence (y){, n=10,1,... be equal
to s whereas the previous terms be equal to consecutive terms of (z),.
Finally (d) is proved as follows. From a? < #+? we infer that there
is a similarity mapping s, of <, («?);) onto a segment O, 1 Of
<N, (@), > such that (2?){9 = (2F+9)#®) for each k. Let N=N,u N, u ...
be a decomposition of N into sets equipotent with N —0; and let
Ji be a one-one mapping of N, onto N—0, We take for y a condi-
tion u; v such that (mun)=[(i <j) v (¢ =j) &fy(m)@?),f;(n)] and v®
= (@)J4™ where m e N, and n ¢ N,

(ix) Forcing. We construct a new language L’ which differs from I
only by containing a new binary predicate symbol “R”. For each
formula, @ of L we construct a new formula F, which hag one more free
variable (“the new variable”) than @. The definition of F, is by induction.

It & is an atomic formula of I then F, is the formula Cond(z)& &
‘where « is the first variable not in @.

If & i3 the formula wRv, then Fy is the formula

Cond () & S(u) & S(v) & (Ei)N(Ej)N(i(m)lj) & (u = (2){") & (v= (2)§")

‘where # is the first variable different from the variables u, ».

It & is 7Y, then F, is the formula (2')s[(# < 2')-> "1 Fy(2')] where -

" is the first variable which does not occur in Fy, and is different from =
and Fy(#) result from F, by substituting o' for its new variable.

It @is ¥ & @ or ¥vO then F, is the formula Fy(2) & Folw) or Fylz)v '

VFo(z) where = is the first variable which occurs neither in ¥, nor in F,
and Fy(z) resp. Fy(x) arise from Fy, Fy by substituting # for their new
variables.

If & is ¥>0 then F, igthe formula (@)slz < 2" & Fy(2') = To(a')]
where z, ' are different variables which occur neither in F, nor in F,
and Fy(a'). Fg(a') arise from P, F, by substitution of z for the new
variables of these formulae.

If @ is ¥ =0, then F, is Fy(x) & Fo(2) V(#")sl (2 < a') TR (2) &
& 71 Fy(2"))] where @, o', Fy(w) etc. are defined similarly as above.

It @ is (Bu)y ¥ or (Bu)g¥, then F, is (Bu)yFy or (Bu)gF,.

I & is (u)y¥ or (w)g¥ then Fy is (u)yFy or (w)g By

(%) Decidability. The formula ¥, VEF-, will be written ag Dec,,.

The use of symbols F,, Dec, is often cumbersome and we ghall in
most places write them as @ I @ or o|®. Tstead. of W FF [P, 0y ey )
or M E Deeylp, ay,...,,] we shall then write p ik u®lay, ..., ay] or
Dludlay, ..., az). T '
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Leuva 4. If @ is a formula of L' then the formulae

(@) (2<y) & (@ D)—>(y I D),

(b) Cond (z)—>(By)[(» < y) & (y|D)],
are provable in A,. Moreover if @ is a formula of L, then the formula

(e) Cond(2)—[(x I @) = @]

18 provable in A,.

Proof of this lemma is immediate.

(xi) Generic sets. Let M be an w-model of A,. A set @ C Condyr is
dense in Condy if for every » in Condy there is an #’ in @ such that z < 2.
A set @ C Condy is generic for M if it satisfies the usual three conditions:
(1) for every z, y in @ there is a 2 in & such that 2 > 4@ and 2 > y; (2) if
@ e @G and y <<uy « then y € G5 (3) if @ is a subset of Cond,, which is dense
and definable in M then @ and G intersect with each other.

LemMA 5. For every denwmerable o-model M there emist generic sets.

Proof: obvious. )

We fix a denumerable w-model M and a set G generic for M and
define a relation < as follows: Let @ he the formula v, Rv, and let v, be
the new variable of F,. We put for =,y in M:

(# < y) =there is a g in & such that Mk F,lg,vy, «].

Relation < together with M determines a model (M, <J) of the
language L'. We are going to prove that this model is the required
8-structure for M. First we must establish the truth-lemma:

Lemwma 6. Let @ be a formula of L' with k-1 free variables and let 7@ be
a k-tuple of integers and 3 an l-tuple of elements of M. Then

(Ba)o( M Fola,n,3]) = (M, <)k D7, 3].

‘We omit the ~~—tine proof of this lemma.
Levma 7. I s any of the following formulae
(1) 8(vy) & & & (v Rvy) = T1(v = wy),

(i) 8(vo) & &1ey; & 8(y) & (v R21) & (v, Bv;) (0. R0,),

(i) 8(ve) &S (v) & (”ov =)= "1 1[(9Rv,)V (v, Bvg)]
and if u, v, weM then %\ DPlu, v, w] for any z in Condy.

Proof of (i). If 4’ is an extension of & which forces the antecedent
then no extension of 2’ can force the formula u = v hecause otherwise
we would infer w = » which iy incompatible with &’ IF »r u Rv.

(ii) Follows from. the definition of forcing.

(iii) Let ' be an extension of » which forces the antecedent of (iii)
and let 2* be an extension of #'. Let #’ be an extension of #* such that
both % and v stand in relation & to (z''), (see Lemma 3 (e)). It follows that
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there ave integers m, n such that u = (#"){™, v= (&) and m s n.
Hence either M k (n(2"')ym) or M k (n(2’);m) and hence either @' ky uRvp
or #'' ky vRu. Thus we have proved &’ i ~171[(uRv)v (v Ru)].

In the next lemma @ is a formula of L' with the free variables u,
= (Vyy e0ey Vg)y W= (Wy,..,w;), ' is a variable which does not occur
in @, &(u') is a result of yubstitution of »’ for » in @ and ¥ is the formula

D171 Bu)e{® & (w')g[w'Bu~ 1P (w')]} .

LeMMA 8. If weCondary = (i, ..., 0) 18 @ sequence of integers and
§= (81, ...y &) s @ sequence of elements of M and m is an integer then
@l W[(w)gm): Zy 3] '

Proof. Since 7,5 do not change throughout the proof, we shall not
write them at all. Let #” be an extension of 4 which forces @[(m){™],
‘We have to show that whenever y > 4', there is a ¢ in Condy such that
c>uy and oy (Bu)g{® & (u')g[w' Ru~ 10 ()]} Thus let y > o' and
let ¢ be a function in M (i.e. a set of ordered pairs) which enumerates
(possibly with repetitions) the set consisting of m and of all integers
which precede m in the ordering (z),. We ghall first determine a con-
dition ¢ >ur y such that olju®@[(2)™] for each n. Put in Lemma 1 Condy,
for 0,u<u for B(u,%) and w|®((@)§™) for D(n,%). The antecedent
of the formula in Lemma 1 is satisfied in M if we interpret w as y (cf.
Lemma 4(b)). It follows that there exists a2z in Sy such that 2® =y,
AN PU)F"™ ] and 2™ <y 2D for each n. Using Lemma 3(d) we
arrive at a condition ¢ which extends each ™. Hence ¢ is the required
condition. Let p be the earliest integer in the ordering (¢), such thab
¢k B[()]. Such a p exists becatse z' and hence ¢ forces B (2)M™]
and (z){™ can be represented as (¢) for an integer P because ¢ >y 2.
Also notice that if ¢ precedes p in the ordering (¢);, then (€)9 has the
form (2){" where n precedes m in the ordering (x),. This is so because
the ordering (x), is similar to a segment of (¢), and ()" = (0)® whenever
n and g correspond to each other under the similarity mapping.

The lemma will be proved if we show that ¢ forces D[(e)P] and
¢ forees (u)g[w'R(0)P>16(u')]. The first formula is evident because
of the definition of ¢. Now select an arbitrary set s in M and assume
that ¢ > ¢ and ¢ forces sR(c)P. Since ¢ >y ¢ there is in M 2 map f of
integers into integers such that the ordering (¢); is mapped onto a segment
of (1), and (e){? = (1)) for each k. Since ¢ 5 sR(c) there are integers
4,J such that i precedes j in the ordering (#), and 0P = s, (P = (e}
Since (o) = (¥ it follows j = f(p) because 1o two sets of ‘the form
()% are equal to each other. Thus j and therefore also i belong to the
segment onto which f maps the integers and we can pub i = f(g) where ¢
precedes p in the ordering (¢), and obviously p + ¢. Since p was the

earliest integer (in the ordering (c),) for which ¢ forces B[(e)P] it follows
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that ¢ non Iy P[(c)P]. As we remarked above (¢)? has the form (z)®
where n precedes m in the ordering (z);. Hence ¢ decides ®[(¢)] and
therefore ¢ IF 17 T1P[(¢)¥]. Since s = (1) = (¢)? we infer that ¢ I 7 D[s]
and ti-ar T1D[s]. The lemma is thus proved.

COROLLARY 9. For each formula @ in which the variable u is free,
the formula

(10)g(P > (Bu)g{® & (w')g[t' Ru~ 1P (u')]})

is walid in (M, <).

Proof. Let 7,5 be any valuation of the free variables of & which
are different from w. It is sufficient to show that any condition y forces
(u)g 1 1¥[7, 8] where ¥ iy defined as in Lemma 8.

Because of the double negation after the quantifier this assertion
ig equivalent to the following: for every set ¢ in M and every @' >y
there i1s & condition # >y 4’ sueh that i P[t,7,3] If ¢t and 2’ are
given, then by Lemma 3(¢) we can find an & >j 2’ and an integer m such
that t = (2)™ and the formula to be proved becomes # I ar P[(#)(™, 7, 51.
This is precisely the formula proved in TLemma 8.

Lmania 10. All Skolem functions for (M, <) are definable in (M, <)

Proof. Let @ be a formula of I’ and let » be a free variable of @
whereas u’ is a variable which does not occur in @. To say that the Skolem
function for @ iy definable amounts to the following: there exists
a formula ¥ with the same free variables as @ such that the formulae:

(i) P—&; .

(i) Y(u) & P(w')~>(u=u);

(iif) O—(Bu)¥
are valid in (I, <).

Let us denote by <, the usual arithmetical inequality. We define ¥
as ¥,v¥, where

Pr [(Bu)yP] & N (u) & D & (w')y[u' <, u-"10(u)],
Py [THEu)yP] & S{u) &P & (w')g[u'Ru— 10 (w')].

The validity of (i) is obvious. To prove (iii) we argue as follows:

Let 7, § be o valuation of the free variables of @. Tither there exists an

integer n such that (M, <) k @[n,1, 5] or not. In the forme{ case there

is a smallest such integer #n, and therefore (3, <) F ¥[ng, 4, 5}; in the

latter case either no set s in M satisfies @[s, ¢,3] in (M, <) and (iii) is

valid or there is such a set s. If (M, <) F @[s, 7, §] then by Corollary 9
there is a set s, which satisfies (M, <) F ¥yls,, 7, 5.

Finally (ii) is proved as follows. It (M, <)k @[n, i, 5] where n is

the least integer with this property then # is the unique element such
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that (M, <) F ¥[n,,5] and (i) is obvious. If no integer satisfies the
previous condition and (M, <) k ¥Y[s, 4, 5] & ¥[s', ¢, 5] then the formula,
(W) [ Bu—>"10(w)] & P is satistied in (M, <) by the valuations (s, 7,5)
_ and also by (s',4,5) which shows that neither s < s’ nor &' <s. Thyg
it follows that s =s".

Levva 11. If X CN and X is pdrameirically definable in (M, <)
then X belongs to M and hence is parametrically definable in M.

Proof. Let @ be a formula and 7 a sequence of parameters such
that ne X = (M, <) k P[n, 7). Put

@ = {c e Condy: (n)wellu®Pn, pl}.

This set is obviously definable (parametrically) in M. We show firgt that
@ is dense. Thus let ¢ be an arbitrary element of Condyr. By Lemma, 3(d)
the formula

(Mx(@)s{(@ > o) >(By)[(y > ) & (4@ (n, D))}

is true in M for the values ¢, 7 of the free variables. Using Liemmas 1
and 3(d) we infer that there is a condition # in Condy such that & >y ¢
and aiu®P[n, p] for each integer n. This establithes the density of ¢.

Now select a g in Q ~ Q. If » is in X, then there is a ¢, in @ such
that ga i+ 1 B[, B1. Since g and gn have a common extension in @ and q
decides @[n, P] we infer g |- @n, 7). Similarly g | 5 T1P[n, 7] it n ¢ X.
Thus n e X =gy On,plie.ne X = ME F,lg,n, 7] for each # which
proves that X is parametrically definable in I,

The theorem formulated at the beginning of the paper follows directly
from Lemmata 10 and 11.

Appendix

In order to show an application of the
a result which generalizes a theorem
because they are the same as in 3]

Let M = <UJ(:’NJK;5 S.A()’E./KJAJG"PJ()) be a model of AZ' The nth

element of N is denoted by #4(AM); these ele \
fntegens of 1 a(A); ments are called standard

In the case of first order arithm,
model form themselves a model.
necessarily the case for 4,.

First we define the standard *

part G
U* N*, §,¢, A*, P*S where U* — N*
4%, P* are the relations z{y

theorem proved above we state
proved in [3]. We omit most proofs

etic the standard integers of any
Our aim iy fo show that thig is not

of Ao This is a structure
‘ v 8% N* is the set of integers,
=3 Y=g, eis .the usual set-theoretic
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relation of belonging to a set and 8" is the family of sets {n ¢ N*: v,(dt) E WX}
where X ranges over 8.

In case when N* C N, B, is the e-relation and §, consists of sub-
sets of N, we can describe 6" as the structure obtained from 6 by
removing all unnatural numbers.

TaroREM. For each w-model A of A, there is an elementarily equiva-
lent model whose standard part is not o model of A,. )

Proof of this theorem will be divided into 4 parts. It will obviously
pe sufficient to deal with a denumerable model.

I. Definitions. We start with a given w-model At and denote by
Moy = (02,0, w-2—w, e, 4;, P>

its isomorphic image obtained by a one-to-one mapping of N, onto o
and of Sy, onto w-2—w. We can arrange the mapping so that the image
of w(AMG) e n. Thus wu(My) = n.

By the theorem proved in the main body of the paper there is
a relational system £; = (AMy,<<;) which is an S-structure for A, and
the predicate N (-). We shall use the letter £ with indices to denote re-
lational structures of the same type as £, while the letter A6 with the
same indices will denote the reduct of £ to the language of A4,.

A 5ot bC w will be called definable if there exists a formula & (of
the language appropriate to £;) in which at least one variable, e.g. &, is
free and a sequence of parameters ¢: Fr(®)— {z}—>o-2 such that the
equivalence n e b = £, k O[{<z, np} v ] holds for any integer n.. Fr(P)
denotes here the set of free variables of @; we shall identify variables
with their Gédel numbers.

The family of definable subsets of w will be denoted by B. .

A sequence s: w->0-2—w will be called definable if there exists
a formula Q with at least two free variables #, y and a sequence of para-
meters ¢: Fr(®)—{z,y}>w -2 such that the equivalence (qsl‘é‘n)
=0k Q[{<w,nd, <y, >} ¢] holds for any integers n and ¢. _We define
similaxly the concept of a definable sequence of integers (i.e. of ele-
ments of w).

1. If b e B, then there is a f, w < p < -2, such that neb = nef for
each n in w.

Proof of this lemms results from the fact that £, is an S-structx_u’e
for M, and the predicate N (-) and that the axiom scheme of comprehension
is valid in JC.

II. Definable reduced powers of £;. Since B is 2 Boolean_ algebra ze
can congider its filters. Let ¥ be an ultrafilter of B f,nd let ~F I’)/e tFe
following relation between definable sequences: s"~r "= {n: 5, = s} e F.
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For a definable s we denote by 5y the set of all definable sequences ¢’
equivalent to s. Let Uy be the family of all the sets 3, with s ranging
over definable sequences. The definable reduced power of £, will he the
relational structure £,(F) with the universe U and with the interpre-
tations of the predicates defined as in the ordinary reduced powers (see [61).
E.g. 8 is interpreted as the family of those 5, in Uy for which {n:
Snew2—w}eF and B as the relation &= ((Gp, tip) € Dypx T,
{n: sne,uy} e F). .

£, and £,(F) are elementarily equivalent because the lemms of fiof
is valid for C,(F); in the proof of this lemma we use the fact that all the
Skolem funetions of £, are definable in f,.

DEFINITION. Let lo(F) be the standard part of Ao 1.

2. A set X belongs to S Ay O and only if there is a b in B such that
X = {j cw: {icw: J(i,j) eb} EF}.

Proof. Let X be the set of the form indicated. By 1 we can replace
J(i,5) €b by J(i, j)ep where o < f< w-2. Notice now that if @ is the
formula (v)v[E(v,y) = B{J (z, v), w)] then the formula (w)g(2)w(B! ),
O(z, y, w) is provable in 4, in view of the axioms of extensionality and of
comprehension. It follows that for each » in  there is exactly one s, such
that o <sn < -2 and £, F O[n,ss, 8]. Hence gs,s, = J(n, g)e,f which
proves that s is a definable sequence and hence 5y « Uy. Let 6@ De a se-
quence all of whose terms are equal to . We easily verify that (9),s,5,
=geX. Since (¢9)p = ¥ Moo F)), this proves that X is in the standard
part of A(F).

Let now X be a set which belongs to (
part of My(F). Hence ge X = % Moo F1))
where s is a definable sequence. Let Q
define ¢ and let @ he the formuls, Q(Kz
inverse to the pairing function J. The
parameters ¢ define 2 set b in B and'J (
={n: J(n,q) eb} eF.

Lemma 2 is thus proved. ‘

In the sequel we denote the set {jew: {{lew: J(i,7) e b}

the universe of) the standard
&5y = (69655, = {m: qesp) eI
and a sequence ¢ of parameters
» Lz, ...) where K, I are funetions
formula @ and the sequence of
%, 4) €b = ge 8, It follows ge X

€ I} by Rp(b).

IL Codes of definable sets, We
=2{r—w)+2 for o<
domain 4 C e, then we

put | = 2z+1 for # in » and |a
< w2 I ¢ is a finite function 4 - .2 with
call the product [p" the code of g ps is
X ied
of course the ith prime.

Let € be the (primitive recursive
such that m, i.s the Godel number of a formula & (to be denoted in the
sequel by @) of the language of £, with 2 ¢ Fr(®y) and m, is the code of
a sequence gm: Fr(@p)— {2} .9, Elements of ¢ are Ea]led codes of

) set of integers m = J (m,, my)

icm

©
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definable sets. Which set is coded by m cannot be read of f from m alone.
n order to define this set we use the set .

Staf = {J (n, m): m e O & L1 F Bul{<m, n)} U pu]}.

The set coded by m is thus {n: J(n, m) e Stsf}. The least m which
is a code of a set b we call a distinguished code of b and denote by C¢*
the set of distinguished codes. Each b in B has exactly one distinguished
code and C* iy arithmetical in Stsf. Henceforth we abbreviate “arithme-
tical in Stsf” by . ‘

We shall say that a filter Fy C B or a base X, of such a filter is an -
filter or an s-Dbase if the distinguished codes of the elements of F, (or
of X,) form an J-set. o

Let X, be an s-base of a filter F, C B. The dlstmgulsyed codes of
the elements of Iy can be enumerated by an #£-function. B beLpg denumer-
able we obviously can extend F, to an ultrafilter in an effective way and

- it we uge in the proof an enumeration of B according to the ordering of

the distinguished codes of its elements we can convince ourselves that F,

can be extended to an s-ultrafilter 7. ‘ o .
From the definition of Rr(b) we immediately see tha,.t if Fis an

#-filter, then Rp(b) is an #4-set. From these remarks we infer.

3. Let X,C B be an #£-base of o filter F,CB a.nd l('it by € B be such
that for every uftmfilter I DT, the set Stst is arithmetical in Rp(by). Under
these assumptions there is an ultrafilier F Dy such tha.t all the sets Brp(b),
bin B, are arithmetical in Rp(by) and the structure Moo F) is not a :modtel of Agl .

Proof. Take an s-ultrafilter ' D F,. By assumption §tsf iy arithmeti-
cal in Rr(b,) and hence so are all the sets Er(b) fQI: bin B.. Sm_ce no w-mo%:il
of A, has the property that all of its sets are arithmetical in one select
set of the model, it follows that Auy(F) is not a model of 4.

1V. Construction of F, and b,. In the final part of t}?e proof We con-
struct ', and b, satistying the assumptions of 3. We consider a full b1fair)3>f
tree consisting of finite (possibly void) sequence é= <,6(0)’ 2 7!;;(?;,. B
of zeros and ones. For each ¢ of the length # we put ¢ —1‘%: H
is an integer and 0 < ¢’ < 2% The immediate successors of e are sequene]elas
ex {t) where | = 0,1 and % denotes concatenation. Let {g,},c, be the
following branch in the tree: ¢, = 0 (the void SeqUeNce), €,.; = tn % {tn)
where e, = 0 if n ¢ Stsf, & == 1 if n e Stsf. _ )

Wen represent eaeh, integer m >0 in the form 2"+ a, where a,, is
a zero-one sequence of length 7. ) .

For n >0 let D, = {x ew: z=¢, (mod znl}:l Each D, ;s ;th;logsz
non-void, definable and, since e, = ¢, (mod 2"™) forb:si?of, o silter B,
tained in D,_,. Hence the family Xy = {Dy, Dy, ...} 18 2

17
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It is easy to determine the distinguished codes of D, and to prove that
they form an s-set. Hence X, is an #4-base of 7.

Let by= {J(m,n): (m >0)& m = a, (mod 27)}. Since b, is primitive
recursive, it iy definable. It remains to show that whenever # is an ultrg-
filter and F D X, then Stsf iy arithmetical in Rx(b,).

Thus assume that each D, belongs to F. Since

q € Ryp(by) = {i > 0:4 = a) (mod 29)} ¢ ¥
we obtain taking ¢= 2"-t¢,

2"t e, e Rp(by) =D, e F

whence 2"+ ¢, € Ry(b). We now show that 2"+ ¢, is a unique element #
of Ep(by) such that 2" < m < 2+, To see this we notice that if m e Rp(b,)
and 2" <m < 2", then M=, a,,< 2" and

{i>0: i =al, (mod 2"} e F.
m

This set must intersect with D, since they both belong to F. It follows
that a,, = e, (mod 2") and since both a,, ¢, are < 2" we obtain Gy = €,
and m = 2"-}-¢,.

The last term ¢, , of ¢, where # > 0 can therefore be defined as the
integral part of #/2"! where # is a unique-integer < 2% guch that 2"+g
€ Br(by). Since n eStsf =g, =1 it follows that Stst is arithmetical in
Rp(by) and the proof is finished.

In [3] the theorem was proved only for models which are elementarily

equivalent to the prineipal model. Tt would be interesting to verify whether

it holds for w-models of the system 4, resulting from A, by omitting
the choice axiom.

References

(1] T. Felgner, Comparison
71 (1971), pp. 43-62.

[21 A.Mostowskiand Y. Suzuki,
65 (1969), pp. 83-03.

[8] A. Mostowski, At note on teratolo i

[4] — Constructible sets, with applic;tif'rf;, lg:;?!;iv Femornal vilume, 80 spgear.

[5] W.V. Quine, On ordered pairs, J. Symb. Logic 10 (1945), pp. 95-96.

[6] D. Scott, On constructing models of arithmetic. Infinitistic Methods, Proceedings

of the Symposium on Foundations of Mathematics, Warszawa 1061, pp. 235-255.

of the axioms of local and wniversal choice, Fund, Math,

On w-models which are not B -models, Fund. Math,

EBegu par la Rédaction le 6. 3. 1971

The restricted cancellation law in a Noether lattice
. by
Jane F. Wells (Fort Wayne, Ind.)

In [2], R. P. Dilworth defined the concept of a Noethe_r la,tti?e.
The definition is based on the idea of a principal element. A eL is a prin-
cipal element if for all B, 0 eL, (B/\(O: A))A = B{i/\({1 and (BVQA): A
= B: Av0, thus a principal element is a genel.'aflma,_tlon of tl}e idea of
a principal ideal in 2 Noetherian ring. The ramifications of this concept
have been investigated in [2], [51, [6], and [7]. .

In [3], B. Gilmer considered the restricted ca.nee]l.atmn l.avr( (RCL)
in’ commutative rings. An element 4 of a Noether lattice satlsf1gs RCL
if for any B, CeL, AB= A( 0 implies B= C We.shf)w this con-
dition is closely related to the idea of a weak join principal element.
Ae@ is weak join principal if BA: A= Bv0: A. _ .

In section 1, we consider a theorem of Gilmer [§] in which he charac-
terizes a commutative ring in which every ideal satisfies _RGL. In a Noether
lattice L, we show a similar result holds When.ROL is assulped on thti
prime elements of L. Such lattices are characterized as })edekl.nd orkloca.
with maximal M in which either M*>=0 or M i8 principal mﬁh M=

ome k. . _ )
o sIllln section 2, the situation in which (L, M).is_a, locajl Noether‘ latmltlze
with maximal M such that M satisties RCL is mvestlg?.ted. With the
aid of the lattice RL, introduced by Bogart [1], these latl'fﬁmes are e‘ha%‘a,’c-
terized. In addition, we show the maximal element M in (L, M) is join

L g . .
prmc]i‘lijzilly, we consider a local Noether 1a,ttige i_n w']nch the ‘maihm;l:;
is weak join principal. We investigate the dlstrl'bgtlve case in % o
the maximal has a minimal representation as the join of two princip h‘.

The author is indebted to Professor Eugene W. J ohnson for his
helpful suggestions. _ ) )

Section 1. In this section we will characterize Noethe'r laictmes in
which every prime element satisfies the res‘gricted cancellation a:wc.lY .

Lewwa 1.11. If A satisfies ROL and AB < AQ#0 for some B, C L

then B < (. 17*
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