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Then k, is the inclusion of V(Wy, y) into Vs, and &, is the restriction of fy
to V(Wy,y). This proves that fg~wv.

4. Proof of Theorem 1. For i=1,2, let Z;= ZiX,Y;) be the
set Y% [0, 1]—((¥;—X) x {0}) of § 3. Because similarity i3 fransitive,
the theorem will be proved if we can establish the following sequence of
similarities: : :

UX,Y)=V(X,Z)~U(X,Z)~U(X, Z,)~V(X, Z,)~U(X, Y,).

The first and last similarities follow from Lemma 3; the second and fourth
follow from Lemma 2. The middle one is a consequence of Lemma 1 and
the following result, which is based on a method of Fox [1].

LEvvA 4. If ¥ is an ANR and X C Y, then Z(X, Y) is an ANR.

Proof. Write Z= Z(X, Y). Let A be a closed subset of a metric
space B, and suppose f: 4A—Z is a map. Because ¥ x[0,1] is an ANR,
there exists a neighborhood T of A in B and an extension g: WY x
x [0, 1] of f. Let 2: W—[0,1] be a map such that 217%(0) = 4. Letting
m: ¥Yx[0,1]-Y and 7: ¥ x[0,1]-[0, 1] denote the coordinate pro-
jections, define a map F: W—Z by

P(w) = (mg (1), min{L, mg (w)-+ 2(w)})  for all we W.

Then F({W) is indeed contained in Z, and clearly I extends f; hence Z is
an ANR. . , ‘
‘We close by reformulating the results of the last two sections in the

following manner, which might be of independent interest.

. TemorEM 2. If X is a subset of a metric space Y, then there ewists
a metrio spave Z ‘containing X as a closed subset such that the systems U(X,Y)
and U(X, Z) are of the same similarity type; if Y is an ANR, we may choose Z
to be an ANR. . .
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Topological completeness of first coﬁntable
Hausdorff spaces I*

by
H. H. Wicke (Athens, Ohio) and J. M. Worrell, Jr. (Albuquerque, N. Mex.)

1. Introduction. This paper is the first of several which present
a theory of topological completeness for first countable Hausdortf spaces.
The completeness concept introduced here, called basic completeness,
permits the development of a theory analogous in many respect to that
elaborated classically for complete metric spaces. In this connection it
should be noted that a metrizable space is basically complete if and only
if it has a topology-preserving metric in which it is complete (). This
article presents certain definitions and some set-theoretical and topological
lemmas, which are both fundamental for the theory and have wider
applicability, and proves certain characterization theorems.

One of the principal results proved here is that a Hausdorff space
i8 an open continuous image of a complete metric space if and only if it
s a basically complete space. It should be emphasized that regularity is
not assumed. This theorem leads to the result that the class of basically
complete spaces is the intersection of all classes C of Hausdorff spaces such
that 1) C includes all metrically topologically complete spaces and 2) C is
closed with respect to the application of open continuous mappings with:
Hausdorff images.

For the purposes of indicating the scope of the present results and of
providing a basis for further discussion in subsequent papers we list
here certain criteria for topological completeness. These are formulated
in terms of two classes $ and C of topological spaces. The members of $
are subject to some uniformization condition (2) and C is a subclass of B

* This work was supported by the United States Atomic Energy Commission.
A preliminary version was given as a colloquium lecture at the University of New Mexico
in May 1968.

(*) Such metrizable spaces will be called metrically topologically complete in accord
with a standard usage.

() Uniformization condition and topological uniformization, as employed here, do
not necessarily connote for the spaces to which they are applied the presence of a topo-
logy-preserving uniformity in the sense of A. Weil’s definition. .
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the members of which satisfy a completeness requirement related to the
uniformization. The class $ contains all metrizable spaces. A clagsical
prototype is the case where 3% is the class of metrizable spaces and C is
the class of metrically topologically complete spaces.

Criteria of completeness
1. Closed subspaces of members of C are in C.

2. Inner limiting subspaces (= G;-subspaces) of members of CareinC.

3. If (E,), .~ is a sequence of elements of C each of which Is 2 dense
subspace of a topological space S then [ {Es: n e N} is dense in 8.

4. If (B,),.x i & sequence of members of C which are all subspaces
of a certain space S, then [ {Es: ne N} eC.

5. If 8 ¢C and there is an open continuous mapping of § onto
a Hausdorff space R e, then ReC.

6. If S eC and there exists a perfect mapping of § onto R €3,
then ReC.

7. A metrizable space is in C if and only if it is metrically topologically
complete. .

8. If & member of & is complete in the sense of Cech then it is in C.
In particular, locally compact Hausdorff members of & are in C.

9. Any Hausdorff countably compact member of 3 is in C.

10. The Cartesian product space of any countable family of members
of € is in C.

11. Non-degenerate connected and locally connected members of C,
which are in some appropriate sense uniformly first countable, are arcwise
connected.

12. There is a fundamental set-theoretic characterization of sub-
spaces of members of C which belong to C.

Let us consider certain familiar situations in the light of these criteria.
When $ is the class of metrizable spaces and C is the class of metrically
topologically complete spaces all the criteria are satisfied. When 3 is
the class of Moore spaces (i.e., regular T-spaces having a development
in the sense of R. H. Bing [3]) and € is the class of monotonically com-
plete.(*) Moore spaces the criteria are again satisfied. If in the preceding
statement C is taken to be the class of complete Moore spaces (i.e., those
regular Tspaces having a development satisfying part four of Axiom 1

of [11]) then number 5 is not satisfied. If B is the class of Tychonoff
spaces and C is the class of spaces complete in the sense of Cech then
criteria 5 and 9 are not satisfied. If 3 is the same class and C is the class

(%} i.e., the spaces have a base $ such that the closures of the elements of any
monotonic subcollection of B have a point in common. ([15], p. 813).
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of spaces in B that have a topology-preserving complete uniform structure
then criteria 2, 3,3, 7, 9, and 11 are not satisfied.

It will be shown in these articles that: I f B is the class of Hausdorff
spaces having bases of countable order and C is the class of basically complete
spaces then all of the criteria are satisfied. Tt may be noted that this is
@ genuine extension of the various first countable cases mentioned in the
preceding paragraph.

Certain analogues of the results stated here have heen obtained for
some non first countable situations where T, regularity has been assumed.
Some of these have appeared [14]; others will appear elsewhere.

The notation and terminology used here conforms closely with that
of Kelley [9]. The letter ¥ denotes the set of positive integers and letters
%, j, k, and n are used to signify members of ¥. The notation {U)pen 1s
used for a sequence; this is often abbreviated to (Ua). A collection of

. Sets is said to be monotonic if and only if for any two of its members one

includes the other. A sequence (U )nen of setsis called decreasing if and
only if for each ne N, U,,, C U,. A representative of a sequence (A )nen
of sets is, by definition, a sequence (Ba) such that, for each n, By, ¢ Ay,.
A space is said to be essentially T, [16] if and only if for any points z, ¥
of the space either {x} = {_z/}t or a} does not intersect {Tf} (Daivis introduced
these spaces under the designation of R, spaces in [4])

2. Set-theoretical and topological preliminaries. The concepts of mono-
tonically contracting sequence and primitive sequence are introduced
here and some fundamental relations connecting them are established.
These are given in Lemmas 2.1 and 2.3 and are proven in. sufficient
generality so as to apply to situations outside the scope of this paper.

DEFINITION 2.1. Suppose § is a set and M C 8. A sequence (S,), .y i8
called a monotonically coniracting sequence of M in 8 if and only if, for
each 7,8, is a collection of subsets of § covering M such that if GeG,

and ze M ~ G there exists G n+1 Such that x € ¢ and G'C Q.

DErFINITION 2.2. A sequence (B )nen is called a primitive sequence
of M in 8 if and only if, for each n ¢ N, these conditions are satisfied:
(P1)n ¥, is a well ordered collection of subsets of § covering M. (P2),
Each H e J, contamns a point not in any predecessor of H in 3,. (P3), If
xeM,j< n,and H and H' are the first elements of J; and X, , respectively,
that contain z then H’' C H.

Leawva 2.1, Suppose M is a subset of a set S. If (Su)nen %8 @ mono-
tonically contracting sequence of M in 8 there exists a primitive sequence
(Bdnex of M in 8 such that for each neXN: (1)a EaCSGu. 2 IfFj< m,
weM, and H and H' are the first elements of ¥&; and ¥, respectively, that
contain x then if x is in a proper subset of H belonging to Sy then H' is -
a proper subset of H.
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Proof. Let <, denote a well ordering of the set M and for each n,
let G, denote a well ordered collection whose elements are those of G,.
Let J6, denote the collection of all elements H ¢ S; such that H contains
a point not in any predecessor of H in §;. Suppose collections %, ..., 56,
exist such that (P1)a, (P2)s, and (P3), of Definition 2.2, (1),, and (‘)
are satisfied for 1 <{'n < k. Suppose <;_, is a well ordering on M. For
z, 2 e M define v <xo' if and only if for the first elements H and A’
of J; that contain @ and #' respectively either (a) H precedes H' in J,
or {b) H= H' and & lies in.a proper subset of H belonging to §;,, and »'
does not, or (¢) H = H’ and either both z and z" lie in proper subsets
of H belonging to G, or both do not and #<;_, ’. It is straightforward
to establish that <; well orders M. Let 3 denote the set M under the
well ordering <\x. We shall define a sequence function of type My in G,
in order to apply the transfinite recursion theorem ([6], p. 70). For x e A}
let s(x) denote the initial segment determined by x. Suppose for x e My,

t is a function on s(z) to G,,,. If there exists a first &' <z # such that .

z et(x'), let f(f) denote ¢(z'). Suppose no such z' exists and H is the first
element of 3 that contains x. If z is in a proper subset @ of H belonging
t0 iy, let f(t) denote the first such G. If # is not in a proper subset of H
belonging to' 8, ; let f(f) denote H. By the transfinite recursion theorem
there exists a function U on My to G, such that U(z) = f(Uls(z)) for
all e My. ‘ _

For every H in the range of U, let p(H) denote the first element
of My such that U(p(H))= H. Then p is a one-to-one function on the
range of U into Mj. This permits the definition -of a well ordering < by
H< H'if and only if p(H) <gp(H') for H, H' in the range of U. Call
the resulting well ordered set 3¢, .

1. If x e My the first element of 3, +1 that contains x is U(x).

For z € U(x) since f(U;’s(m)} = U{x) contains 2. If H< U(z) then
P(H) <gp{U(x)) <x z by the definition of p. Therefore if » ¢ H, there
is a first 2 <x « such that & ¢ U(z) and by the definition of f, U(z) = U(2).
Sinee 2 <, p(H), U{?) < H < U(w) which involves a contradiction.

Now (Pl), is clearly satisfied and (P2),,, follows from 1. Further-
more (1), is satisfied. Suppose ¢ M, and H and H’' are the first ele-
ments of J and ¥, respectively, that contain x. Let ¢ be the first
element of Xy that containg p(H’). Then since p(H') <z x, & < H. Since

U{p(H')) = H’ is a subset of the first element of J6; that contains p(H),
it follows that 2 e(@ and therefore ¢ = H. Hence (P3),,, is satisfied
sinee (P3)x is. Suppose that j< k41, z < M, and H and H' are the first
elements of ¥; and %, ., respectively that contain » and 2 is in a proper
subset of H belonging to §,,,. If z is in a proper subset of H belonging
to Gi then the first element H'* of #; that contains z is a proper subset
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of H by (2)z. Since H'C H” by (P3);.,,, (2 Jew, 18 valid. Suppose that r is
not in a proper subset of H belongmg to G¢. Since (S,) is monotonically
contracting an inductive argument shows that H ¢ G; and the first element
of ¥ containing x is H. Now p(H') <x x. Since 2 is in a proper subset
of H which belongs to §;,, and sinece p(H') ¢ H it follows from the de-
finition of <k, part (b), that p(H’) is in a proper subset of H belonging
t0 Gy By the definition of f, U(p(H')} = H' is a proper subset of H.
Therefore (2),., is valid. By mduetmn, there exists a sequence (&,), . as
described.

Lemwa 2.2, Suppose (3,),.x is a primitive sequence of 3 in 8 and
(Gney 8 @ decreasing sequence of sets such that for each n there erists
Yn € Gu ™ M such that the first element of 3, that contains vy includes Gy.
Then there exists a decreasing representative (H,),.n of (%, ). such thai,
Jor each n, Hy is the first element of e, that includes a term of (@) x -

Proof. For each n there exists a first H, € 36, that includes a term
of (Gy). For each n there exists j >n--1 such that &;CH, ~H,,.
Let H denote the first element of J, that contains y;. Since (3€,) is a primi-
tive sequence, H includes the first element H' of J¢; that contains Yi.
Thus HD H'D Gy. Therefore H does not precede H,. Since y; e H, it
follows that H = H,. Similarly H,., is the first element of ,., that
contains y;. Therefore H,D H,_,.

Lemva 2.3. Suppose M is a subset of a set § and 4 is a collection of
subsets of 8 such that if A,BeAand An B =0, then An Be#. Suppose
(B)ew is @ primitive sequence of M in § whose terms are subcollections of #.
Then there ewists a decreasing, monotonically contracting sequence (S e N
of M in S whose terms are subcollections of 4 such that for every decreasing
representative (@) of (Splney there exists a decreasing representative .
(Hpdnew of (B)pen such that for each n, Hyis the first elemeni of ¥, that
includes a term of (Gy)yen-

Proof. Define §; as ¥,, and for n >1 let G, denote the collection
of all sets G ~ & where & ¢ ¥, " €§,,_,, and G contains a point 2e G M
not in any predecessor of & in ¥,. For each 2, let S, = [J{G;: k> n}
Then (8,),.x i3 a monotonically contracting sequence of M in 8§ such
that each §,.,C§,C TIf (@y) is a decreasing representative of (Gy)
then for each n there exists &, 3> n such that G, G, . Each G, contains
& point # « I such that the first element of 3¢, that contains z includes Gy .
Therefore the first element of €, that contains x includes Gy. By
Lemma 2.2, there exists a decreasing representative (H,) of (#,) with the
property stated in the conclusion.

Levma 2.4, Suppose M is a subspace of a topological space X and
(Rodnex 18 a primitive sequence of M in X whose terms are collections of
sets opern in X. Suppose that (B,),.x 15 @ sequence of bases for X. Then
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there exists a primitive sequence (W,),.n of M in X such that for each n the
following conditions are satisfied: (3)y Wn C Bp and if @ ¢ M and W and H
are the first elements of Wy and 3y, respectively, that contain «, then W C H.
If X is reqular and @, W, and H are as just stated, then W C H. (4), If X is
regular and k<<n, ze M, and W' and W are the first elements of W,
and Wy, respectively, that coniain x then W C W'.

Proof. For each n, let B, denote a well ordered collection whose
elements are those of B,. If J€ is a well ordered collection and H e
let =(H, ¥) = {w e H: x does not helong to any predecessor of H in Je.
Let M, denote M well ordered by a relation <<, such that if & precedes H’
in J¢, then all elements of n(H , 38;) ~ M precede all elements of a(H', ¥,) ~
~ M in M,. Suppose # « M, and ¢ is a function on s(z) into B;. If there
exists a first ' <, # in M, such that 2  t(z’) let f,(¢) denote t(z'). If no
such «’ exists let f,(#) denote the first element B ¢ 5, containing x such
that B (or, if X is regular, B) is a subset of the first element of J¢, that
contains . There exists a function U, on M, to B; such that fo(Uo|s(w)}
= Uyx). It W is in the range of U, let p(W) denote the first element
# ¢ M, such that Uyz)= W. The range of U, may be well ordered by
the relation <3 defined by W< W’ if and only if p(W) <op(W’). Call
the resulting well ordered set W,. Then W, is a well ordered subecollection
of 3, eovering M such that if v « M and W and H are the first elements
of W, and J6,, respectively, that contain z then W C H and, if X is
regular W C H. For, as in the proof of Lemma 2.1, no. 1, W= Uyx).

Let y denote p(Uy(x)). Then fo(Tyls(y)) = Uyy) = Uyz) is a subset of

the first element H' e J¢; that contains y. If H is the first element of I,
containing , H does not follow H'. If H precedes H’ then <¢ ¥ by the
agreement concerning <,. But this is impossible by the definition of .
Thus H = H'D W. Also if X is regular, HD .

Suppose W, ..., Wy are collections satisfying conditions (P1)y~(P3),,

(3)n and, if X is regular, (4), for all » such that 1 < n < k. Suppose <;._,
i3 a well ordering of M for k> 1. Define a relation <k on M by s<pz
for , 2"« M if and only if (a) the first elements H and H' of %, that
contain 2 and ', respectively, are such that H precedes H', or (b) if H = H',
the first elements W and W’ of Wy that contain and ', respectively,
are such that W precedes W’, or (¢) if W = W’ and H — H' then <<, _; #'.
The relation <; may be shown to be a well ordering. Let My denote M
ordered by <. Suppose ze My and t is a fanction on s(z) to Brpq- I
there exists a first ' <  such that z ¢ (@) let f(t) denote t(z’). Suppose
no such z* exists. If W and H are the first elements of Wy and %k, ,,
respectively, that contain « there exists a first B « B, such that z e B
and BC W H (or if X is regular, B C W ~ H). Let f(#) denote B. By the
transfinite recursion theorem there exists a function 0 on M to By,

such that U(z) = f(TUls(z)) for all 2 e M. Let R — {U(%): @ € My} For
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each WeR let p(W) be the first element of I r Such that U(p(W}} = .
The collection & may be well ordered by W precedes W if and only if
(W) <gp(W')for W, W' e R. Let Wy, denote R ordered by this ordering.
Using arguments similar to those used in the proof of Lemma 2.1, it may
be seen that W, ..., Wy, satisfy (P1)—~(P3),, (3)n, and (4), (if X is
regular) for all n such that 1 < n < k-+1. Therefore a sequence (w,),

neN
may be obtained which satisfies those conditions for all nelX.

3. Basically complete spaces. Recall that a collection of sets is called
perfecily decreasing if and only if it contains a proper subset of each of
its elements [16]. A collection B of subsets of a space X is called a base
of ecountable order if and only if B is a base for X such that any perfectly
decreasing subcollection of B is a base at: any point common to its members.
This concept was introduced by Arhangel’skif [1] who proved that a Haus-
dorff space is metrizable if and only if it is paracompact and has a base
of countable order. Metrizable spaces and Moore spaces have bases of
countable order while the space 2 of countable ordinals with the order
topology is an example of a space having such a base which is neither
a Moore space nor metrizable. Further information about suech spaces
is in [16].

We shall say that a collection (sequence) of subsets of a space X
converges to 2 point r e X if and only if every open set containing 2 in-
cludes a member of the collection (term of the sequence). The following
two concepts were introduced in [15]. A collection B of subsets of a space
X is called a 2-base if and only if & is a base of countable order and every
nonempty perfectly decreasing monotonic subeollection of $ convegers to
some point of X. A space X is said to have 1-bases locally if and only if
it has a base B such that each Be$ has a A-base.

DeFNtTIoN 3.1. A space X is called basically complete if and only
if it is Hausdorff and has 1-bases locally.

The following are examples of basically complete spaces. (Proofs
will be given later in some instances.)

1. The space 2 of countable ordinals with the order topology.

2. The “long line” ffor terminology, cf. 8].

3. Metrically topologically complete spaces.

4. Let § denote the set of real numbers and = the topology generated
by sets D satisfying one of these conditions: (1) D= {x} where x is an
irrational number. (2) For some @,b,rel such that 7 is rational and
a<r<b, D= {r}v{rel: x is irrational and a< z< b}. Then (8, 7)
is not regular but it is basically complete.

An example of a space which has i-bases loeally but is not T, is
given by the set § of positive integers with a topology determined by
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a base consisting of all sets {n} « §p where Sp = {k e 8: p <k} and n 8§,
This space does not have the Baire category property whereas %11 basically
complete spaces do. The domain of example 2 of [15], . 266 is a screen-
able metacompact Hausdorff space which has a monotonically complete
bagse of countable order but does not have a A-base although it does
satisfy the Baire category property.

TerorEM 3.1. If a topological spave X is the union of open subspaces
which have A-bases then X has a A-base.

Proof. This theorem may be given a proof similar to that of
Theorem 1 of [16].

CorROLLARY 3.1. If a space has A-bases locally then each of ils open
subspaces has a i-Dbase.

TEEOREM 3.2. If an essentially T, space X has a A-base I there exists
a sequence (S,)n.y of bases for X such that each S, C 3B and which satisfies:

(A) Any decreasing represeniative (Gn)peny Of (Splnen SUch that each

@y # B converges to some z e X and also to every element of () {Gn: n e N}.

Proof. By Lemma 2.1 there exists a primitive sequence (36,), .
of X in X such that each J, C % with the property described in the lemma.
“For each n let §, = | J{Js: k> n}. Suppose # belongs to an open set D
in X. For each = let H, be the first element of J&, that containg ». It
{Hs: neN} is perfectly decreasing it is a base at # and some H, CD.
If it is not perfectly decreasing then for some =, H; = H, for all j = n.

IfyeHy,andy # xthenye {_w} Forify ;@c—}, then # ¢ {y} and thus H,,\{y}
is a proper open subset of H, containing  and thus H,,, # H, which
involves a contradiction. Thus H, C {z}. Since X_@s essentially T, any

open set containing w includes {x}. Thus H, = {#} C D. Therefore each
S, i8 a base for X. Suppose (G») is a decreasing representative of (Sy)
such that no G, = @. For each n there exists a first H, e 36, that includes
@ term of (G,). By Lemma 2.2 the gequence (H,),.» i monotonically
decreasing and if some H, = H, ., then H;= {2z} for some # <X and
all j>>m by an argument similar to one used above and {H,: n <N}
converges to every point of {w} = () {H,: n e N}. If no H,, = H,,,, then
{Hn: m e N} is a perfectly decreasing monotonic subcollection of % and
thus converges to some 2 ¢ X and to all y ¢ ) {H,: n ¢ N}. Since each Hn

includes all but finitely many @,’s it follows that (&) satisfies the con-
clusion of condition (A).

TeEeorEM 3.3. If X is a topological space and there ewists o mono-
tontcally contracting sequence (Sn) of collections of open subsets of X cover-

ing X whick satisfies (A) of Theorem 3.2, then X is essentially Ty and has
a A-base.
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Proof. By Lemma 2.1 there exists a primitive sequence (J,), .
of X in X such that each 3, CS,. Let $ denote | J {%n: n € N}. Using
condition (A) and the fact that Je, C G, it may be shown that B is a base
for X. Suppose T is a perfectly decreasing monotonic subcollection of $.
Suppose M is a finite subset of N such that for each 7 ¢ I , H; is the first
element of J; that belongs to . Then, for some & e M y Hy C H; for all
4 ¢ M because B is monotonic. Since B is perfectly decreasing it contains
& proper subset H of H;. Suppose H e Je; for some j ¢ . Then HCH;.
But since H; precedes H and H contains an element of X not in any
predecessor, a contradiction is involved. It follows that for each n e N
there exists a first H, ¢ J€, that includes an element of G. By Lemma 2.2,
{Han) is decreasing and therefore converges to some element of X and
to each element of (7 {Hy: n ¢ N}. Therefore B is a A-base.

Suppose z,y ¢ X and z ¢ {z} n {y}. There exists a decreaging repre-
sentative (Gn) of (§,) such that {Gu: n e N} is a base at z. Therefore z,y elhy
for all n. It follows readily from this that {z} = {y} so that X is es-
sentially T,. :

Remark. Tt does not follow that if a space has a A-base, it is es-
sentially T,. This may be seen in reference to a space having exactly two
points and exactly two open sets. But analogously with developability,
if 8 is a space having a sequence (8,) of hases such that if P is a point:
common to all terms of a representative (Gy) of (G,), then (G,) is a base
at P, it follows that § is essentially 7.

The following theorem refines Theorem 9 of [15] in that it explicity
includes 1-bases in its scope and does not employ the hypothesis that
the spaces are essentially T,.

TeROREM 3.4. If X has a base of countable order (respectively, a A-base)
then any base for X has a subcollection which is a base of countable order
{respectively, a i-base). '

Proof. Suppose § is a base of countable order for X and W is a base
for X. By Lemma 2.1, G, being € for all n, there exists a primitive sequence
(%,)en of X in itself satisfying the conditions of the lemma. Taking
Bp = W for all # in Lemma 2.4, one obtains a primitive sequence (W), .
of X in itself satisfying condition (3), with respect to (7€, ) en for all m.
Let & denote |} {W,: 7 « N}. Suppose # is in an open set U of X. For
each n, let W, be the first element of W, that contains z. Since W, is
a subset of the first element H, of J6, that contains z, Lemma 2.2 implies
that (H,),.v is & decreasing representative of (3€,), .- If H,#H,, for
any n, then {H,: n <« N} is a base at « since § is a base of countable order.
It H,=H,,, for some n, then, by condition (2)ny, Hpn U= H,. Thus
some H,C U and since W, C H,, % is a base. .
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Suppose X is a perfectly decreasing monotonic subeollection of 3,
J C N is finite, and for each n eJ, W, has a first element W, ¢ X. There
exists k eJ such that Wy is a subset of all W, for n eJ. There exist 7
and i e N such that W is a proper subset of Wi and W e W; ~ XK. If i J,
either W = W; or W, precedes W. Since W is a proper subset of W,
W # Wi; and since W C Wy, W; cannot precede W, by condition (P2)y, of
the definition of primitive sequence. Thus ¢ ¢J. It follows that for each
n e N there exists a first element W, of W, that belongs to ¥. It may
be seen that for each n, W,,; C W, . By Lemmas 2.2 and 2.4, there exists
a decreasing representative (H,,),.y of (J€,),.» such that for each n, Hy iy
the first element of (%,),.y that includes a term of (W,),,. v. If zis common
to the members of X it follows from the condition (2), of Lemma 2.1 that
{Hn: m e N} is a base at . Since each H, includes a member of 3, K is
a base at . Thus B is a base of countable order. If § is a 1-base, then
(H,)ne v and, therefore, X, converges to some point of X. Therefore 3 is
also a A-base.

THEOREM 3.5. A metrizable space is metrically topologically complete
if and only if it has a A-base. ' '

Proof. A space having a A-base has a base B such that the closures
of the elements-of any monotonic subcollection of $ have a point in
common. Vedenisov [12] showed that any metric space with such a base
has a topology-preserving metric in which it is complete.

On the other hand suppose o is a metric with respect to which
a space X is complete. For each , let 8, denote the collection of all open
sets of o-diameter <{1/n. For each =, Gu is a base for X and Cantor’s
theorem [10] implies that (8,),, v satisfies the condition (A) of Theorem 3.2.

N. Aronszajn [2] in seeking a general class of spaces for which an
arc theorem holds discovered a class of spaces closely related to the
spaces considered here. He did not give a theory of such spaces, however.
In view of the sequential characterization of bases of countable order
given in [16], Theorem 2 and Aronszajn’s formulation (which is equiva-
lent to that given in the second part of the following definition) it seems
appropriate to introduce the following terminology, which bears an

analogy to that of Moore space and complete Moore space (cf. the intro-
duction for this terminology).

DEerFINITION 3.2. A space is called an Aronszajn space it and only
if it is & regular Ty -space having a base of countable order. A space is
called a complete Aronszajn space if and only if there exists a sequence
(S )ncn Of bases fgr X such that if (Gu)ney 18 & decreasing representative
of (8,)pen then (G,),.x converges to a unique point of X.

‘ THEOREM 3.6. A space is a complete Aronszajn space if and only if it
s a regular To-space having o 1-base.
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Proof. The proof of necessity is straightforward with the use of
Theorem 3.3. If X is regular T, and has a 1-base there exists a sequence
(8n) as in Theorem 3.2 and a primitive sequence (3,) of X in X such that
each 36, CS,. By Lemma 2.4 there exists a primitive sequence (W) of
X in X such that if W and H are the first elements of W, and J6, that
contain x ¢ X, then W C H. For each n, let UV, denote U{We: &= n}.
It may readily be seen that each U, is a base. Suppose (V) is a de-
creasing representative of (V,). By Lemma 2.2 there exist decreasing .
representatives (Wy) of (Wa) and (H,) of (J€,) such that for each n, Wy is
the first element of W, that includes a term of (V) and H, is the first
element of Je, that includes a term of (W,). Sinee each 36, C Sy, (H,) con-
verges to some 2 e X and therefore (V,) does also. Since X is 7,, # is
unique.

TEEOREM 3.7. A regular space having a A-base has A-bases locally.

Proof. Suppose X is a regular space with a 1-base. Since X is
essentially T, there exists a sequence (S,),.y of bases for X satistying
the condition (A) of Theorem 3.2. Suppose U is open in X. For each n ¢ ¥,
let W, be the collection of all W €8, such that W C U. Then W, covers T.
If # € W e Wy there exists @ G, such that 2« GC W. Since FC W C T,
G € W,,,. Therefore the sequence (W,),.y is a monotonically contracting
sequence of U in itself. Suppose (W,),.y is a decreasing representative

. of (W,),.y such that each W, 5= 0. Since W, ¢S, there exists z e X such

that (Wa) converges fo  and to every element of (1) {Wy: e N}, Since
e () {Wa: nelN} and each W, C U, it follows that ze U. By Theo-
rem 3.3, U has a A-bage. Thus every open subset of ¥ has a A-base.

The following theorem provides a broad class of examples of bagically
complete spaces as well as information about T, first countable scattered
spaces. Recall that a subspace of a topological space is called scaitered
if and only if it has no subspace which is dense in itself. Note that
essentially T, scattered spaces are 7).

TEEOREM 3.8. 4 T first countable scattered space has A-bases hereditarily.
Proof. Any scattered space X may be well ordered so that for each

# e X there exists an open set U, containing z but no successor of z.
Suppose X is also T and first countable. Then for each # ¢ X there exists
a base {Dpg: n e N} such that D, C Dy C Uy for all n e N. For each i,
let 3, = {Dng: © ¢ X} well ordered by the relation < where Dyy < Dyar
if and only if » precedes #’ in X. It may be verified that (3,),. is a primi-
tive sequence of X in X whose terms are collections of open sets. For
each n, let W, = |J {%x: k = n}. Then each W, is a base for X. Suppose
(W) is a decreasing representative of (‘W,). By Lemma 2.2 there exists
a decreasing representative (Hy) of (3,) such that for each n, Hy is the
first element of ¥, that includes a term of (W,). For some j >n-+1, T;
16*
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CH,nH,,,. There exists #¢X such that W;= Di for some %> j.
The first element of J&, that contains # is Dys. Since # € Hy and Dy, D Dy,
it follows that Hy = Dpy. Similarly H,,, =D, .. If m >n-1, H,
= Dpa by the same argument and Hy = Dyy . Thus # = o’ and H, = D,
for all n. Thus @ e (){Wx: ne N} and {Wy: n e N} is a base at x. Theo-
rem 3.2 implies that X has a A-base. The property of being a scattered
space is hereditary. -

ComMENT 3.1. Note that the space 2 of countable ordinals with
the order topology is thus basically complete hereditarily, as is any first-
countable space of ordinals with the order topology. This may be con-
trasted to the situation in uniform space theory in which Q has a unique
strueture which is not complete [5].

4. The characterization theorem. )

TreOREM 4.1. A Hausdorff space is an open continuous image of
a complete metric space if and only if it is basically complete.

This theorem is a consequence of the following two theorvems, the
first of which was proved in [15].

TrEOREM 4.2. Suppose Y is an essentially T, space which is the range
of an open continuous mapping p. If the domain of @ has a A-base so does Y.
If the domain of ¢ has A-bases locally so does Y.

THEOREM 4.3. Suppose X is a basically complete space. Then X is an
open continuous image of a metrically topologically complete space which
has the same weight as X and which is o closed subspace of a Baire space (%),

Proof. Let U denote a base of minimal cardinality for X. We may
assume [V| > &,. By Theorem 3.4 and Corollary 3.1 some subecollection B
of U is a A-Dase for X. By Theorem 3.2 there exists a sequence ($,) of
bases for X such that each 8, C $ and which satisfies (A). Corollary 3.1
implies that each member of each G, has a 1-base. Let B denote a function
on |J {8s: n ¢ N} such that, for each G ¢ | J{Gu: n e N}, B(@) is a A-Dase
for G.

Consider each 8, as having the discrete topology and let M denote
the product space of the family (8,),.y. Then the weight of M does not
exceed the weight of X. Let W denote the subspace of M such that
(Gn) e W if and only if (Gy) is a decreasing representative of (S )nen and
either: (a) For all n, there exists a sequence Gy vy Gy, such that:
(1) ¢,,C &,. (2) For each j < n—1, G11, 18 a proper subset of G . (3) For
all j < ny Gin € B(Gy). (4) G, C Gy 07 (D) For some k, Gy is o degenerate
point set, i.e., a singleton, but for all # < k—1 there exist sequences
Gy vory Gy With the properties (1)-(4) of (a).

(*) i.e., a produet space of a countable family of discrete spaces.
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I. We show that for each x ¢ X there exists a sequence (G) of type
(a) or of type (b) such that x () {Gu: ne N} If ze X and {z} is open,
then {z} €8, for all » since each 8, is a base. Therefore the sequence (G)
where each G, = {2} is of type (b). Suppose {#} is not open. Then there
exists G €8, containing # such that G # {z}. Suppose G, very Gy exist
such that for eachn (1 < n < m) Gpe Gy, w e Grand foralln (1 < n < m—1)
there exists a sequence G, ..., @, with the properties specified under
(a) such that # e @u, for all % < n. Since © € Gy, G C Gy, and {x} # Gn
it follows that there is an element G, e B(@,) which contains 2 and is
a proper subset of Gy. Suppose G, ..., G, have been defined where
k<< m such that forall j <%, z € G, « B(G;), and G118 2 proper subset
of Gym for j < k—1. Since {#} # G, and G, C G, there exists a Gy,
€ B(Gy,) which contains # and is a proper subset of Gyy. Thus a sequence
Gims -+ s Oy, With properties (1)—(4) of (a) may be defined. Since {#} # Gum
and S, i8 a base there exists @, S, ., which contains 2 and is
a proper subset of Gum. By induction, there exists a sequence (@) of
type (a) as desired.

II. For each (@) e W there exists a unique point # common to the
terms of (Gn) and {@n: 7 € N} is a Dase at 2. If (G,) is of type (b) this is
obvious. If (@) is of type (a) then, for each n, the sequence (Grs)imn 18
is a perfectly decreasing monotonic subeollection of B(@;). Hence there
exists a point , e G, such that (Gns) converges to , and since X is T,
there is no other point # in X to which (@) converges. For n <j we
have Gn; C Gy;, thus each sequence (Gn;) converges to x, and therefore

=y e Gy for n=1,2,... Hence @ ¢ {Gn: neN} and o e () {Gy:

n € N}. Since (Gy,) converges to w;, (G,) is a base at z, and because
G,1C Gy, (Gy) is also a base at .

Let ¢ denote the mapping of W onto X such that ¢((G4))is the unique
element common to the terms of (G,). Let (G4) ¢ W and let §(G|n) denote
the set of all (V) e W such that Vi = G4 for 1 <k < n. Then {8(G|n):
n € N and (G%) € W}is a base for W. Using I, it may be seen that o(S(Gn))
= (. It follows that ¢ is an open continuous mapping of W onto X and
the weight of W equals the weight of X.

Suppose W is given the usual Baire metric ¢ [7], and (x,) is a Cauchy
sequence in W with respect to g. There exists an inereasing sequence (my)
of positive integers such that g(wx, z;) < 1/n for all k,j > m,. By an
argument used in [13], it may be shown that if G, denotes the nth term
of @y, , then if k> m, the first n terms of 2y are G, ..., Gy. Since Tm, e W,
Gy, ..., Gy satisfy the conditions on the first » terms of a sequence in W
for all #. Hence (Gn)e W. It may be seen that (z,) converges to (Gu),
so that W is complete with respect to . ‘

CoanEnT 4.1. The proof of this theorem is similar to the proof, given
in 18], of the existence of an open mapping of a complete metric space
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onto a regular Ty-space having a A-base. Both of these theorems may
be proved from a unified point of view which encompasses certain non
first countable situations. This is carried out in [14]. Here it seems prefer-
able to give a direct proof with appropriate references to [13] rather

than use the general mapping lemma of [14].
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Models of second order arithmetic with
definable Skolem functions

by
Andrzej Mostowski (Warszawa)

Let A, be the axiomatic system of second order arithmetic as de-
scribed in [2].
In the study of the problem whether the standard part of a model

E% g %aﬁjéiﬁ’ Zﬁ;ﬁ;&;ﬁ‘”’g& I;m"]‘;’?;n”fo; v 1935 of A, is itself a model of 4, we introduced the following model theoresic
. s s .» Berlin—Leipzi, . . N ) .
[8] J.G. Hocking and G- 8. Young, Topology, Rea,d%ng 1961, concept: Let A be a structure of type o and P a sggular predicate of o.
[9] J.L. Kelley, General topology, Princeton 1955. Let B be another structure of type ¢’ such that 4 is a reduct of B. We
[10] K. Kuratowski, Topology I, New York 1966. say that B is an S-struciure for A and P if
(11] (13%0111[1 '13?1 ; Oghlfogzztwm of point set theory, revised edition, Amer. Math. Soc. 1° all the Skolem functions of B are definable in B;
[12] N. Vedenisov (= Wedenisoff), Sur les espﬁoes métriques complets, Journal de 2° each subset of P4 (the interpretation of P in 4) which is para-
Mathématiques, Ser. 9, vol. 9 (1930), pp. 377-381. metrically definable in B is so definable in 4. (See [3].)
18] ?-ﬁgﬁge{l g’g:) Ttipggkngztl’p:r;;ammuous images of complete metric spaces, Pac. Using Lévy’s model for A, (see e.g. [4], pp. 241-247) we can easily
(4] — Open continuous images of certain kinds of M- spaces and. completenass of mappings exhibit an ®-model A in Whl(ﬂ% all the axioms of 4, with the ‘exceptlon
and spaces, General Topology and its Applications, 1 (1971), pp. 85-100. of the axiom of choice are valid such that no § -structure exists for 4
[15] — and J. M. Worrell, Jr., Open continuous mappings of spaces hawing bases of and the predicate N (-). For w-models of the full system A, the situation
18] comiab(l; h;rdetr, 'Dub-}{e Mat;. J. 84 (1967), pp. 255-272; errata pp. 813-814. is different: we shall prove the following .
—_ TACLETI2) 1
risations of developable topological spases, Canad. J. Math. 17 (1965), THEOREM. If M is a denumerable w-model for A, then there ewists

an 8-structure for M and the predicate N (-).

Proof of this theorem will occupy the rest of this paper. We shall
use a very primitive form of the forcing argument. Our proof was in-
fluenced mainly by the result of Felgner [1].

Levya 1. The following scheme is provable in A, (cf. (iii) below for
the meaning of £™):

8(w) & C(w) & (n)n(e)s{C (¢) > (Ee)g[C(C) & B(c, ¢) & D(n, )1}
- (B2)g{(z® = w) & (n)5[C (™) & B(e™, 2*+) & D (n, £} .

Read “c is a vertex” for C(c) and “C is an nth extension of ¢” for
B(¢,?) & D(n,c). .

The scheme can then be expressed as follows. If for every integer n
every vertex has an nth extension which is also a vertex then for every
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