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Boolean algebras with ordered bases
by

B. Rotman (Bristol)

A Boolean algebra with an ordered base is one which has a set of
generators which is totally ordered under the mnatural partial ordering
of the algebra. These algebras were first introduced by Mostowski and
Tarski in [10] who established many of their basic algebraic properties.
Their work was continued by Mayver and Pierce [9] who showed, among
other things, that the Stone spaces of these algebras are precisely the
orderable Boolean spaces. The simplicity of the condition imposed on
their generators and the fact that every countable Boolean algebra ig
such an algebra make these algebras natural objects to investigate. In
spite of this naturalness however they seem difficult to study. Tn part
this difficulty. stems from the absence of useful general criteria for
a topological space to be orderable and a fortiori for a Boolean space

" to Dbe orderable. Matters are not helped by the fact that not every sub-

algebra of a Boolean algebra with ordered base is such an algebra; in
topological terms not every continuous Boolean image of an ordered
Boolean space is orderable. Thus any attempt to characterise these
algebras, for example, within the category of all Boolean algebras, must
either separate off the non-ordered base subalgebras first or else charac-
terise ordered base algebras together with all their subalgebras. A charac-
terisation of the second kind is attempted here, in terms of retracts, in § 1.
In § 2 we show that uncountable free Boolean algebras can net be em-
bedded in ones with ordered bases; we also prove certain refinements
of this result. In § 3 we establish the natural generalisation in terms of
“nx-sets of Mostowski and Tarski’s result that if one hase for an algebra
is scattered then all bases are scattered.

§ 0. Preliminaries. Any Boolean algebra with an ordered base can
be realised as a certain field of subsets, more exactly as the set of all
finite unions of intervals, of a totally ordered set and conversely. So that
we shall refer to algebras with ordered bases as interval algebras and use
the following notation. If T is an ordered (= totally ordered) set then
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by In(T) we shall mean the set of all finite unions of intervals of T of
the form ( ,b], (a,b], (a, ] for a,beT where ( ,bl={zeT: o< b}
and (a, ]= {# ¢ T: > a}, together with @, 7. Clearly In(T) is a Boolean
algebra with respect to set operations, and we shall call it the inierval
algebra on T. For a set X we shall denote by |X]| the cardinal number
of X and we use w to denote both the first infinite ordinal as well as the
first infinite cardinal; similarly with wx for & > 1. We shall rely on the
context to avoid any possible confusion between ordinals and cardinals,
Finally we assume familiarity with the Stone duality theory for Boolean
algebras.

§ 1. Retracts. In.the category of posets (= partially ordered sets)
with morphisms as all ordered preserving maps, chains are characterised
by the following property

(1.1) -~ € is a chain iff for any morphism f: C—D to an arbitrary poset D
there exists a morphism g: D—C such that fg = 15.

On the basis of the analogy that interval algebras are to Boolean algebras
as chains are to posets it is not unreasonable to expect that a result
similar to (1.1) might hold for interval algebras within the category of
Boolean algebras. It is the purpose of the present section to explore
this idea.

We first introduce some terminology. As usual (see [5]) we say that
& Boolean algebra D is a retract of an algebra ( if there exist morphisms

f: 0D, g: D0 such that fg =1, (note that f is necessarily epi and

g is necessarily mono); further we say that in this case the morphism
f is & retraciion onto D. We shall call'a Boolean algebra O refractive iff
every epi f: —D is a retraction. Dual (in the category sense) to this
we say that a Boolean algebra C is co-reiractive iff for every mono i: B> ¢,
there exists a morphism j: C—-B (necessarily epi) such that ji=1p.
Thus a retractive algebra is one for which every morphism from it is
a retraction and a co-retractive algebra is one which has a retraction

onto each of its subalgebras. If §(4) denotes the Stone space of the
algebra A then it is easily .seen that

(1.2) D is a retract of C iff 8(0) is a retract of 8(D)
80 that

(1.3) . € is retractive iff 8{C) is co-retractive

and '

{1.4)  C 48 co-retractive iff 8(C) is retractive

where m (1.?), (1.3), (1.4) the term retract on the right refers to the usual
topological idea of retract (see [2]) with respect to the category of all
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Boolean spaces and continuous maps between them; so that a space
is retractive iff for every continuous epi f: X+ ¥ there exists a continu-
ous g: ¥—+X such that fg = 1y and a space is co-retractive iff it retracts
onto each of its closed subspaces.

The idea of retracts of Boolean algebras is not new. In 1933 von Neu-
mann and Stone [11] investigated the following problem. If 4 is a Boolean
algebra, then nnder what conditions on the ideal J will there exist a subset
8§ of A which meets every equivalence class modulo J in exactly one point
and which is a subalgebra of 4?7 Such a subalgebra of 4 would be isomor-
phic to 4/J so that in the above terminology the question amounts to con-
ditions on J for the canonical epimorphism 4 .47 to be a retraction.
The restriction to the canonical epimorphism can be removed by the

following observation. If the canonical epimorphism f: A->AJJ is a re-

traction so that there exists j: 4jJ-—>4 satisfying fj=1 47 and if g¢:
A—A[J is an arbitrary epimorphism, then gj is an automorphism of AlF
and therefore gj(gi)™ = 1, so that g is a retraction.

TueorEM 1.5. Interval algebras are refractive.

Proof. This is given essentially by Mostowski and Tarski who
show [10], Satz 2.2 and 2.3, that the von Neumann-Stone problem is
solved for all ideals J in the case of interval algebras. This together with
the above observation is what is required.

The converse of Theorem 1.5 is false since, as we shall now show,
there exist retractive Boolean algebras which are not interval algebras.

TaBOREM 1.6. The finite co-finite algebra FC(T) on set T (i.e. the field
of all finite or co-finite subsets of T) is retractive.

Proof. This is easier to see topologically. Let X be the one-point
compactification of 2 set (i.e. discrete space) of power |7| with respect
to a ¢ X. Then, as is known, X is the Stone space of FC(T). We must
show that X is co-retractive, i.e. X retracts onto any closed subset ¥ of X,

Case 1. a ¢ ' s0 that F is finite. :

Define f: X+ F by f(2) = x, for all #z e X—F and f(z) = « otherwise,
then f is continuous. To see this let P C X be open. If «, ¢ P, then f~(P)
= P n F is a finite subset of X not containing a, and so is open. If x, ¢ P,
then f~%P) is cofinite and so is open.

Case 2. aef. ‘

Define f: X+F by f(z) = afor all ¢« X—F and f(x) = = otherwise,
then f is continnous. To see this let P C X be open. If a ¢ P then f(P)
does not contain a and so is open. If a ¢ P then X— P is finite and so
(¥Y—P)~TF is finite, which means that f(P)=X—(X—P)~F i
cofinite and so is open. Thus in both cases f is retraction onto F, as required.

For |T|= w Theorem 1.6 gives nothing more than Theorem 1.5
since F'0(w) is countable and hence an interval algebra. For |T|> o,
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FC(T) cannot be an interval algebra. since it is an uncountable algebra
in which every chain is countable. Thus the converse to Theorem 1.5
is false. However F((T) is isomorphic to a subalgebra of an interval
algebra (*). Thus let T be the set of all ordinals < w; in their natural
ordering and consider the subalgebra 4 of In(l’) generated by all ele-
ments of the form (i,7-+1] where 4 is an ordinal <w;. Then 4 is iso-
morphic to FC(w,) since it is an atomic algebra every one of whose ele-
ments is a finite union of atoms or the complement of such a union. Thug
unlike that of being a chain the property of being an interval algebra
is not hereditary. Theorem 1.6 and the remarks just made suggest that
the following conjecture might be a way of retrieving the analogy between
chains (posets and interval algebras) Boolean algebras.

ConsecTURE {A). Retractive Boolean algebras are precisély the sub-
algebras of interval algebras.

Before this however one would have to settle the following

CoNJECTURE (B). Every subalgebra of an inferval algebra is retractive.

The difficulty in settling this question les in the lack of an adequate
characterisation of subalgebras of interval algebras; equivalently in the
lack of a characterisation of when continuous images of ordered
spaces are orderable. Certainly there are subalgebras of interval algebras
which are not interval algebras other than those isomorphic to #'¢ ().
Thus for example if 4 is the subalgebra of In(T) constructed after Theorem
1.6 and B is the subalgebra of In(T) generated by 4 together with any
additional countable set of elements of In (7') then B is neither an interval
algebra nor isomorphic to FO(w,). As a very weak support of the second
conjecture above we shall show that the simplest such algebra B is
retractive.

Leswa 1.7, If D is the algebra of all subsets of a set T, C the algebra
of all finite and cofinite subsets of T and B the subalgebra of D generated
by C and some p e D, p ¢ C then the Stone space of B is the disjoint union
X U Y of clopen X and ¥ where X is the one-point compactification of a set
of power |T| and Y is the one-poini compactification of a set of power
min(|p], |[—p}). ~ : : _

Proof. We shall just consider the case |T] = 1, [p| = o the argu-
* ments for the other cases being essentially the same. Thus X , ¥ are the

one-poiny compactifications of sets of power w;, @ respectively with -

respect to points e e X, fe Y. Clopen subsets of ¥ u Y are unions of
clopen subsets of X and of Y i.e. unions of finite op cofinite subsets of
X—{a} and of ¥— {f}. So that if P is a clopen subset of X v ¥, then
P is either a finite or cofinite subset of X U Y— {a}—{B} or P differs

() T am gratefnl to R, 8. Pierce for pointing this fact out.
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by finitely many points of X w ¥ from either X or ¥. The function which
maps the singletons of T' onto those of ¥ Y— {a}—{8} and which
maps p onto ¥— {3} obviously extends to an isomorphism of the algebra.
B onto the clopen field of X v ¥ which is what is required.

Suppose now that 4 is the subalgebra of In(T) (where T is the set
of ordinals < w,;) which is generated by all elements of the form (i, i+1]
as before; and B is the subalgebra of In(T) generated by A and an ele-
ment of the form p = ( , 4] for some ¢ << w,. Then :

(1.8) B is a subalgebra of an interval algebra which is reiractive and
which is neither isomorphic to a finite-cofinite algebra nor io an

interval algebra.

By the Lemma, the Stone space §(B) can be taken as the disjoint
union X' w ¥ of clopen sets X and Y which are the one-point compactifi-
cations of sets of power w,, » respectively. We show that S(B) is co-
retractive. Let F be a closed subset of S(B). IfF A X # @ and Fn ¥ = 0,
then by the retractivity of FC(w,), FCO(w) respectively there exist re-
tractions f: X>F X, g: Y>F~ Y and so F is a retract of S(B). If
F' A~ X = (J then the retraction g exists as before and to obtain a continu-
ous f: X—F we observe that for any ordinal k a closed subset of FC(wy)
is homeomorphic to F( (w;) for some j < % and that there exists a continu-
ous epi from FC(wz) to FO(w;). Finally if F# ~ ¥ = @ then there exists
a retraction f: X —F by the retractivity of FC(w,) and to obtain a continu-
ous g: ¥—=F we just observe that there exists a closed subset of #' homeo-
morphic to FC (i) for some ¢ < w and then argue as before. Thus (1.8) holds.

‘We turn now to retractive Boolean spacesi.e.to co-retractive algebras
which we can characterise completely.

TeEOREM 1.9. A Boolean algebra is co-reiractive iff it is isomorphic
to a finite-cofinite algebra. )

Proof. Let e a finite-cofinite algebra. The Stone space of 4 is
the one-point co stification of a discrete space X with respect to a  X.
We show that . co-retractive by showing that X is retractive. Thus
let f: X+Y Dbe « continuous epi onto the Boolean space ¥. The map f

induces a disjoint partition X = | Jf~*(y) into closed subsets. Let # C X
ye¥

be obtained by selecting one point from each partition set subject only
to the restriction that the point selected from f'l(f(a)) is a. Then F is
closed since it contains a. By Stone duality the insertion map of F into
X is the dual of the required retraction onto the subalgebra of A inserted
into A by the dual of f. Conversely suppose 4 is co-retractive. We assume
for the moment that 4 is countable and show that (a) 4 is isomorphic
to FC(w). If (a) fails to hold then A4 must contain a subalgebra B which
is generated by a copy € of FO(w) together with an element p which is
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not, the union of finitely many atoms of C. It is clear that we can take B
to be the algebra B in Lemma 1.7 i.e. the subalgebra of the power set
of a denumerable set T generated by the finite or cofinite subsets of 7'
together with a subset p C T such that |p| = |—p|= w. We show that
B is not co-retractive. Suppose that h: B—C is a retraction. Let A(p)
= ge(. Since p is infinite we know that p >%k, (n=1,2,...) where
the k, are distinet finite subsets of T. Thus ¢ > A(ks) = knforn = 1,2 g eaey
which means that ¢ can not be finite. A similar argnment starting from —p
being infinite shows that g can not be cofinite. Thus B has no retraction
onto its subalgebra ¢ and is therefore not co-retractive. But the property
of being co-retractive is inherited by subalgebras so that no algebra which
embeds B is co-retractive, which proves (a). We have therefore shown
that if 4 is a co-retractive algebra, then every countable subalgebra
of 4 is isomorphic to F('(w). From this it easily follows that 4 is iso-
morphic to #C{wy) for some ordinal %. o
We conclude this section by raising the dual form of the von Neu-
mann-Stone question for interval algebras; if 4 is a subalgebra of an
interval algebra B, can we find conditions on A for 4 to be a rvetract of B?
Clearly, since morphisms preserve the property of having an ordered
base, A must be an interval algebra. If we make the restriction that the
base for A is a subset of that for B then we can give a simple answer.

TeeoreEM 1.10. If €y, C; are ordered sets and C,C C, then In(C,) is
a retract of In(Cy) iff Cy is a vetract of C,.

If k: In(Cy)>In(Cy) is a retraction and CF = {p e In(Cy): p={(,
for e T4} for i =1, 2 then the restriction h*: 030y of b to CF yields
the desired retraction of ordered sets. The converse follows from the fact
that if f: C,—C, is an order preserving map then f extends to a Boolean
morphism f*: In{Cp)—In(C,).

Theorem 1.10 becomes more interesting in those cases where we
have detailed knowledge about the retracts of the base €. We shall not

pursue this question here except to mention the following result whose
proof we omit (1). '

mowm 1.11 (GCH). If C is the 7,-set of power w, and D is a retract
of C wz.th 1Dl < w, then D is Dedekind complete (). Conversely if D is
a Dedekind complete ordered set and 1Dl < w, then D can be embedded into C
as a retract of C. i )

(*} Theorem 1.11 is a special case of
with homogeneous universal objects (y,
(Dedekind complete sets here). Maczyriski
algebras. A generalisation which includes
in {1}, Theorem 5.2.

(*) Our use of the term Dedekind complete implies the existence of end-points.

more general result which holds for systems
sets here) and appropriate injective objects
[7] proved it first for the category of Boolean
both his resilt and Theorem 1.11 can be found
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§ 2. Independent elements. In [9] Mayer and Pierce showed that an
infinite ¢-complete Boolean algebra could not be an interval algebra.
An extension of their result would be that an infinite o-complete algebra
can not be embedded into an interval algebra. Now any infinite ¢-com-
plete algebra contains a copy of the power set algebra on o which con-
tains 2 independent, i.e. free (see below) elements; so that a further
extension would be the result that no interval algebra contains w, in-
dependent elements. We shall give two different proofs of this last result
in this section. First we recall the definition of independence.

If T'= {#:: i e I} is a subset of a Boolean algebra 4, then the elements
of T are said to be independent if

(2.1) ety N v N Bty F O

where &= 41 and (1), ...
members of I. .

It is known ([14], p. 43) that the notions of independent element
and free generator are equivalent in the sense that if the elements {#;: ¢ ¢ I}
above generate A, then they are free generators iff they are independent.

The first proof of the result mentioned above will give it as an im-
mediate consequence of the following topological theorem of L. B. Treybig
and A.J. Ward [15].

THEOREM 2.2 (TREYBIG-WARD). If X, Y are infinite compact Haus-
dorff spaces and f: L->X x Y is a continuous epi, where L is a compact
ordered space then both X,Y are metrizable.

TamoREM 2.3. If A is an interval algebra and T is a set of independent
elements of A, then |T| < o.

Proof. Suppose that |7 = o,. Then the free Boolean algebra F on o,
generators is a subalgebra of A. By Stone duality this means that the
Stone space {0,1}™ of F' is a continuous image of S(4). But §(4) is
a compact space which by [9] is ordered, and {0, 1}** is homeomorphic
to the produect {0, 1} x {0, 1}**, thus by Theorem 2.2 the space {0, 1}
is metrizable which is known not to be the case. Thus our supposition that
|T| = w, leads to a contradiction. .

Without some restriction on A the cardinality bound in Theorem 2.3
can not be improved since the free Boolean algebra on o generators is
isomorphic to the interval algebra on the rationals. This snggests the
obvious restriction to interval algebras which do not embed a dense chain.

THEOREM 2.4. If A = In(T) and T is a scaitered ordered set (i.e. has
no dense subset) then any set of independent elements of A is finite.

Proof. The construction of the Stone space of In(T) given in [9]
shows that it is homeomorphic to the order topology on a scattered Q_rdered
set. No such space can have the Cantor set {0, 1}* as a continuous image

,i{n) is any finité sequence of distinet
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(see [14], p.35) so that the free Boolean algebra on w generators can not
be a subalgebra of A4, which was to be proved.

The notion of independence used here is part of a more general one
which applies to a wide variety of systems, details of which can be found
in [3], [8]. In particular, the definition given in (2.1) snitably modified
to omit reference to complements applies to distributive lattices, and
by a result of Marczewski [8] (v), p.142, it follows that Theorem 2.3 and
Theorem 2.4 are true if the algebra occurring in them is treated purely
as a distributive lattice. Now since the apparatus of Stone duality applied
to free Boolean algebras etc. can not be transferred intact to distributive
lattices, it is of interest to give a proof of Theorem 2.3 which does not
make use of the Treybig-Ward Theorem. We shall now do this starting
from Theorem 2.4 and noting first that a straightforward algebraic proof
{effectively a translation of the one given above) can. be given of
Theorem 2.4 so that the eventual second proof of Theorem 2.3 will he
a purely algebraic one.

Second Proof of Theorem 2.3. Let A =1In(T) be the interval

algebra on an ordered set T, and suppose 4 has o; independent elements. -

Since each element is the union of finitely many intervals of T, it follows
that 4 has o, independent elements each of which is the union of k inter-
vals of T for some fixed k < w. Let Pn (n=1,2,..) be v of these inde-
pendent -elements and let ¥ be the union of the end points of the p,
{where here the end points of an interval of the form ( , 2] are —oco, 2
and those of (x, ] are z,'c0). V, as a subset of T with additional end
points —co, oo is totally ordered by the ordering of T. Let g, = Pu Y,
then gu e In(V) and are independent and so, by Theorem‘2.4, V can not
be gcattered. Now V= FE, u < By where E,_ ., H,, are the sets of
left hand (respectively right hand) end points of the ith interval for
1 <2< k. Suppose that X is an- infinite, scattered subset of E,. Then
Y =[m: gn~ X # 0} is infinite and so the union of all the end points
Of ¢w for m ¢ ¥ (not including the left hand end points of the first inter-
vals) must, by Theorem 2.4, contain a dense set and so is not empty.
We can repeat this argument for the right hand end points of all the Gm
with m e ¥. If the argument is carried out for 2k times in all (each time
using the density given by Theorem 2.4 to guarantee non-emptiness) we
arrive at an infinite set of independent elements the union of whose end
points is scattered, which contradicts Theorem 2.4, and so the proof is
finished.

DiGrEssION. The following very weak notion of independence can
be considered in a general setting and in particular for Boolean algebras.
For a Boolean algebra 4 and a subset V of 4, denote by [V] the sub-
algebra of 4 generated by V. Call ¥ drredundant if p ¢ [V— {p}] for all

i
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p V. It is easy to show that any chain not containing 0, 1 is irredundant
80 that every interval algebra (and in particular every countable Boolean
algebra) has an irredundant base; and in contrast to Theorem 2.4 every
interval algebra 4 has | 4] irredundant elements, However this phenomenon
is not peculiar to interval algebras since.if ¥ is independent in the usual
sense then ¥ is irredundant. We do not know in general which Boolean
algebras have irredundant bases.

Returning to Theorem 2.3, we observe that neither of the methods
used prove it seem capable of setitling the following conjecture, a positive
answer to which (since projective algebras are retracts of free ones) would
extend Theorem 2.3. .

CoxJeECTURE (O). If 4 is an uncouniable projective Boolean algebra
then A can not be embedded in any interval algebra. _

Finally in this section we note that the Treybig-Ward Theorem
yields, as an immediate consequence, an extension of some results of
Mayer and Pierce [9], Th. 5.3, 5.5. If 0, 4, B are Boolean algebras let
us write ¢ = A + B if the Stone space 8(() of O is (upto homeomorphism)
the product S(4)xS(B) of the Stone spaces of 4,B. (Thus C is the
co-product of 4, B in the category of Boolean algebras.)

TEEOREM 2.5. If 4 is any uncountable Boolean algebra and B any
infinite Boolean algebra then A -+ B is neither an interval algebra nor @ sub-
algebra of an interval algebra. : )

Proof. Immediate from Theorem 2.2 in view of the fact that the
Stone space of an algebra A is metrizable iff 4 ig countable.

§ 3. Different ordered bases. In [10] Mostowski and Tarski proved that
if an interval algebra A has a scattered base, then all hases for 4 are
scattered. We shall prove below (Theorem 3.2) the natural generalisation
of this result to 7 sets for & > 1. First a lemma in which we use the follow-
ing notation. Fo: rdertype 6 we denote by 0* the reverse type (i.e. the
order type of a btained from one of type 8 by inverting the order
relation). If the red set H of type 6 is the union of disjoint sets H;
of type 6; we sa, _at 6 is a shuffle of the type 6; and write § = U ;.

i

(Of course many different shuffles may result from a given set of types
so that the symbol | 6; is not uniquely defined.)
£

Leywa 3.1. If P, Q are ordered bases Jor an interval algebra A of
order-types a, B respectively, then there exisi shuffles o, v such that
a<o= BB and p<r= (a0,
k<o k<e .
Proof. Consider first a chain ¢, (ordered by inclusion) of single
intervals of a set P with type P = a. By correlating the intervals (z, y]
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of P with the ordered pairs (z,y) we can set up an order isomorphism
between €, and a subset of Px P ordered by

(@, ) < (@, 9y) B 2>m or 2 =2, and ¥ < ¥y

Thus type 0, < ¢*a. Now for fixed k< w, let (% be a chain whose members
are unions of % disjoint intervals of the set P. Then O can be embedded
by an order isomorphism into the set of all k-tuples of a sef of type o*a
ordered Dby first differences, so that type Ok < (a"a)®. If now P and @
are as given in the statement of the lemma then each member Qf.Q is
a finite union of intervals of P which may be assumed to be disjoint.
Thus @ is the union of disjoint sets Dx (k =1, 2, ...) where Dy is the set
of all members of { which are the union of precisely & disjoint intervals
and so type Di < type Cx. Thus type @ < t where 7 is a shuffle of the
types (a*a)* for k= 1,2, ... Similarly type P < o where ¢ is constructed
by a symmetric argument.

THRoREM 3.2. If for a given ordinal k1 an ordered base for the
interval algebra A contains an ny set of power wg then any ordered base for A
containg an ¢ set.

Proof. The following facts about #x sets of power w; are known
(see e.g. [12], [6]): :

(1) (n)! = g =7} for j< o and arbitrary %,
(ii) mp—>{n)5 for k=1,

where in (ii) the symbol 8- (6)} means that if a set of type 6 is the union
of w subsets, then at least one of these subsets contains a set of type 6
(see [12] for further details.) Suppose now that «, § are types of two
bases for A and « > n;. By the lemma there exists a shuffle ¢ such that

ago= 19 (6*py

and so by (i) we have ux < (f*8) for some j < w, which by (i) means
that (7;7,,) < (8*B)’ from which, by a further application of (i), we deduce
that N < ﬂ.

The bound given in Temma 3.1 is very crude and is moreover only
useful when applied, as in Theorem 3.2, to types which satisfy the re-
lation 6->(6).. For certain types e.g. the type A of the continuum and
its natural extensions 2x for which the relation 0-(0), fails (see [13;
p. 318]) different arguments can be used which show that the bound in
Lemma 3.1 i3 too wide. Thus if A4 is the interval algebra on the reals
and P is any ordered base for 4 then it is not difficult to show that type
P < 2, and similarly for the types A;. Finally we observe that if an order
theoretic property (P) of a base is equivalent to an algebraic one then,
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of course, all bases will have property (P) if one base does; so that for
example if one base for an interval algebra is dense then all bases will
be dense, since an ordered hase is dense iff the algebra is atomless.
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Errata to the paper
FUNDAMENTA “On some problems of Borsuk”
MATHEMATICAE
LXXV (1972) " Fundamenta Mathematicae 73 (1972), pp. 271-274
. by
ERRATA . )
; 3 ; E. Barton (Urbana, IIL)
l Page, ligne Au lieu de Lire i
) Page 272, line 10: replace X %0 by X xI
107 F. 1.0 F Le i1 PN
112, gix gix| : and replace  hift, 1] by Rl
: 183° 1871 1971 : qoe 979 T 6: renlace i (0. 17
| [ L70s denote | denotes | Page 272, ]{ne 16: replace  A{{0, 1]) by IL(LO’ 1]).
Page 273, line 20: replace  7{(0. 1]) by R{(0, 17).
J Page 274, line 12: replace that by than.
ge 274, line 14: replace 1 <m<n by 1<m<an.
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