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Some Wallman compactifications
of locally compact spaces

by
H. L. Bentley (Toledo, Ohio)

In 1938, Wallman [14] introduced the compactification of a T, space
known by his name. In 1964, Frink [4] used a modification of Wallman’s
procedure to obtain a certain class of compactifications of Tychonoff
spaces; these compactifications have been called Wallman compactific-
ations. Using the concept of normality of a base F for the closed sets
in a Hausdorff space X, Frink constructed a compactification of X,
denoted by w(¥), as the space of all ultrafilters of sets of &. By choosing
different bases & for a mon-compact Tychonoff space X, different Haus-
dorff compactifications of X may be obtained in the form of Wallman
compactifications w (F). Frink asked whether every Hausdorff compactifi-
cation can be obtained by this construction. This question remains
unanswered; however, many partial results have been obtained: [1], [2],
(31, [8], [6], [71,'[9], [10], [11], [12], and [13]. Thus, there has heen some
interest in methods of manufacturing normal bases. This paper is devoted
to the study of a general method of constructing such bases in locally
compact spaces. Our method is an amplification of the construetion of
the Alexandroff compactification. As an application of our results, we
are able to prove that certain compactifications not previously known
to be Wallman are indeed so. For example, we prove that if the remainder
in a compactification Y is a certain type of retract of ¥ then ¥ is a Wallman
compactifichtion. ’ )

Throughout this paper, all topelogical spaces are assumed to be
Hausdorff and locally compact; also, we let X denote a fixed locally com-
pact Hausdorff space.

1. The construction of normal bases. Let & be a family of closed sub-
sets of the space X. F is a ring iff & is closed under finite unions and inter-
sections. F is disjunctive iff given any closed set B and any point z ¢ H,
there exists A ¢ F such that 2 e 4 and A ~ B = @. F is normal iff given
any two- disjoint sets A;, 4, e F there exist Oy, Cp ¢ & such that 4, C;
=0, 4,n0,=0, and O v 0, = X. F is a normal base iff & is normal,


Artur


14 ‘ H.L. Bentley

F is a ring, F is disjunctive, and F is a base for closed sets. Thus, according
to Frink, if F is a normal base, then () is a Hausdorff compactifica-
tion -of X. ' ‘

An important concept for us will be that of a co-compact set. A sub-
set L of X is co-compact iff Cly(X—LI) is compact.

Certain rather nice relations are valid for co-compact sets. We state
these now for future reference but leave the easy proofs to the reader.

TrEOREM 1. Let Y be a compactification of X, let K = ¥Y—X, and
let L be co-compact in X. Then K C IntyCly(L) and if A C X then K ~ Cly(A)
=K~ Cly(4d A L). '

THEOREM 2. Let F be a family of closed subsets of X such that every
- compact subset of X is in F and every co-compact subset of X is in F. Then
F is disjunctive and is a base for closed sets.

Proof. Let v ¢« X and let § be a closed subset of X such that z ¢ 8.
By local compactness of X, there exists a compact neighborhood B of »
such that 8§ » B = @. Let L = Clx(X— B). Then L is co-compact. Finally,
xe{r}eF, SCLe¥F and {#} ~L= 0. This completes the proof.

As justification for restrieting our attention to those normal bases
which contain all compact sets and all co-compact sets we cite Theorem 1,
Theorem 3 (below), Corollary 2 of Theorem 4 (below), and Theorem 8
(below). Thus, we turn our attention to the task of constructing normal
bases which contain all compact sets and all co-compact sets. The solution
lies in directing our attention to an auxilliary family which, loosely
speaking, we can consider to consist of sets which are. “unbounded?”.
This idea is embodied in the following definition: If X is a family of
closed subsets of X, then we let OM(X)= {H~AL)yuB| HeX, L is
co-compact and B is compact}. We shall refer to CM(X) ag the compact
modification of X. .

The proof of the next theorem is a straightforward application of
the algebra of sets and will be omitted.

THEOREM 3. Let X be a ring of closed sets such that @, X eX. Then
CM(X) is @ ring of closed sets which contains 5 as o subset and, moreover,
contains all compact sets and all co-compact sets. '

Thus, if X is a ring of closed sets such that U, X ¢X and such that
QM(JL) is a normal family, then Theorems 2 and 3 imply that CM ()
Is a normal base. Our next question is: What conditions must 5 satisfy
50 that CM(X) is a normal family? In order to give an answer to t11fs
question, we make the following formal definition.

DEFINITION. Let % be a family of closed subsets of X. Then X is
normal af oo iff there exists a’ co-compact set J such that for every co-

compact set L CJ, the trace of X on L (ie. {H ~nL| H ¢ X}) is a normal
family of subsets. of L. '

icm®

Some Wallman compactifications of locally compact spaces 15

Now we are ready to state and prove the following: -

TurorEM 4. Let X be a family of closed sets which is normal ag oo,
Then CM(XK) is a normal family.

Proof. Let 4, 4, e CM(X) such that 4, n 4,= 0. Let Hy, H, ¢ X,
L,, L, be co-compact, and B;, B, be compact such that 4, = (H, n L;) v B,
and A, = (Hy~ L;) v B,. Since B; and B, are disjoint compact subsets
of the locally compact space X, there exist compact sets K,, K, such
that B, Cintx(K,), B, C intx(H,), and K; n K, = @. Now, the assumption
that J is normal at oo guarantees the existence of a co-compact set J
such that {H ~ L| H € X} is a normal family of subsets of I whenever L is
co-compact and L CdJ. Let L = L, ~ Ly~ Clx(X— K;) n Clg(X — K,) ~ J.
Then L is co-compact and LCJ. Also, (Hyn~L)n (HynL)= 0. So,
since {H ~nL| H e X} is normal, there exist V;, V,eX such that

(HnLynVinl)=0, (HnL)nV.nL)=0,

and (VinL)u (VonL)=0L.

Next, let P = Clg(X—L) and note that (4, ~ P) v B; and (4, ~» P)u B,
are disjoint compact subsets of X. Therefore, there exist compact sets §
and T such that (4, ~ P)v B, Cintx(S), (4, P)u B, Cintx(T), and
S~ T=@. Finally, let C,= TV, ~nL)u (T ~P)and let C,= (Vo L)
v (P—intx(T)). We leave it to the reader to check that

C, CoeCM(K), An0=0, A,nC=0, and Cul=2X.

CoROLLARY 1. Let F be a ring of closed sets which is normal at oo and
suppose @, X ¢ F. Then CM(F) is a normal base.

COROLLARY 2. Let F be a ring of closed sets which is normal at oo and
which contains all compact and all co-compact sets. Then F is a normal base.

Proof. Merely note that & = CM(F) and apply Corollary 1.

Leva. Let & be a normal base, let T be compact and let S be closed
such that T ~ 8 = @. Then there exist P,Q ¢ F such that TCP, SCQ,
P is compact, Q is co-compact, and P ~ @ = O. ’

Proof. First, use the local compactness of X to manufacture a com-
pact set B such that T Cintx(B)C BC X— 8. Let L = Clx{(X— B) and
note that I is co-compact, T'~nL =@, and S CL. Since F iz a base for
closed sets, for each z ¢ T, there exists a co-compact Mz e F such thatb
x¢ My and LC M,. Since F is disjunctive, for each x e T, there exists
Hy; e § such that # € Hy and Hy ~ M= @. Since F is a normal family,
for each e T, there exist Cz; Dy e F such that Hyn Oz =@, Mg~ Dy
=0, and Oy u Dy=X. Then TC | J(X—Cz) so, since T is compact,

xeT

there exists a finite number of points' @y, .., ¥, € T such that
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TC U (X—0,,). Let P= U D, let @ = ﬂ M,, and it follows that P

i=1
and @ satisfy the conclusmn of the lemm'b

If ¥ is a normal base and if FCX, then {Fn B| I' e 5} may fail
to be a normal family of subsets of E. This observation was made by
Frink. Tn view of this fact, the following theorem is of some interest.

THEOREM 5. If F is o normal base, then & is normal at oo.

Proof. In the definition of “normal at oo”, we take J = X and
let I be any eo-compact set. We must show {F~ L] F¢J} is a normal
family of subsets of L. Thus, let Fy, Fy e F such that (F; n L) n (F, ~ L)
= . Then L and F; ~nF, are disjoint closed subsets of X and Iy~ I,
iy compact (sinee it is contained in Clx(X—LIL)). Apply the lemma to
produce sets P,Q e¢F such that ¥, ~nF,CP, LCQ, and Pn@Q =0O.
Then (F; ~ Q), (Fy~ Q) e F and (Fy, ~ Q) ~ (Fy, n Q) = O. By the normality
of F, there exist sets C;, C, e & such that (F;, Q) G, =0, (F,~ Q)
nCy=@, and 0, v C,= X. We complete the proof by observing that

(Frnl)n(Cinl)=0,

FynL)n (Cyn L) =

and (O;nL)vw (CynIL)=

We close this section with the following theorem.

THEOREM 6. Let T be a family of closed subsets of X such that T is closed
under finite interséctions. Let X be the family of finite unions of sets of §
(i-e. & dis the ring generated by T). Then if § is normal at oo, then K is
normal at oo,

Proof. Produce a co-compact set J such that {P~L| Pef} is
a normal family of subsets of L whenever L is a co-compact set such
that L CJ. This same set J will work for normality of & at co. To see
this, let L be a co-compact set such that L CJ. Let Pyyveey P,y @y vy Qe T
such that

[( 1Q1Pi) f\L] ~ [( Qle) A L] =0.

Then for each 4,7, noting that (PsnIL)n (@~ L) = @, produce sets
Vij, Wi; €§ such that
Pinl)n(Fynl)=0, (QnD)n(Wynl)=0,
and  (VynL)u(WynD)=L.
Let
n m m k13
=N UVy, ﬂ U Wiy

i=1 §=1

icm®
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and check that O, C, ¢ X,

I le,.) ALl A (0,~L) =0, [(jLZ):Q,-) ALl A(C,AL)=

and  (0.nL)v (C,nL)=

‘We remark that trivial examples in the Euclidean plane can be used
to show that the converse of Theorem 6 is not true.

II. Wallman compactifications determined by compact modifications.’ In
this section we first present a few known results about compactifications
and normal bases for later reference. We then use some of these results
to complete the justification for restricting our attention to normal bases
containing all compact and all co-compact sets (see Theorem 8).

Let Y be a compactification of X and let ¥ be a normal base on X.
We write ¥ ~ w(§F) whenever ¥ and w(F) are equivalent compactifi-
cations, i.e. whenever there exists a homeomorphism of Y onto w(F)
which is the identity on X.

Steiner [7] ealls a family § of closed subsets of a space ¥ separating
on Y iff given any closed set B of ¥ and given any point y ¢ E, there
exist F',,F, ¢ § such that y ¢« ¥,, ECF, and F, n F, = 3. He says that
a family & of closed subsets of a space ¥ has the trace property with
respect to a dense subset X iff whenever Fl, ...y B, € & are a finite number

n

of sets 'such that (M ¥, # @, then X n ﬂ F; # @. Steiner then proves
=1 i=1

the following:

THEOREM 7.Let F be a normal base on X and let ¥ be a compactification
of X. Let ? {Clp(F)| F € F}. Then Y 2 w(F) if and only if F is separating
on ¥ and F has the trace property with respect to X.

We remark that it is an immediate consequence of the definition of

eF, 0 (| F;) = [\ CKF), where the
i=1

i=1

w(§F) that whenever F,,..., ¥

closure is taken in the space w(F).

We would now like to relate these ideas to our proecess of forming
compact modifications.

THEOREM 8, Let F
o w (CM(F ))

Proof. Let ¥ =w(5), let §=CM(F), let § = {Cl;(@)]| GG}, and
let K=Y-—X. Then by Theorem 7, it suffices to show that G is separating
on ¥ and § has the trace property with respect to X.

To show § is separating, let y ¢ ¥ and let F be cloged in Y such that
9 ¢ B. Let ¥ = {Cly(F)| EeF}. Then by Theorem 7, F is separating.
Thus, there exists F,, F,e F such that y e Clp(F,), B CCly(F,), and

Fundamenta Mathematicae, T. LXXV h 2

be a normal base such that @, X ¢ §. Then w(F)
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Clp(F,) ~ Cly(F,) = @. Since FC§, Cly(F,), Cly(F,) ¢ § and hence, § is
separating. _ § _
To show § has the trace property with respect to X, let Fy, ..., F’f eF,

let Ly, ..., Ly be co-compact in X, and let B, ..., B, be compact in X
such that

n

M Cle[(Fs ~Ly) v By] # O

i=1 .

and suppose, by way of contradiction, that

[(Fs ~Ly) w.Bi]l =0 .

D=

k3

Letye ;’% Cly[(F; n Lg) v B;] and note that y e K. Thus,

=1

n n n
y () K~ Clel(Fen L) v Bil = () K~ Ole(Fs ~ L) = (K ~ Cly(F)

i=1 i=1 . =1
the latter equality being a consequence of Theorem 1. Since ¥ = w(F )
n n n .
and 7y, .., Fy e F, ) Cly(Fy) = Cly((") F4), and so y € Cly([) Iy). But since
: i=1 i=

i=1 . g= 1

(FnI)=0 , [\ F:iCl)(X—L)C ) Clx(X—ILy)

1 i=1 i=1 i=1

Da

4

[}

n
and therefore M Fy is compact in X. Thus,
=1

YOy F)=NF:CX
i=1 i=1

which is impossible since y e K = ¥—X.

As an example, we apply our methods to the problem of constructing
the closed disk of the Euclidean plane out of the open disk. It was con-
jectured by Njastad [6] that the closed disk is not a Wallman com-
pactification of the open disk. E.F. Steiner [7] proved that this conjecture
was false.-

In the following example we present an alternative proof of this fact.

Exaypi. Let X be theopen disk in the planeand let ¥ be the closed.
disk. For each pair of real numbers (a, b), let L, = {(rcos 6, rsin 0)]
0<r<landa<8<b}and let L= {L,,| aand b are real}. Let 5 be
the ring generated by L. Then it is not difficult to show that I is normal
at co and using Theorem 7, to show that w(CM(X) =~ Y.

L. Retracts and Wallman compactifications. In this section, we consider
compactifications ¥ of our space X such that the remainder Y— X is
a retract of Y. If the retract map sends every co-compact subset of X
onto ¥—X, we are able to prove that Y is a Wallman compactification
of X. Obviously, many common compactifications are of this form.
Nevertheless, it is clear that not all compactifications are of this form

Some Wallman compactifications of locally compact spaces 19

since a necessary condition for this is that the cardinal number of ¥Y— X
not exceed the cardinal number of X.

DrerinmrioN. Let ¥ be a compactification of X, let K = ¥Y—X
and let f: YK be a continuous map. Then we shall say that f maps
onto K at oo iff for every co-compact set LC X, f[L]= K.

Levms. Let Y be a compactification of X, let K = ¥Y—X, and let
f: YK be a continuous map which is the identity on K. Then each of the
Jollowing statements implies the other three:

1. f maps onto K at oo;

2. for any closed HC K, H= K ~ Cly(X ~ f™{(H));

3. for any y e K, {y} = K ~ Cle(X ~ fF~Y({});

4. for any y € K, y e Cly(X ~ f~Y({y})).

Proof. Check first that for any closed set H C K, the inclusion
K~ Cly(X ~ f~{H))C H holds since f is the identity on K. We shall
show that 1+2-+3>4->1.

Suppose f maps onto K at co. Let H be a closed subset of K,lety eH,
and let ¥ be any open neighborhood of y in ¥. It suffices to show that
VX nfH) 0. Note that f~*{y})—T is closed in Y, hence it is
compact. Also, f™}({y})—V CX and so, because X is locally compact,
there exists a compact set W C X such that f~%{y})—V Cintx(T). Let
L = Clx(X—W). Then L is a co-compact subset of X and hence flll= K.
Let z«L such that f(2)=y. Then zeV ~ X ~fY(H).

It is trivial that 2-+3 and 3-—>4.

Assume that statement 4 is true. Let L be any co-compact subset
of X. Let y « K. We must show y ¢ f[L]. By Theorem 1 which appeared
in seetion I, KCinty(Gly(L)), and by the hypothesis that 4 is true,
¥ e Olp(X ~ FY({y})). Thus, X ~F YA inty(Cly(L)) # 0. Let ze X

~f Y inty( Oly(L)) and note that z ¢ X n Cly(L) = Clx(L) = L, which

completes the proof of the lemma.

We use the following result repeatedly in the proof of the following
theorem: If the hypotheses of the preceding lemma are satisfied, then
whenever HC K, K ~ f~{H)= H. This is true because f is the identity
on K.

One of our major results is the following theorem.

THEOREM 9. Let ¥ be a compactification of X and let K = Y—X.
Let f+ YK be a continuous map such that f maps onto K at oo and such -
that f is the identity on K. Let X be the family of all subsets of X of the form
X ~f7UH) where H is an arbitrary closed subset of K. Then ¥ ~ w (OM(JC)).

Proof. Clearly @, X ¢ X and X is a ring of closed subsets of X.
Let 5 = CM(X) and observe that by Corollary 1 of Theorem 4, in order
to show that F is a normal base, it suffices to show that K is normal at oco.

9%
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To show that G is normal at oo, in the definition of normality at oo,
take J — X and let L be any co-compact subset of X. Let H,, H, be
closed in K and suppose that [X ~ f~(H) ALJ n[X n‘f“l(Hz) ~nL]= Qj
Since f[L]= K, we get that H;n H,= Since K is compact, K ig
normal and so H, and H, are contained in disjoint open subsets of K.
Let V, and V, respectively be the complements of these open sets and
then we have H AV, =0, H,nV, =8, Vv V,= K. Therefore, since

[X AN H) ALl ~[XAFVy) A L] =0

(X nf Y H) AL [Xnf (V)nL]=0
and '

X AfY\V)nliv [X"f-l(vz)"‘L]:L:

it follows ﬂla.t J is normal at oo. .
Since F is a normal base, we can complete the proof by showing that
= {Cly(F)| F ¢ 5} is separating on Y and has the trace 1)10perty with

respect to X. .
To show & is separating, let y ¢ ¥ and let H be closed in ¥ with

y ¢ H. 'We congider two- cases.

Case 1. y e X. In this case, there exists a compact set BC X such
that y eintx(B) and B~ H = @. Let I = Clg(X— B). Since {y} is com-
pact and L is co-compact, we have ye{y}eF, HCCly(L)eF, and
{y} ~ Qlr(I) = :

Case 2. y e K. In this case, by the normality of ¥, there exist sets
U,V open in Y such that y ¢ U, HCV, and Cly(U) Oly(V) = @, Define
sets A;, 4,, By, B,, and B, as follows:

A= " ~AfUE A Cle(D)], B = Oly(Al) A Oly(V) ,

A, = X fE~CQx(V)], B,= Cly(4,) ~ Cly(T),
and g :
By=B,uB,u[HAfYE-T)].

We now show B, C X. Using statement 2 of the Lemma together with
the fact that K ~ Cly(U) is closed in K, we have

E ~ Cly(U) = K  Oly (X ~ fHE A Cly( U))) = K ~ Cly(4,)
Therefore, since f is the identity on K,
Cly(4,) = [K ~ Cly(4,)] w [X ~ Cly(4,)] = [E ~ Clp(T)] v 4,
=[EnfE ~Cly(T)] | X ~ f7K ~ Cly(D))|
= 7K ~ Cly(T)).
Similarly, Oly(4s) = f~{E ~ Olg(V)).
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Now since f is the identity on K,
K~ B =KnCly(4)) ~Clyp(V)=K nf YK ~ Cly(T)) ~ Cly(V)
= K ~ Clp(U) ~ Cly(V) =

Therefore, B;C X. Similarly, B,CX. Finally, H Y (E—=V)nK
=Hn(K-V)=@ and so H~nf{E-V)CX and B,CZX. Clearly,
B, is compact. So, there exists a compact set B, C X such that B, C intx(B,).
Now, define sets L, L,, M,, and M, as follows:

L= Cly(X—By), I,=ClyX—B,),
My=A4,~nL, and M,= (4,~nL)uB,.

Note that by the very definition of J, we have 4,, 4, e X. Therefore,
since § = CM(X), M,, M, eF, and so Cly(M,), Clp(M,) ¢ F. In order to
complete the proof that ¥ is separating, we must establish three relations;
namely, ¥ ¢ Cly(M,), H C Cly(M,), and Cly(M,) n Cly(M,) = O.

Now, sinee I, is co-compact, we have by Theorem 1 that

K~ Cly(4,) = K ~ Cly(4; n I,) C Cly(M,).
Therefore, since f is the identity on K,
Y<K nCly(U)= K nf YK ~ Cly(T)) = K ~ Cly(4;) C Cly(DM,).

We next show H C Cly(M,). Since ¥ =fYE)=FYEATV) o E~T),
we have

HA(X—B)CHALCHALAfYEAV)]V[HALAFYE-V)]
ClZAX A fHE A Cly(V))| w [H ~ f(E—V)]
C(LnA4y)uBy= M,.

Therefore, ‘
HAX=(HnB;)u(Hn(X—B,)CByu My= M,C Cly(M,).
Next,
HAKECEAVCEnCy(V) =K nf YK A Cly(7)) = K ~ Cly(4,)
= K ~ Cly(d, ~ L) C Cly(I,) .

Therefore, H = (H ~ X) w (H n K) C Cly(11,). Finally, we show Gly(Ml)r\
~ Oly(M;) = @. First, since K~ B, =@,

K ~ Cly(M;y) ~ Oly( ;)
= K Oly(d; ~ L) ~ Ole(dy ~ ) = ~ I ~ Cly(4y)  Oly(4y)
=K nfYE A Cly(T)) ~ fYE ~ Olp(V)) = K ~ Clx(T) ~ Clp(V) = O .
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Seeond, since By C intx(By), Ly~ By = @. Therefore, since M; and I, are
closed in X, )

X A Cly(3) A Cly(My) = My~ MyC (4~ 4y L~ Ly) v (L~ By)
C(4y ~Ay) v @ CFHOT) A Cly(V))
=0 =

Putting these two inclusions together, we have
Cly(M,) ~ Cly( M) = [K ~ Cly(My) ~ Cly(M)] v [X ~ Clg(M;) ~ Cly(I,))
=0u@d=0.

This completes the proof that F is separating.
To show that 7 has the trace property with respect to X, let H,, ..., Hy
Dbe closed in K, Ly, ..., Ln be co-compact in X, and By, .. B,, be compact

in X with (Z‘] Cly[(X ~ f~YH;) nLy) u B # @ and suppose, by way
i=1
of contradiction that

[(X mf_l(_H AEa) Li) v Bi] g.

PBE

o i=1

Let y eﬂ Oly|(X ~ f(H;) ~ Ls) v By| and note that y e K. Tor each i,

i=1

Oly (X ~ f~Y(H3) ~ L) C Oly(f~(Hy) = f~(H:) .

n
Algo, { B;C X. Therefore,

i=1

y eﬂ Cly(X n f~(Hq) ~ Lg) C élf—l(Hi) )

i=1

n n
and since f(y) =y, y ¢ ﬂ H;. Since () L; is co-compact in X, f[[N) L¢] ==
i=1 =1

=1

n
therefore, there exists a point « e() I; such that f(2) =y. But then

i=1
z sﬂ (X ~ f(Hi) ~ L) = @, which is impossible, and the proof of the

theorem is- complete.

That Theorem 9 provides us Wlth a rather broad spectrum of com-
pactifications can be seen from the following theorem.

TerOREM 10. Let ¥, and X, be compaciifications of X such that
Y.2 Y, Let K, =Y,—X and let f;: Y, >K, be a continuous map such

that f; is the identity on K, and f, maps onto K, at oo, Then Y, is a Wallman
compactification of X. .
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Proof. Let g: ¥; ¥, be & continuous map which is the identity on X.
Let K,= ¥Y,—X and observe that ¢[K,]= K,. Define the function
ft YK, as follows: fy(e) = g(fu(#)) for each @ eX and fy(y) =y for
each y e H,. To show that f, is continuous, let H hbe closed in K,. Then
H is closed in ¥,. g~Y(H) is closed in ¥,. Ky~ ¢g7Y(H) is closed in K,.
But g~{(H)C K, so g~"(H) is closed in K. Next, fi*g~"(H)) is closed
in ¥, and, finally, g[f7*(¢""(H))| is closed in ¥,. Since fi(H)
= g[fi*lg~H))}, f» is continuous. Clealy, f, is the identity on X, and £
maps onto K, at ‘co. Therefore, Theorem 9 implies that ¥, is a Wallman
compactifieation of X.

1
As an example, let X = {(m , sin;)

‘>O<m<1}, let K, = {0}x

X[—1,1], and let ¥, = K, v X. Then Y, is a compactification of X and
if we define f;: ¥;—~K by fi(z,y) = (0, y) for each (z,y) ¢ ¥, f1 satisfies
the hypotheses of Theorem 10. Thus, any upper semi-continuous de-
composition of ¥, in which the single points of X are elements is a Wallman
compactification of X; moreover, we have given an explicit construction
for a normal base inducing such a compactification.

IV. Some questions. We have been able to prove that certain com-
pactifications of locally compact spaces which were not previously known
to be Wallman compactifications are indeed so. Nevertheless, we have
not been able to prove that every compactification of a locally compact
space is Wallman. A consequence of our results is that if a compactification
is Wallman, then it is determined by a normal base which contains all
compact sets and all co-compact sets. Thus, if there exists a compactifi-
cation ¥ which is not determined by any normal base which contains all
compact and all co-compact sets, then ¥ is not Wallman.

In [8], A. K. Steiner and E. F. Steiner present a theorem concerning
a map f: X—K where K is the remainder of some compactification of X
and where f maps onto a dense subset of K at ‘co. The proof of our
Theorem 9 is not valid if we so generalize f. Nevertheless, the theorem
may have such a generalization which is valid. We do not know the answer
to this question.
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‘Connectivity retracts
of unicoherent Peano continua in &

by
W. C. Chewning (Monterey, Cal)

If X is a topological space with the connectivity function fixed point
property, then each connectivity retract of X has the continuous function
fixed point property. (See [7] for the definitions and background.) Since IZ
has the connectivity function fixed point property (see [6]), it was hoped
that any non-separating planar continuum might be a conrectivity re-
tract of I” and hence have the fixed point property. Cornette, however,
demonstrated in [3] that the class of unicoherent Peano continua was
closed under connectivity retraction. In a subsequent joint paper, Cornette
and Girolo (see [4]) raise the question: “Is there a %-coherent Peano cors-
tinuum that has a connectivity retract that is not a continuous retract?”.

That this question has a negative answer for sets in R® was proven
in [2]. The purpose of this paper is to describe an example in R, n > 3,
which provides an affirmative answer to the major question of [4].

In the subsequent discussion, we will use these results:

(1) If a Peano continuum X fails to be unicoherent, there is a simple
closed curve which is a retract of X, and thus Hy (X, Z) # 0 (Cech homo-
logy, integral coefficients). (See [5].)

(2) If each of X and ¥ are unicoherent Peano continua and X ~ ¥
is connected, then X u ¥ is unicoherent. (See [8], Chapter 9.)

(3) If X i3 a unicoherent Peano continuum with no cut points, and
f+ X>X is a peripherally continuous function, then f is a conmectivity
function. (A function f: X-¥ is peripherally continuous if for each
point p ¢ X and each pair of open sets U, V about'p and f(p) respectively,
there is an open set W, pe« WC U and Ff(BAW)C7V. See [9].)

Let 6 =(0,...,0) in B*, and the set

B = {z e R*: d[w, (3/2%,0,...,0)] < 1/2**'}, and B= {0}+ D 'Br.

k=1
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