On the family of sets of approximate limit numbers
by
Wihadystaw Wilczynski (£o6dz)

Let f be a bounded real function of a real variable. The number ¥,
is called the approximate limit number of f at #, if and only if for each
£ >0 the set f~'((y,—=, yo+2)) has the upper exterior density at =,
greater than zero. The set of all approximate limit numbers of f at z,
will be denoted by L, (f, a,). Right- and left-sided approximate limit
numbers are defined similarly in an obvious way and the sets of those
numbers are denoted by L7(f,x,) and L_(f, x,) respectively.

This work includes some characterization of the family of sets

Lop( s @)} zetap- A similar characterization (but of the family of sets of
ordmarv limit numbers) is given in [1].

We shall use the following notation: if % is an arbLtmry plane set
and ¥ is an arbitrary linear set, then A YE) = {z:V/ ((«, y) ¢ %)}

yveE

Derrxiriox. If % is a plane set, then the number y, is called the
approximate limit number of A at x, if and only if for each £ > 0 the set
A ((yo— £, Yo+ £)) has the upper exterior density at x, greater than zero.

Let us observe that in the case where % is the graph of some function f,
this definition is equivalent to the definition of the approximate limit
number of f.

The set of all approximate limit nu_mbers of A at 2, will be denoted
by Lap(A, x,). It is not difficult to see that for each plane set A and for
each z, the set Lqp(U, ) is closed.

Now let us suppose that the bounded real function f is defined on
the open interval (a, b). Let us put:

Laplf, @) = {8} X Lap(f, @) for wela,b], Lap(f) ZQL[J }Ea:n(f; )

€la,b
(of course Lap(f, a) = L3 (f, a) and Lap(f, b) = £ (f, b)) and analogously
for the plane set A:

Lap(W, 2) = {2} X Lap(W, @), = Lap(W) = L,l{zﬁap(%; x)

(R denotes here the set of all real numbers).
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THEOREM 1. If f is & bounded real function defined on the open infer-
val (@, b), then

Eap(f )= ﬁap(ﬁap(f )) .

Proof. Let (i, ¥,) € Lap(f) and let ¢ be an arbitrary positive numper,
The set f“((yo— $&, %+ }¢)) has the upper exterior density at z, greater than

zero. Let C; denote the set consisting of all points of the exterior density .

of f7((yo— $e, yo-+3)). Tt is well known that the set ¢, has the upper
exterior density at z, greater than zero, and that for each z e C, there
exists an y e [yo—4e, Yo+ §e]  Lup(f, #). Hence (Lap(f))~((yo—e, Yote))
D0z, and so the set (ﬁup(f))“l((yo—e,yo+e)) has the wupper exterior
density at @, greater than zero and (@oy Yy) € ﬁup((_‘ap( f)).

- Let (29, 9) € Lap(Lan(f)) and let & be an arbitrary positive number.
The set (Cap(f)]™((vo—e, %o+¢)) has the upper exterior density at g,
greater than zero. Let us observe that if s, & (Lap( ) (yo—e, Yote))
then the set f“’((yo—-a, Yo+ s)) has the upper exterior density at grea,tel,-
than zero. Indeed, if y, € Lap(f, ;) N (yo—e, yo+ ) and g = min (y; —y,+-
T8 Yot e—1), then F(yy—e, yo+¢)) D f(yy— ey, g1+ &) and this
last set has the upper exterior density at @, greater than zero. We shall
prove that the set FHwo—¢, yo+ s)) also has the upper exterior density
at #, greater than zero. If suffices to brove that for every interval [q, by)
Cla, b] the following inequality is true: v

Uﬁl((?!o‘-"‘y Yo 8)) A ay, bolle = l(ﬁa?(f))_l((?/o— & Yot 5)) ™ [ag, Byll,

{where |4], denotes the exterior measure of A4).

Let us suppose that there exists an interval [a,, b,] C [a, b] such that
the above inequality is not fulfilled. Let F be a measurable cover of the
set j.'"‘((yn——a, Y+ ¢))- Then almost every point of [ag, b]—F is a point
of dispersion of F and also of the exterior dispersion of f"l((g/o—e Yo-e)).
Hence there exists. & point &' e [(Lap(f))™Y(yy—e, y,4- a))—f"((yo’- &, Yo+
wg:l,s))]rx[a,‘,,bﬂ] which is a point of the exterior dispersion of the’a sef
FH(Wo—e, o+ ¢)). This is impossible in virtue of the first part of the
proof. So the set T (Yo—e, yp+- s)) has the upper exterior density at =
greater than zero and (%0, Yo) € Lap(f). The equality is proved. '
_ Let us observe that for a bounded real function
interval (a, b) for every z ¢ [a, b] the set Ly(f, o) is non-empty. It follows
from the fact that for such a function extreme approximate iimits at w
(see Saks [2], p. 219) are finité numbers and belong to tHis set: This

rem: S 11y dd o
remark 18 made to nustif “]e & 1|,]_(}]1{] 8 10 n the 0l owing
assumption 1

THEOREM 2
ditions:

defined on the open

- If A ds a bounded Plane set fulfilling the Jollowing con-
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1° the set {y: (g, ) € U} is non-empty if and only if x, belongs to a closed
interval [a, b],

2 ‘-:ap(QI) = QI,
then there -exists a bounded function f defined on ihe vpen interval (a,b)
such that Lqp(f) = A.

Before proving this theorem we shall prove the following lemma
(under the assumption of the continuum hypothesis):

LevmA. For all linear bounded sets A, B and for all families of seis
{4 er and (B}, ., where A, C A for each teT,B,CB for each ueT
and the sets T', U have powers not greater than the power of the continuum,
there erist two sets A', B' fulfilling the following condiiions:

a. A’CA, BCB, A’nB'=0, A’uB = AUB,

b. EA'32= 4., IB'lc: IBic)
and for each teT, ue U

M4, =4}, BB/, =B,,.

Proof of the lemma. If the set 4 n B is of measure zero, then
there is nothing to prove, hut in the proof we shall not make this as-
sumption. On the other hand, we shall assume that every set from these
two families is of positive exterior measure (for the sets of measure zero
the condition b will always be fulfilled). Let us suppose, for convenience,
that 4 = 4, for some f,e T and similarly B = B,, for some u,e U.

Let §; be the family of all open sets @ such that |G| < |4,], and
let 8, be the family of all open sets & such that |G} < |B,|,. Let us write

G ={Gx{}: Ge8}, G,=U6,
- leT

S, = {@x{u}: Ge8,), Sp=9G,.
. uel7

The sets 84 and Sg are of the power of the continuum, because for each
teT and ue U the families §; and 8, are of the power of the continuum
and the sets T, U are of power not greater than the power of the con-
tinwum. These sets may be well-ordered and the ordinal number of each
of them is equal to Q. This fact follows from the assumption of the con-
tinuum hypothesis. We obtain sets 4’ and B’ in the following way. If
Gy v {t:} is the first element of G., then let us choose ed,—Gy,.
It is possible because @, ¢S, , and so |G, < |4,], and 4, — Gy, is
& non-empty set. If G5, x {u,} is the first element of Gz, then let us choose
Y1 € By —(Gp; v {r,}). Tt is possible beeause Gg; €8, and so |Gyl
< |B,l;; hence B, — @y, is non-denumerable and B, —(Gp, v {#.}) is
non-empty.

Now let a < 2. Suppose that for every g < a we have already chosen
Tgy Yp- I Gy {1} is the ath element of 4, then let us choose x, ¢ A~
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—(Gyov {5 < a} v {yp: B < a}). It is possible because S, ¢S, and
50 |Gy, < |44,l,; hence 4;—@G,, is non-denumerable and the sets
{g;: p<a} and {y,: f< o} are denumerable, and s0 Arf,— (G , v {2,
f<a}v{ys: B<a}) is non-empty. If Gp,X<{u,} is the ath element
of Gz, then let us choose , € By,—(Gp, v {7 < a} v {yg: B<al).
It is possible because this set is non-empty for the same reasons as above.
By transfinite induction we obtain z,, y, for every o< Q. Let
A'=(A-B)u{r: a<}, B =(A4duB)-—-4"
From this definition it follows that A’ ~B'=@ and AU B = A LB.
Also the elements x, were chosen from the set 4, and so {z,: a < Q}C 4.
Hence A’ C A. Wehave 4’0 A— B; then B'C (4 v B)—(A— B) = B, and
50 the condition a is fulfilled. Now we shall prove that b is also fulfilled.
Let te T and let Gy be an arbitrary open set such that |Gy < [4,],. Then
G {1} €6, CS,, and 50 Gy X {t} = G % {I,} for some ¢ << 2. From the
construction it follows that z, € A’, v, € 4, and o, ¢ 6,50 1, € (4’ ~ 44)—G,.
Hence for every open set G for which G D A’ n A; we have |G| > |44,.
Then {4}, > 14"~ 4}, =, mf \G] |4,l,, and so the first part of the

condition b is proved. To prove the second part let us observe that
{#.: <2} CB". Indeed, we have y,eB for each a and {z,: a<< O}~
~{y: a< Q} =@, The proof of the fact that |B' ~ |B,le is similar
to the proof in the case of the set A;.

Proof of the theorem. The set % is hounded. Let [¢, d) be such an
interval that % is included in the rectangle [a, ] [¢, d). Let us introduce
thenotation I, ,=[c+k-(d—¢)- 27" e+ (k+1)- (d—0c)-27), 4, , =AY, )
for n=1,2,..., k=0,1,..,2%1. Of course we have A ok = AMI,% v

‘MIG
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From the lemma it follows that for the sets 4,, and 4,, and for
families {4, k}n=2,3,...,k=n L 211 and {An,k}n—28 k=g, on—y  OF  their
subsets there exist two sets 4 10 and Y fu]fllhng all conditions of the
lemma. Similarly, for the sets 47, ~ 4,, and A}, ~ A,; and the families
{Am A Ap glims,.. kms,. 22y a0 {AIO n 'Ank gk, vy OF their
subsets there exist two sets 4,, and Ay, fu]ﬁ]lmg all conditions
of the lemma. The same situation is for the sets A~ A4, 2 and Al 1N Ay,
with corresponding families of subsets of type AunAnk Continuing
this procedure successively for every pair of sets AnknAnH o and

A~ Apiisiis, We obtain the family of sets {4,
sueh that

1. for each n,%k 4, ,CA4, .,

n, k}n—l,z k=0,...,2%—~1

2w
2. for each n | J A4, =a, b],
‘ =0
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3. for fixed n the sets 4, , are mutually disjoint,
4. for each 0,k |4, ., =4

n,k e 7, K e
The first condition is obviously fulfilled. The second, third and fourth
conditions may easily be proved by finite induction. It suffices only to

observe that they are fulfilled for n = 1 and that for each n, k
("4';!,]: L A‘nﬁ-l;lk) A ("1;1 PR Aal-{»l 2!.-) = A;l,]t a Aﬂ,k == A;z,k

(second condition); if &, $ ks, then A, 9 4,1 R=0 if &= 2k,
by = _lrul for some %, and 4, . CA4, 1qu. 2 A, ,,, C Ay ey Where
[%:/2] 5 [%+/2] in another case (third condition); 4,, rle =
{fourth condition).

{Here [a] denotes the largest integer not exceeding a.)

Now we shall define an auxiliary sequence of functions {fx}. Let f, be
a function associating with an element a eA;,,k {(k==0,1,..,2"—1) such
a number y ¢ I, ;. that (x, y) ¢ ¥. This sequence of functions is convergent
(it is even uniformly convergent), because from 1, from the equality
A= Apsror v Apiyogs; and from the definition of 4,; we have
[fasl®)—fala)) < 27" (d—c) for every xe[a,b].

Let us put f, = limf,. We shall prove that £4,(fy) = A. For each n the

n—0C

graph of f, is included in . From the fact that for every z ¢[a, b] the
set £45(W, ) is closed we infer that the graph of f, is also included in 9.
Hence La5(fy) C Lap(A) = A. Now let (2, y,) e A and let & be an &Ibitmry
positive number. Suppose first that ¥, is not of the form ¢+ k- (d—¢)-2
Let us find an interval I, , such that y,el,; and I,,C (yo—e, Yo+ s)
(IM means the clmure of I, ;). From the construction of f, we have
M) DN = A .. But A,MC.AM and |4, .}, = |4, zJu and 50
it is not dlfflcult to prove that the upper exterior density of Amk is equal
to the upper exterior density of 4, , at an arbitrary 2. From the assumption
of the theorem and from the inclusion fy(yo—e, yo-+ &) D fy (L) We
infer that the set f;'{(y,— e, #o—+¢)) has the upper exterior density at z,
greater thau zero and SO (¥, ¥o) € Lan(fo). If %, i1s of the form e
+k-(d—¢)-27", then we choose two intervals I, , and I, .., such
that y, is the common end-point of I, ;. and I, . ., and I, o O I
C(ys—e, ¥o+¢) and we proceed as above, observing only that from the
assumption of the theorem it follows that at least one of the sets 4, ;,
A pore-1 has the upper exterior density at z, greater than zero. Thus in
both cases (2o, ¥o) € Can(f). I we put f= fol(a, d) (fi reduced to (a, b)),
then it is easy to see that f fulfills all requirements.

The generalization of these theorems to real functions defined in
Euclidean spaces of any number of dimensions and to unbounded functions
offers no difficulty.

, .
Ay Apsrorn =

[V St *’iﬂ,k[e
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Cohomotopy groups and shape in the sense of Fox
by
Stanistaw Godlewski (Warszawa)

In [2] K. Borsuk introduced the relations of fundamental domination
and fundamental equivalence in the class of eompaet metrizable spaces .
and proved that: (i) homotopy domination (equivalence) implies funda-
mental domination (equivalence), (i) in the class of absolute neighbour-
hood retracts fundamental domination (equivalence) implies homotopy

‘domination (equivalence). In [3] K. Borsuk introduced the notion of the

shape of a eompactum X it is the collection of all compacta fundamentally
equivalent to X. In[4] R. H. Fox extends the notion of shape to arbitrary
metrizable spaces such that for compacta the extended notion coincides
with Borsuk’s original notion of shape and the properties (i) and (ii) are
preserved.

In [5] and [6] I proved that in the class of compacta cohomotopy
groups are invariances of shape and that if a compactum X fundamentally
dominates a compaetum ¥ and there exists an nth cohomotopy group
«*X) of the compactum X, then there exists an nth cohomotopy group
a2 X) of the compactum ¥ and z™Y) is a divisor of z™(X).

The aim of this paper is to extend my results mentioned above to
arbitrary metrizable spaces.

§ 1. Basic notions. In this section we recall the notions introduced by
R. H. Fox in [4].

Consider an arbitrary category F and let ~ be a compositive equiva-
lence relation on the collection MorE of morphisms of E. Two morphisms
of E are concurrent if they have the same domain and the same range.
If u;, u, e MorE are concurrent and if % ¢ MorE is a morphism such that
U U ~Uu U, then u is an equalizer of u, and u,. An object U ¢ ObE is
a predecessor of an object U’ ¢ ObE in E if there exists a morphism 4 ¢ MorE
with domain U and range U’, u: U-U".

A subeategory U of F is called an inverse system if

(1.1) any two objects of U have a common predecessor in U
and

(1.2) any two concurrent morphisms of U have an equalizer in U.
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