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Borel-complete topological spaces ()
by .
Anthony W. Hager, George D. Reynolds and M. D. Rice (Middletown, Con.)

A topological space will be called Borel-complete if each ultrafilter
of Borel sets has non-void total intersection when each of its countable
subfamilies does; equivalently, the space is complete in the uniformity
generated by Borel-measurable functions to the real line. Our study of
spaces with this property is in two parts. The first (§ 2) concerns the
behaviour of Borel-completeness under topological operations: Borel-
completeness is (completely) hereditary, additive for a countable family
of Borel sets, countably productive (and no nontrivial uncountable product
is Borel-complete), and preserved under one-to-one Borel measurable
pre-image. The second (§ 3) concerns the relation with realcompactness.
We prove: a Borel-complete space has nonmeasurable power, and is
realcompact if countable paracompact and normal; a space is Borel-
complete if hereditarily realcompact, or if realcompact and each open
set can be derived from the closed sets by the Souslin operation.

There are a few related results in the literature. In 1948, Marezewski’
and Sikorski proved that for metric spaces, Borel completeness is equiva-
lent to nonmeasurability [18]; in 1950, Hewitt proved that Baire-com-
pleteness is equivalent to realcompactness [9]; recently, Dykes has studied
spaces complete relative to the closed sets [3]. The Hewitt and Dykes
Theorems are discussed in § 1, and will be used a few times in this paper.
Each of our results relating Borel-completeness to nonmeasurability and
realcompactness can be viewed as an improvement of one half or the
other of the Marczewski-Sikorski Theorem; and our argument to
establish 3.8 below is similar to their proof. (Observe that the Mar-
czewski-Sikorski Theorem and the Hewitt Theorem yield the corollary:
for metric spaces, realcompactness is equivalent to nonmeasurability. This
nontrivial result is usually obtained as a corollary of the later Theorems
of Katétov and Shirota. See [20] for a direct proof.)

(1) This research was supported in part by the National Science Foundation of
the United States under grant GP-18825.
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Many questions remain:

Among compact spaces, Borel-complete spaces include metric spaces
and one-point (or ¥,-point) compactifications of nonmeasurable discrete
sets (or locally compact Borel-complete spaces); some non-Borel-complete
spaces are the ordinal space w, -1, the spaces 2% and AN. But the structure
of compact Borel-complete spaces is largely a mystery.

We conjecture that no nontrivial X is Borel-complete, but the
issue of Borel-complete extensions (of a necessarily Borel-complete Space)
is largely unresolved. E. G., when is the Hewitt extension »X Borel-
complete? What spaces have compact Borel-complete extensions? Rte,

number }X|; see [6]. Less well-known is Hewitt’s nontrivial theorem
that Q(X)-completeness and Ba(X)-completeness are equivalent [9].
(Actually, Hewitt proves that X is realcompact iff each nonzero Baire
measure on X is a point mass. This condition on measures is seen easily
to be equivalent to Ba{X)-completeness.) This result has been reproved
and explicated by Hayes [8] and Frolik [5]; in these treatments, the
result derives from general theorems implying equivalence of -t-com-
pleteness and o{-t)-completeness whenever o(t)= g(#) (Hayes), or
o (%) C Souslin (t) (Frolik).

For ((X) and Bo(X), we have only this:

1.1. THEOREM. Bo(X)-completeness implies C(X)-completeness; the

1. Backgromnd. Let §(X) be the power set of X and let £C ¢ :
(X). converse holds if each open set is in Souslin(C(X)) (e.g., when open sets

An #-filter is a family & C #£ such that Fy, ..., Fy ¢ & implies N Fi 0,

and 4> ADF ¢ F implies 4 ¢ F. The #-filter F: has the countable inter- are F,).
section property, or cip, if Fy, F,,... e F implies N F: # O; is-fized it Proof. The first assertion follows from [8], the second from [5].
[ F # @, and free otherwise. C(X)-completeness itself has been (defined dually, called a-real-
In general, the #-filter ¥ is an ultrafilter (i.e. maximal) if A4 4 compactness and) studied by Dykes [3]. She shows that Q(X)-com-
and A nF # 0 for Fe§ implies 4 ¢ F. In case 4 is closed under com- pleteness implies C{X)-completeness, and the converse holds if X is.
plementation (e.g. a o-algebra), § is an ultrafilter iff for 4 e £, either a cb-space (e.g., countably paracompact and normal, or countably com-
A eF or X—A eF. Note that -ultrafilters with cip are closed under pact [13]).
countable intersection if #£ is. All families are assumed to have this
property. ' 2. Borel completeness under topological operations. The following lemma
Epe X, Fp denotes the fixed #4-ultrafilter {4 e A: » € A}; clearly, will be used in the proofs of our three main theorems.
any fixed ultrafilter is of this form (and P is unique if % separates points 21 LevmwmA. If f: XX is Borel-measurable (e.g., continuous), and
of X). ) : F is a Bo(X)-ultrafilter with cip, then f(F) = {B e Bo(X): fY(B) e F} 4s
o If each #-ultrafilter with eip is fixed we shall say that X is - com- a Bo(Y)-ulirafilter with cip. '
fg I?i(?fl \ﬁs’?&i C;zllllséi:r completeness relative to §(X) itself, and to families Proof. Evidently, f(F) is a Bo(Y)-filter with cip. If B ¢ f(F), then
Lot X be a t‘opollogical sace. al , F{B)¢F, and X—f(B)eF, because F is maximal. But X—f(B)
Hausdorff, () is tho famil OfP ) always assumed completely regular = f"YY—B), s0 Y—Bef(F), and f(F) is maximal.
for some continugm ol 517 zero-sc-ats, the sets of‘ the form {x: f(x) = 0} We first shall consider subspaces.
§ real-valued function f. $a(X) is the family of Baire 2.2 Levums. For EC X, $0(B) = Bo(X) ~ E.

sets of X the ¢-algebra generated by @(X). C(X) is the family of closed
sets, a_nd Bo(X), the Borel sets, is the generated o-algebra.

(%wen ACT(X), let o(£) denote the least c-algebra-in §(X) which
contamg s, g(-t) the least family cloged under countable intersection
and union which containg #&, Souslin (#4) the family of sets derivable

Proof. By Bo(X)~ E we mean {Bn E: B e Bo(X)}, and likewise
for any £ CF(X). [7], Theorem E, p. 25, asserts that o (£ ~ E) = o(4) ~ B.
Using 4 = ((X), and the fact that C(F) = C(X) ~ E, the result follows.
2.3 Tueorexm. Let ECX. If X is Borel-complete then E is Borel-

irom £ by the Souslin operati complete.

C Souslin{@(X)) (see [5]) thile 1(i)zil' 311;221 3‘3;1;(?= ") = elex) Proof. Let F be a Po(E)-ultrafilter with ci i

contains g(C(X) B ) W g ) 0(X) = O’(O(.X)) properly ) - Let 5 be a o (H)-ultrafilter with cip, and let f be the in-
8 ¢ ), and is Incomparable with Souslin(0 ( X))- : (0( X)) clusion map of & into X. By 2.2, f is Borel-measurable, so by 2.1 and

C Souslin{C(X)) holds. . P e $o(X)-completeness, there is 135 M f(F). Since f(d“;) = {B ¢ Bo(X):
ig s i . = .

com pAai :]:e::eli-fk;;)wn, Q(X)- completeness is equivalent to Hewitt’s real- B~ EeF}, it follows that p e} ¥ and B is Bo(F)- complete.

pletoness of disere,tea;g 5'(?)-“00mpleteness is equivalent to (Q(X)-com- This result is trickier.than it looks. More generally, let & C & (X)

; and to) Tlam non-measurability of the cardinal be a o-algebra and call B C X -t-closed if £ = (") & for some § C #. It can
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be shown that X st-complete and E #-closed imply that B is £ ~ E-com-
plete {and this is a special case of a theorem from the theory of wniform
spaces). 2.3 follows from this after noting 2.2 and that fact that all sub-

sets of X are %o (X)-closed (because any {p} ¢ Bo(X)). Taking £ = Ba(X),

and proving further that Ba(X) ~ E-completeness implies $Ba(E)-com-
pleteness — another special case of a theorem from the theory of uniform
spaces —we find that if B is Baire-closed in X and X is Ba (X )- complete
(i.e., realcompact, from § 1), then ¥ is Ba (E)- complete, i.e., realcompact.
Compare [8]. This implies Negrepontis’ theorem that a Baire-set in a real-
compact space is realcompact [19], and Mréwka’s theorem [16] that
aQ -closed subset of a realcompact space is realcompact (because “@ - closed”
is equivalent to “Baire-closed”, as can be shown).

The same method can be used to prove that a @-closed subset of an
N -compact space iz N -compact; see [17].

2.4 TeorEM. If X = | Xn, with each X, e Bo(X) and Borel-com-
plete, then X 1is Borel-complete.

Proof. Let F be a $o(X)-ultrafilter with cip. By cip, there is m with
X,eF. Then F Xy is o Bo(Xp)-ultrafilter with cip; hence some
{p} e F n Xpn). Evidently, {p} <[\ F, so X is Borel-complete.

2.5 CorOLLARY. If X is Borel-complete and locally compact then the
one-point compactification is Borel-complete.

The analogue of 2.4 for Baire-completeness holds, though the proof
requires some attention to detail along the lines of the comments follow-
ing 2.3. That is: if X is the union of a sequence of realcompact Baire-sets
then X is realcompact. This has escaped prior notice, and should be com-
pared with Mréwka’s theorem [15] that X is realcompact if X is normal
and the union of a sequence of closed realcompact subspaces.

2.6 TaeorEM. If f: XY is one-one and Borel-measurable, then X
is Borel-complete if ¥ is.

Proof. By 2.3, we may suppose that f is onto. If F is a Bo (X)-ultra-
filter with cip, and Y is $0(Y)-complete, then by 2.1 there is p e[ f(F).
Since f is one-one, fp)e(| F, and X is Bo(X)-complete. )

The analogue of 2.6 for Baire-completeness (i.e., realcompactness)
and Baire-measurable, or even continuous, maps fails: map a measurable
discrete space one-one onto a compact space. Ho‘wever, the one-one
continuous (or Baire-measurable) pre-image of a hereditarily realcompact
space is hereditarily realcompact [6]. This property resembles Borel-
completeness somewhat; see 3.6 and 3.7 below.

2.7 CoroLLARY. If X is Borvel-complete, then |X| is nonmeasurable.

P}'oof. Let D Dbe discrete X, and f the identity D X. 2.6 applies,
80 D is Borel-complete. Since Bo(D) = F(X), |X} is nonmeasurable.
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There is an analogue of 2.7 for realcompactness, due to Juhasz [11]:
if X is realcompact, and each point of X is the intersection of nonmeasur-
ably many open sets, then |X| is nonmeasurable. While Juhasz’ proof
is quite indirect, there is a direct method which proves a simultaneous
generalization of this and 2.7 [10]. A version of this argument has been
noticed also by Comfort and Negrepontis, and will appear in [2].

We turn to products.

2.8 THEOREM. Lel X = ={X,: Ae.d}. Thea, X is Borel-complete iff
each X, is Borel-complete and [ X,] = 1 for all but countably many indices 1.

Proof. Suppose A is the positive integers, and each X, is Borel-
complete. Let F be a Po(X)-ultrafilter with cip. For each n, ma(F) is
a Bo(X,)-ultrafilter with cip, by 2.1, and there is py € Xy with {pa} € 7n(F).
Thus, i, {pa}eF, and hence {(pa)}=[) a {ps}eF. So X is Borel-
complete. .

Now suppose X = z{X,: 1.1} is Borel-complete. For each 4, X, is
homeomorphie to a subspace of X, and hence is Borel-complete by 2.3.
Suppose [X,! >1 for uncountably many A. Then X contains a homeo-
morph of the space 2%, and by 2.3, 2% must be Borel-complete. But it
is not, by 2.10 helow.

2.9 ExaypLe. The space W of countable ordinals is not Borel-com-
plete (or even ('(W)-complete).

First proof. If W were Borel-complete, it would be C(W)-com-
plete by 1.1. Now T is countably compact, and if it were C'(W)-complete,
it would be realcompact (by Dykes theorem stated after 1.1). But W is
not realcompact [6].

Second proof. The family ¥ of Borel sets which contain an un-
bounded closed set in W is & free $o(W)-ultrafilter with cip [7], p. 231.

2.10 CormoLLARY. 2%t s (compact, realcompact, closed-complete but) not
Borel-complete.

Proof. W has a basis of clopen-sets, and a basis of power &,. By
a theorem of Alexandroff [1], W embeds homeomorphically into 2¥:,
By 2.9 and 2.3, 2% iy not Borel-complete.

It is known that ={X,: 1 e A} is realcompact iff each X, is [6]. One
can prove this (using Baire-completeness) much as 2.8 is proved, but
the argument is more technical (per the comments following 2.3) and is
strongly reminiscent of this proof: Recall that X is realcompact iff X is
complete in the uniformity generated by the real-valued' continuous
functions [6], ch. 15. Now the uniform product of complete uniform
spaces is complete, and the pre-image under a uniformly continuous
homeomorphism of a complete space is complete. The result now follows
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using the identity map on #X,. (We have not seen this proof in the lite- Proof. By 1.1, it is enough that X Dbe C(X)-complete, and this
rature.) This method can also beused to prove the corresponding partof 2.8, follows from realcompactness by Dykes’ theorem [3] (mentioned after 1.1).

3.4 does not focus very sharply, largely because the property “each

3. Borel-completeness and realcompactness. The first result is trivial. open set ¢ Souslin(C(X))” is rather unfamiliar.

3.1 THEOREM. In case Bo(X) = Ba(X) (e.g., if X is perfectly normal), We don’t know if 3.1 is subsumed by 3.6 below, that is, if a real-
then X is Borel-complete iff X is realcompact. compaet space in which open sets e Souslin(C'(.X)) is hereditarily real-

Proof. By Hewitt’s theorem [9] (see §1), X is realcompact iff X compact. (From [8] and [21], X is hereditarily realcompact if X is real-
is Ba(X)-complete. compact and open sets e p{C(X )

We conjecture that X must be realcompact if Bo(X) = Ba(X) and 3.5 Leava. Suppose that & and B are closed under countable inter-
if X has no closed discrete set of measurable power. It does not seem section, that 4 C B CT{X), and that & has the property: if A < &, then there
to be known if (a) Bo(X) = Ba(X) implies X is perfectly normal, or are Ay, Aoy .. et with X— A = { J As. Then, whenever F is a B-ullra-
if (b) a perfectly normal space without closed discrete sets of measurable Jilter with ¢ip, then & ~ & is an *-ulirafilter with cip.
power must be realeompact. Question (a) was raised by Katétov [12], Proof. Clearly, ¥ n:t is an 4-filter with cip. For maximality,
and (b) by R. L. Blair and R. M. Stephenson, Jr., in separate letters suppose that 4 e4 and AnF 20 if F e F nA. Write X— A4 = [ 4,.
to one of us. Since each 4 ~ Ay =0, A, ¢ F and there is ¥y € F with 4y nFp= 0.

The following is implicit in the argument of 2.8. Then, 4D FreF, and 4 e F n A,

3.2 TEEOREM. Let X be a cb-space (e.g., countably paracompact and 3.5 applies to £ = Q(X), because {z: f(x) # 0} = U {x: |f(#)] > 1/n}.
normal, or counitably compact). If X is Borel-complete, then X is real- 3.6 THEOREM. If X is hereditarily realcompact, then X is Borel-complete.
compact. ' Proof. Let & De a free Bo(X)-ultrafilter with cip. By 3.5, F ~ Q(X)

Proof. If X is Bo(X)-complete, it is C(X)-complete, by 1.1. By is a Q(X)-ultrafilter with cip. Since X is realcompact, there is p e X
Dykes’ theorem [3] (mentioned after 1.1), X is realcompact if cb. with {p}= "1 (F QX)) Let I'=X—{p}, and 5" = {Frn X+ FeF}.

The hypothesis that X be ¢b in 3.2 cannot be dropped. The space v Since {p} ¢ F, F' is closed under countable intersection. By 2.2, &' C Bo(X),
of [6], 5I has power <c and each subset is a Gy; 850 Bo(p) = T(y) and p is and is a filter; using 2.2 again, one shows that ¥’ is maximal. Again by
Borel-complete. But ¢ is not realcompact (so isn’t ¢b). 3.3, F AQ(X) is a Q(X7)-ultrafilter with cip. But [ (F' ~ QX))

Of course the converse of 3.2 fails badly, e.g., 2% (by 2.10). Another CXAN(FnQIX)=X"~{p}=0, and thus X’ cannot be real-

example comes from 3.2. ‘ B t:g 2 and 2.3. th 1ds w hereditarily cb
r 3.2 and 2.3, the converse . 8 whe i itarily cb.
. ‘ s not Borelcomolete ¥ and 2.3, onverse of 3.6 holds when X is itarily ¢

Some further comment is in order concerning Borel-completeness

Proof. If AN is Borel-complete, then for p ¢ SN— N, fN— {p} is versus hereditary realcompactness. Both properties are hereditary (2.3),
Borel complete by 2.3. But SN— {p} is countably compact and not com- and preserved under one-one continuous pre-image (2.6 and comments
pact [4], p. 148, hence not realcompact. By 3.2, SN—{p} cannot be thereafter). In contrast to the g-productive property of Borel-com-
Borel-complete. pleteness (2.8), however:

‘Whenever X is not psendocompact, SN C AX [6], 9.10 and by 3.3 3.7 ExAMPLE (Moran [14]). Let X = ¥ u {w,}, the one-point com-
and 2.3, BX is not Borel-complete. If X is not compact, but is pseudo- pactification of the countable discrete space N. Let ¥ =D v {od},
compact and normal, then X iy countably compact [4]; p. 149, and not D discrete of power v, and neighborhoods of oo having countable com-
realcompact [4], p. 153, and by 3.2 is not Borel-complete; by 2.3 pX is plement (one-point Lindelofification of D). X and Y are hereditarily
not Borel-complete. A reasonable conjecture would seem to be: if X is realeompact, but X X ¥ — {{w,, 20)} is not realcompact (and its Hewitt
not compact, then SX is not Borel-complete. realcompactification is X' x ¥).

In the-other direction, we have two theorems, the first improving This space is Borel-complete (3.6 and 2.8), realcompact (as the
part of 3.1. : product of two realcompact spaces [6]) and not hereditarily realcompact.

3.4 THEOREM. If X is realcompact, and each open set is in Souslin Finally, we consider paracompact spaces. A famous theorem of

{O’(X)), then X is Borel-complete. Katétov asserts that a paracompact space without closed discrete sub-
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sets of measurable power is realcompact [12] (and more generally,
a topologically complete space with this property is realcompact [21], [6]).

Observe that in the proof of 3.6, it is sufficient that X and each
subspace X — {p} be realcompact; this implies hereditary realcompactness
by a theorem of Shirota [21], [6].

From Katétov’s theorem, and 3.6, we obtain:

3.8 COROLLARY. Suppose that X has no closed discrete subspace of
measurable power. If X and each subspace X—{p} are paracompact, then
X is Borel-complete.

Now Katétov’s theorem is quite deep. Thus it seems worthwhile to
sketeh the following relatively simple proof of 3.8.

Proof. Let F be a free Bo(X)-ultrafilter with cip. Let § = {@ C X:
@ is open and G ¢F}. By 3.5, F ~Q(X) is a Q(X)-ultrafilter with cip.
Let ¢ ={X—Z: ZeFn@(X)} clearly, JSCUS. If FnQX) is
free, | /G = X, and if fixed, | J§' = X—{p} for some p ¢ X. In either
case, {8 is paracompact by hypothesis, and § is an open cover. By [4],
p. 212, there is a o-discrete open refinement W of §. Write W = |_J Wy,
with each U, discrete. Let Gn= |J{U: U eUWys}. Since X = | J Gy,
there is m with Gy € . Define F*, a free (Uy)-ultrafilter with cip as
follows: if §C U, E e F* iff | J {E: F € &} ¢ F. This shows that [Wy| is
measurable. A closed discrete set of measurable power is obtained by
picking one point from each member of Uyy.

From Katétov’s theorem and the theorem of Dykes mentioned

after 1.1 follows: X is C(X)-complele if (merely) paracompact without

closed discrete sets of measurable power. A modification of the above proof
of 3.8 yields a direct proof, and with Dykes’ theorem that X is realeompact
if C{X)-complete and ¢b, we obtain Kat&tov’s theorem. Compare [20].

We might note that Moran has improved Katétov’s theorem: if X is
weakly paracompact and normal, and has no closed diserete set of measurable
power, then X is realcompact [14] (hence C(X)- complete). With example 3.7,
he shows that normality cannot be dropped. This example is still G(X)-

complete, though, and we don’t know if there is a non-C(X)-complete
example.

. Added in proof (4.7.1972): (1) Concerning 2.5, it can be shown that the topolo-
gical sum of nou—measm'a‘bly. many Borel-complete spaces is Borel-complete. (2)
Concerning the remarks following 3.8, the second two authors have shown that X is

Séa;mmplete if just weakly-paracompact without closed discrete sets of measurable
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