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Epireflections in the category of T,-spaces*

by
L. D. Nel and R. G. Wilson (Ottawa, Ont.)

A T,-space with the property that every non-empty irreducible
closed set is a point closure will be called a pe-space. It is shown
that the pe-spaces form an epireflective subeategory of the category
G, of all T,-spaces, generated in B, by any pec-space which contains
a copy of the Alexandroff dyad.

A larger simply generated, epireflective subcategory of B,—the
fe-spaces—is introduced and it is shown that an fc-space is an invariant
of its lattice of real-valued lower semi-continuous functions. As a
preliminary it is shown that equalizers in G, correspond to ‘“front-closed”
subspaces.

1. Preliminaries. The set of continuous maps from X to ¥ will be
denoted by (X,Y). The closure of 4 in X will be written clxA (or cl4
when no confusion is possible) and for z ¢ X, cla means cl{z}. B will
always denote the T,-space obtained by endowing the real line with its
lower topology (i.e. the topology having as non-trivial open sets those
of the form {reR: z >a} acR).

Let X be any T,-space. One can define a second topology on X —the
front topology — by specifying the front-closure operator fcl, as follows:
refcld means that for any neighbourhood N of #, N nclen A # @.
The name is motivated by the fact that for A C R, fel4 is obtained by
adjoining to 4 those points in cl4 which lie “in front” of some points
of A. Tt is easy to verify that fel is a Kuratowski closure operator. This
topology is the same as the b-topology "of [6].

‘We note in passing that the front topology on X is diserete iff X is
a T'p-space (see [7]) and that if X is a non-discrete T,-space then the
front topology is strictly larger than the original topology.

2. Equalizers and extremal subobjects in the category of 7'-spaces. The
category of all T-spaces with continuous maps will be denoted by G,.

* This work was supported in part by the National Research Council of Canada
(Grant A5297).
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It X and Y are objects of G, and F C (X, ¥), the equalizer of F can he
identified with the subset K = {# ¢ X: f(2) = g(x) for all f, g ¢« F} (see [3],
5.5). A characterization of equalizers will now be given which is useful
-for certain applications of category theory to T'-spaces. We note that
equalizers are the same as extremal subobjects in T (7.1.3 and 7.2.14 in [3]).

2.1. THEOREM. Let X, Y be Ty spaces and A C X. A is the equalizer
of some family FC (X, Y) iff A is front-closed in X.

Proof. Suppose A is the equalizer of FC(X,Y). Let e X— 4.
Then f(z) 5 g(z) for some f, g ¢ F. Then there exists b ¢ (¥, R) such that
h(f(#)) = 0 and h(g(z)) = 1 (after possible relabelling of f and g). Clearly
N = {z¢ X: h(g(2)) >0} is a neighbourhood of z and clz C {z ¢ X: h(f(2))
< 0}, and f(2) # g(2) whenever ze N ~ cle. Hence N ncle ~n 4 =@ and
so A is front closed.

Conversely suppose that 4 is front-closed. Let 2 e X— A. Choose
an open neighbourhood N of z so that N nclz n A =0. Put M= Nu
u (X—eclz) and define uz, v; € (X, R) as follows: ,

_J1 it zeM,
Ual?) _{0 i zeX-M;

_f1 it zeX—cla,
vl2) = {0 if zecls.

The mappings u; and v, agree precisely on X— (M ~ clz) which contains 4.
Let ¥ = RX¥~4 and define f, g ¢(X,Y) by

Prof=1Uz, Pzog=1v, (xeX—A)

where p; is the projection map onto the »th coordinate. A simple argu-
ment shows that f and g agree precisely on 4. Thus A is the equalizer
of {f,g} as required.

Similar theorems are known for the category B of all topological
spaces and the category G, of all Hausdorff spaces. Thus: A full sub-
category of © (respectlvely By, By) has equalizers iff it is closed under

formation of subspaces (respectively front-closed subspaces, closed sub-
spaces).

3. pe-spaces. Recall that a closed set is termed irreducible if it cannot
be expressed as the wnion of two proper closed subsets. Ty-spaces in
which the point-closures are the only irreducible closed sets will be called
pe-spaces. Such spaces were studied in [1] where results were obtained
which imply that the full subcategory ¢ of all pe- spaces is epireflective
in B, (see the review of [1] by H. Herrlich, M. R. 37, No. 5851). This
result may also be deduced from 2.1 and the fact that a product of
pe-spaces Is a pe-space. '
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3.1. LevuA. Let A C X C Y. A is irreducible in X iff cly A is irreducible
in Y. :

The simple proof is left to the reader.

3.2. THEOREM. (a) A front-closed subspace of @ pe-space is a pe-space.

(b) A pe-subspace of a T-space X is front-closed in Y.

Proof. (a) A direct proof of this is simple and is left to the reader.
The resulf is also an immediate consequence of 2.1 in view of the fach
that an epireflective subeategory of G, has equalizers (see 9. 1.2 in [3]).

(b) Let z e fel X, where X C ¥ is a pe-space, and pub A =X nclyz.
Clearly, z=rcly4d and clyzCecly4 Ceclyz. Thus elyd is irreducible,
hence so is 4. Since X is a pe-space, A = clyz for some # ¢ X. Bub then
clyz = elyz which implies that 2= 2 ¢ X and so X is front-closed.

3.3. LeMumA. If [[ X is a product space and J C I, then [1X; is homeo-

iel jed
morphic to a front-closed subspace of [] X.

iel

The simple proof is left to the reader.

The Alexandroff dyad D is the subset {0,1} of B with the relative
topology. It is clearly a pe-space.

3.4. TEEoREM. A T,-space is a pc-space iff it is homeomorphic io
a front-closed subspace of some product D7 of Alexandroff dyads. The epi-
reflective subeategory ¥ is generated in By by any pe-space which contains
a copy of D.

Proof. Let 4 denote the class of all spaces which are homeomorphic
to a front-closed subspace of some Alexandroff cube D' Tt is well known
that every T,-space is a subspace of some cube D and by 3.2 any
pe-space will be a front-closed subspace of such a cube. Hence #% containg
all pe-spaces. The class s is clearly productive and by (2.1) it has equalizers,
hence it forms an epireflective subcategory of B, (see 9.3.3 and 10.2.1
in [3]). On the other hand since D is a pe-space and ¥ is productive and
closed under the formation of front-closed subspaces, § contains .
Hence T is the smallest epireflective subcategory of G, containing D.
The proof remains valid if D is replaced by any pc-space J containing
a copy of D.

4, fc-spaces. We now introduce a class of T-spaces which contains
the pe-spaces as a proper subelass. The fe-spaces resemble realcompact
spaces in the same way that pc-spaces resemble compact ‘Hausdorff
spaces.

DEFINITION. A T,-space X is called an fe-space if the point-closures
are the only non-empty irreducible closed sets with the FCI-property;
a subset 4 C X has the FCI-property if an open filter § on X satisfies
G A +#0 for all GG only if § has the countable intersection property.
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It is immediate from the definition that every pec-space is an fe- pace
Every T,-space is & pe-space (see [1]) and therefore an fo-space. However'
& T;-space need not be an fe-space, for example any uncountable sei’;
with the cofinite topology. In this section we give a characterization of
fc-spaces similar to 3.4 but first we need a lemma.

4.1. Leuwma, A subset A C X has the FCI-property iff every fumcti
fe(X, R) s bounded above on A. Junction

Proof. Suppose fe(X,R) is unbounded above on A. The sets
{w: f(#) > n} form a base for an open filter on X each member of which
meets 4, bubt which clearly does not have the countable intersection
property.
Conversely suppose that 4 does not have the FCI-property. Then
there exists an open filter ¥ on X such that if ¥ €eF, FnA£0 but
there exists a family {F,}, . CF such that N Fn=90. For each neN
n

define f, as follows:

fn(w)={g if weFin..nly,,

otherwise.

Since 4 ~ {F; ~ ... " Fp} # @ for each n e ¥ it is clear that f=supf, is
+ continuons and sup{f(a): @ €d} = o0, "

4.2. THrOREM. A T,-space X is an fe- ; i )
PR Rrboenie ,mb,gpg,@; z;; X i Rfe space iff X is homeomorphic
- Proof. The functions in (X, R) separate the points of X, '
that the map o: X R®P defined by pyoo=f (?e (X, R)} is E}fﬁﬁ
morphic embedding (see for instance 2.1 in [4]). We show that o(X) is
front-closed in ¥ = RE®, Let zefelo(X) and put A = o¢(X) clye
;ET:;)G (?10&6(1 set 4 is irreducible by 3.1. Let g: 0(X)->R be a continu'ous‘
of cizm:u then f=go0e(X, R) and so the projection p, is an extension
gtoall of Y. But p(z) > PAa) = g(a) holds for all a ¢ 4 C clyz. Hence
% é;bg:ndgd a_bove on A afnd 50 by the previous lemma, A has the
B §) zgilitjx (fl(;(X%.} f G,IX is ];n fc-space, 4 is a Doint-closure ¢l
o r#. Hence 2= geo(X) and so o(X) is front-
o sﬁoimeb} sup‘;pgse that X is. a front-closed subspace of ¥ = R!
FOL propert szsn ) e; 4 be an mgdgeible closed set in X with the
the prep _yix 1}1311:e « I {a: ae A} is unbounded above in R, then
e s _tha; ﬁG nEA : z;> a} (@ e 4) form a base for an open filter G on X
i ¢~ ] holds for all @¢Q, while the sequence Gy
: &4 >n} in § satisfies () @, — ©, which is absurd. We conclude that

n
Yyr=sup{as: acd}cR for each i and defines ¥ e R%. Clearly 4 C clyy.
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It is easy to see that any neighbourhood N of y in R’ meets A. Thus
yeACX and 4 = clyy. It follows that X is an fe-space.

4.3. THEOREM. The full subcategory F of G, consisting of all fc-spaces
is epireflective in G,. F is generated in G, by the space R or any fc-space
which contains R as a front-closed subspace.

Proof. It follows from 4.2 and 3.3 that the subcategory & is
productive and closed under the formation of front-closed subspaces.
That is to say, ¥ has products and equalizers 2.1 and so as before, it
follows that F is epireflective in G,. The second statement may be proved
using an argument similar to that given in the proof of 3.4.

The epireflectiveness of & means, in particular, that if X is any
T,-space, then there exists an essentially unique fc-space, pX and a map
¢: X—>@X such that for any map fe (X, ¥) with ¥ an fc-space, there
is precisely one f? ¢ (pX, ¥) for which f?o ¢ = f. :

We now show that X can be identified with a subspace of the
pe-space nX (z being the epireflection for the subcategory ¥) in a way
analogous to that in which the realcompactification vX can be identified
with a subspace of the Stone-Uech compactification fX (see [2]).

For any T,-space X, the set (X, R) forms a conditionally complete
lattice Lp(X) (the lattice of real-valued lower semi-continuous functions).
It is shown in [5] that this lattice has a certain structure space 2 (a topo-
logized set of equivalence classes of closed prime ideals) which is homeo-
morphic to the pe-space mX. The points of £ are the sets I(4)
= {I(r, A): r e R} where I(r, A)= {feLy(X): f(o)<r for all »eA}
and where A varies through all the irreducible closed subsets of X. It is
clear from Lemma 4.1 that the set @ of all 7(4) €2 which correspond
to irreducible 4 with the FCI-property are characterized by the fact
that every fe Ly(X) belongs to some ideal I(r, A) in the equivalence
class I(A4): in other words, the subspace @ of 2 is also an invariant of the
lattice Ly(X). We now show that @ is an fc-space. Note first that each
point a e zX corresponds to an irreducible set A C X. In fact, in view
of 3.1 and the construction of =X (qv. [1] or [5]) it is possible to write
cl v 4 = el ya and therefore 4 = X ~ ¢l ya (where we have identified X
with a dense subspace of zX). The subspace ¥ of zX consisting of all
a e zX which correspond to an irreducible closed set A with the FCI-
property is clearly the smallest fc-space such that X C ¥ CxX holds
and the homeomorphism a—>I(4) (A= X ~cla) of nX onto Q (again
see [5]) carries Y onto @. It is not difficult to verify that each fe (X, R)
has a unique extension to a function in (¥, R) and hence that & is homeo-
morphie to the space ¢X.

As a result of the above discussion we have:

4.5. TEEOREM. For any Ty-space X, the lattices Lgp(X) and Lg(pX)
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are isomorphic. Two fe-spaces X and Y are homeomorphic iff the lattices
Ly(X) and Lg(Y) are isomorphic.

Remark. Thepc- and fe-gpaces play roles in the theory of T(,-spztces
analogous to the roles of compact and realcompact spaces in the theory
of Tyehonoff spaces. It is interesting to note that it is possible to define
a .concept which is analogous to pseudocompactness. A T,-space X ig
said to be a pseudo-pc-space if each element of (X, B) is bounded above
on every irreducible closed subset of X.

) It is clear from Lemma 4.1 that a Ty-space X is a pseudo-pe-space
iff every irreducible closed subset of X has the FCI- pl‘-operty and also
that a T)-space is a pe-space iff it is both an fe- and a pseudo-pe-gpace.
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On the position of the set of monotone mappings
in function spaces

by
R. Pol (Warszawa)

K. Kuratowski and R. C. Lacher have shown in [53] that if X and ¥
are compact topological spaces and ¥ is locally connected, then the set
of all monotone mappings of X onto ¥ is closed in Y¥ (endowed with
the compact-open topology). In an earlier paper [4] K. Kuratowski showed
that if the space X is compact and metric and ¥ an arbitrary metric
space, then the monotone mappings of X into ¥ form a @;-set In Ix.

Tn this connection the guestion arises whether the above theorems
can be generalized by dropping the assumption of the compactness of X
and restricting the considerations to perfect mappings. More generally,
in the space Y¥ can consider subset #C ¥ C YX (we shall be interested
in closed or perfect monotone mappings), and, under certain assumptions
on X and Y, one can prove that & is closed (or that is a @,-set) in ¥.
Below we shall prove a few facts of this type and give examples illustrating
role of the assumptions which have been made.

We adopt the terminology and notation of [2] and [3]. All the spaces
considered below are Hausdorff spaces. The space ¥X of mappings of X
into ¥ will be considered with the compact-opén topology. The symbol
M(4, B), where A C X, BC ¥, will denote the set {fe¢ ¥*| f(4) CB}.

LEMyA 1. Let X be an arbitrary space, Y a locally conmnected space
and @ the set {f: X->X| f~(8) C X is connected for all open and connected
SC Y}

If the mapping f: X ;ZY satisfies the conditions

(i) the boundary Frf (y) is compact for every y e Y,

(ii) if ye ¥ and U is a neighbourhood of the set f~Yy), then ihere
exists an open set V C X such that f~(y) C V C U and the boundary FrV is
compact,

(iii) fe®,
then f is a monotone, closed mapping.
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