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Uniformity and classes of real valued function systems
by
Kazumi Nakano (Brockport, N. Y.)

A set @ of real valued functions on a space § is called ‘uniformly
equi-continuous relative to a uniformity U if for any ¢ > 0, there is U ¢ U
such that |p(2)—¢(y)| < & for all ¢ e ® whenever (z,y) ¢ U. Let U (D, s)
denote a set of (z,y) e 8x 8 such that |p(z)—e(y)| <e for all ped.
@ is uniformly equi-continnous relative to a uniformity U iff U(P, &) e U
for all ¢ >0. U is indeed the weakest uniformity which includes all of
U(D, &) such that e > 0 and @ is uniformly equi-continuous relative to [
(see reference [11]). Conversely, there is the weakest uniformity for which
every system in a given class of function systems, is uniformly equi-
continuous. It is called a multiple equi-uniformity by a double system
of functions in reference [9]. (In the rest of this paper, a real valued
funetion and a system of real valued functions will be called a function
and a function system respectively.) A function wuniformity in refer-
ence [5], corresponds to & uniformity derived in this manner, from a class
of function systems with some restrictions. However a uniformity can
be derived from any class of function systems. Therefore theory of uni-
form structures can be developed by classes of function systems. Obviously,
a same wuniformity may be derived from different classes of function
systems. This paper introduces an explicit definition of an equivalence
relation between two such classes. Thus any property of uniform spaces.
can Dbe discussed as a property preserved by the equivalence relation.

A purpose of this paper is to establish basic properties and apply
them to classical important theorems. Some of them appear to be simpler
with trivial proofs through this approach. Among them are Metrization
theorem and a characterization for a totally bounded uniformity by
Cauchy nets (a uniformity is totally bounded iff every net has a Cauchy
subnet). A typical proof of the latter involves a completion however the
theorem can be proved directly without a completion. It is also easier
to define a wuniform structure and to recognize uniformly continuous
functions and uniformly equi-continuous funections. Uniform continuity
of a mapping between two uniform structures may be defined as follows.
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2 . K. Nakano

Suppose M is a mapping form a space § with a class o of function systems
to a space with a class B of function systems. M is uniformly continuous
if for every @ ¢, a function system {p M; ¢ ¢} is uniformly equi-
continuous relative to a uniform structure given by . A completion
presented in this paper is explicit because a space is extended by additional
elements rather than embedding it into a complete space. A class U of
function systems is called a wnity if each @ ¢ % contains bounded funections
only and a set {p(); ¢ « } is bounded for every z ¢ S. In fact, for every
class of function systems, there is a unity which is equivalent to it. A unity
is called simple if each function system of it has only one function. If
a class U is equivalent to a simple unity then each @ ¢ has the property
that, as & class which has only one function system, & is equivilent to
& simple unity {{g}; ¢ € @}. This result can be applied to various clagsical
theorems including Ascoli’s theorem.

§ 1. Equivalence relation. Let F be a set of all functions on a space S
and U be a collection of subsets of 7. For & C F, one writes & < W if for
any ¢ >0 there exist ¢ > 0 and a finite number of systems of functions ¥,

n
i=1,2,..,nin Y such that |p(z)—w(y) < 6 for all pe | J ¥, implies
‘ i=1
lp(@)—p(y)] < e for all p ¢ ®. Let B be also a collection of subsets of F.
One writes 8 <Y if & <A for all @ ¢ B. Define A ~B if A< B and
B < U hold simultaneously. If % or B contains only & or ¥ respectively,
then notations 6 <V, ¥ <20 and &~ are uged.
This relation is obviously transitive:
(1.1) A< B and B < € implies A <G
Also the inclusion order is preserved:
(1.2) AC W implies A< B.
Hence A ~B is an equivalence relation.

Let % be the collection of all the subsets of F such that & < 9L
If @ belongs to ¥ then & < ¥, therefore

(1.3) ACL.
This follows % <9U. By the definition of 9, A< is obvious.
(L.4) A ~90
The following properties are also obvious from the definition of 9.
(1.3) A~V iff A= B\,
(1.6) % = 9L.
(1.7) @ U then ¥ A for all ¥C &,
B, Ve A implies B U ¥ L.

icm®
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If A contains at most countable systems of functions, @,,
n
n=1,2,3,.., then define B = {¥p; Yp= J&;, n=1,2,3,..}. Ais "
i=1
equivalent to B, therefore one may assume the members of % are chained
if it is necessary.
(1.8) If U is a countable collection of function systems then U is equiva-
lent to a countable chain.
The following property is obvious however it is useful.
(1.9) Let B be a subcollection of L. Then U~{® v ¥; (D, ¥) ¢ AUx B}.

§ 2. Unity. A system @ of funetions is called a unit if each function
¢ e @ is bounded and a set D (x) = {p(a); @ e D} is bounded for every z e S.
A collection of units is called a wnity. Any collection of systems. of
functions is equivalent to a unity. A following lemma precedes a proof
of this theorem.

(2.1) LeMMA. Let @ be a set of functions. For a e 8, define (f, a) ()
= Min{1, sup|p(a)—@(2)]}. Then {{f, a); a ¢ S} is a unit and it is equiva-

€D .

P
lent to @.

Proof. Since each (f, a) is bounded by 0 and 1, & set {(f, a); @ ¢ S} is
obviously a unit. For any 0 < e < 1, [p(z)—g@{y)| < ¢ for all ¢ « D implies
that |[(f, a)(#)— (f, @)(y)| < e for all a e § because

(£, @) (@)=, @) ()] = [Min {1, sup p ()~ (@) }—Min (1, sup [p(0) — g (3]}
< Min {1, |sup lp(s) — ¢ (@) — sup p (@)~ (W)]}
< Min{1, suplp(a)—p(y)I} < e.

Conversely suppose [(f, a)(z)—(f, a)(#)] < e<1 for all aeS. Then
I(f; @) (2)— (f, @) ()] = |(f, #)(y)| = Min{1, sup lp@)—emi}<e.

Therefore |p(z)— @ ()] << & for all p e @. This implies that forany 0 < e<< 1
I(f, @) (@)—(f, a)(y)] < e for all ael iff |p(z)—p(y)|<e for all ped.
Consequently @ ~{(f, a); a S}.
(2.2) TuzorEM. Any collection of systems of fumctions is equivalent
o a unity such that every fumction of wnits is bounded by 0 and 1.
Proof. For each @ « ¥, there exists & = {(f, a); a ¢ 8} defined_inh(?a.l).
Let 9 be a collection of ® where @ . Then % is equivalent to .

§ 3. Simple unity. A unity is called simple if each unif is a sigg:le
function. A simple unity of all the functions of units of A is called simplicity
of % and denoted by UA*, namely A* = {{p}; ¢ « D for some P ¢ A}. There

. i
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is a characterization theorem of simple unity, which is proved after
& sequence of the following lemmas.

(3.1) LeMwmA, Any net A has o subnet {6(y); y € I'} such -that qa(é(y));
y e I' converges for any bounded real valued function @ on 4.

Proof. For each d ¢4, 4(d) denotes a subset of 4 such that A(8)
= {0’; &' > 6}. Since A(6") C A(8) iff § < &', there exists a maximal filter I"
of subsets of 4, ordered by the inverse inclusion, such that I' contains
all 4(d) for d e A. By the axiom of choice, choose §(y) from each subset
y of I'. A net {3(y); y eI} is a subnet of 4 because for any & « 4, there
exists a member of I', namely 4(8) such that y > 4(5) implies 8(y) > 6.
Let ¢ be a bounded funetion. Suppose limsupe(d(y)) and liminfe(é(y))
are not equal and there exists a real number o between them. Let 4y
and 4, be sets {§ed; () >a} and {ded; ¢(5)< a} respectively.
limsupg{d(y)) > o implies that for any y eI, there exists y' eI’ such
that @(8(y"))>a and »'>y. Therefore y~ 4, %@ for all yeI. This
implies that 4, is a member of I'. Similarly liminfo(s(y)) < @ implies
4, is also a member of I'. Since I" is a filter, I” also contains 4, ~ d,.
However 4, and 4, are disjoint, hence it contradicts the filter condition.
Therefore limsupg(8(y)) = liminfe(s (7).

(3.2) LEMMA, Let B be a simple unity. & < B implies that for any
€20, there exisis a finite subset D(e) C D and for any ¢ e D there exists
@' e Ple) such that |p(x)—9¢'(2)] < & for all ze8.

.. Proof. Let A(s) be a maximal subset of § with respect to a property: -

(1) 2,y e A(e), x 5 y implies |p(z)—@(y)] > & for some ¢ € . Since A (e) is
maximal, it follows that (2) for any e 8, there exists y ¢ A (¢) such that
lp(z)—g@)| < e for all ged. Suppose A (e) contains infinitely many
elements, then it contains a sequence of distinet points. By (3.1), there
exists a subnet of this sequence such that the image by any bounded
function is a convergent net. Suppose {#;} (6 e4) is such a net. Since
® < B, there exist ¢ >0 and a finite number of functions vy, i, ...
vy Pu e B such that i) —pi(y) < ey i=1, 2, 3,y implies |p(z)—
—¢W) <eforall p e®. For ¢ >0, there éxists § ¢ 4 such that |y(m,)—
—p{y)| <& for alli=1,2,3,..,n, § >4 thus lp () — @ (2,)| < & for
all p € @, 6’ > 3. However it contradicts the condition (1). Hence A () ig
o finite set. Since @ is a unit, namely {p(z); ¢ e @} is bounded at each
# €8, there exists an interval which contains a set D(A(e)) = {p(y); for
9 €D,y e A(e)}. Divide this interval into a set of disjoint - (except end
poiJ_Jts) intervals J = {I;} such that each I; has the length less than e.
Let 3 () be a subset of I such that I; € 3(g) iff ¢(y) e I, for some Y e A(e).

" Define ¢y’ if J(p) = J(¢') and for each Yy eA(e); py) a,lnd o'(y)
belong to the same I; of J(g). Then ¢By’ is an equivalence relation. Let
@(e) be a set of representatives of equivalence classes. For any ge®
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there exists ¢’ e @(e) such that (3) |p(y)—e'(y)|<e for all y e A(e).

o~

Since I contains a finite number of intervals, the number of equivalence
classes is finite, namely ®(s) is a finite set. For any g e @, there exists
9" € D(e) such that

lp(@)—¢'(2)] < o (@)~ 0 W)+ o) —¢' (W) + lp'(y)— ¢'(@)] < 3e

because (2) implies that there exists y € A(s) such that |p(@)—e(y)| < ¢
for all ¢ € @, and (3) implies |p(y)—¢'(y)| << & for all y e A(e). Therefore
lp(z)—¢'(w)] < B¢ for all z e S.

(3.3) LEMMA., @ < B implies @ ~P* “where B is a simple uh»ity.

Proof. For ¢ € @, there exists ¢’ e @ (&) such that Lemma (3.2) holds.
It |o'(#)—¢"(y)] < & for all ¢’ e B(e), then

lp (@)= ¢ W) < lo(@)— @' (@) + o' (2)— ' ()| + Io'(y)— p ()] < 3¢ .

Since @(e) is a finite set, this implies @ < &*. The other direction of
order is always true, therefore @ ~@*.

(3.4) TuEOREM. If A~B for some simple unity B, then A~~A*.

Proof. A~PB implies that & <X B for all & «A. By the previous
lemma, this implies & ~&* for all @ ¢ A. Therefore A ~A*.

§ 4. Single mity. A unity is called single if it contains only one unit.

(4£.1) TEBOREM. A unity. of countable units is equivalent to a single unity.

Proof. Let A be {O(n); n= 1,'2, 3, ...}. One may assume each unit
iy a set of functions bounded by 0 and 1. For each triple (n,g, a)
e {n} X @(n) x 8, define a function: ¢(n, a)(z) = 1/n|p(z)—¢(a)|. Let & be
a unit of all such functions, namely @ = {g(n, a); for (n, p, a) e {n} X
XPn)x 8, n=1,2,3,..}. lpm,a)(@—q¢(m,a)(y)<ln-e for al
p{m, a) e ® implies that

lp(@)—@ ()] = ngn, y)(2) = nlp(n, ) (@) —e(n, ) @) < e

for all ¢ e @(n). Therefore @ (n) < @. Since = is arbitrary, A<D
Conversely for &> 0, choose #, such that 1/n,< ¢, then

lp(n; a) (@)—g(n, @) (y)] < nlp (@) —p @) < Ln< 1ng<e
Suppose |p(z)—¢(y)| < e for all pe | JP(n), n=1,2,3,...,n then

lp(n, a)(@)—@(n, a) ()] < Unlp(w)—@(y)|<e for all
(n,p,a)e{n}xBn)XB, n=1,2,8,.., 7.

foralln > n,.

Therefore [p(z)—g(y)|<<e for all pelJP(n) n=1,2,38,..,n, implies
lo(n, a) (@)—g(n, a)(y)]| < e
namely @ < U

for all gp(n,a)e?,
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(4.2) TEroREM. A wunity A is equivalent to a single wnity iff there
exists a countable number of units ®(n) eW, n=1,2,3, ... such that A
~{P(n); n=1,2,3,..}.

Proof. Suppose that A is equivalent to {&(n); 1,2, 3, ...} for some
d(n)eUA, n=1,2,3,.. Then by (4.1) A is equivalent to a single unity.
If U is equivalent to a single unity {®} then for each n, there exist a finite
number of units P(m,n)eW, m=1,2,3,..,m; and 6§ >0 such that
lp(@)—py)<d for all pelJ¥(m,n); m=1,2,3,..,m implies
lp(@)—@) <1/n. Let B be a set of all such units: {¥{(m, n); n, m},
B is countable and equivalent to .

§ 5. Convergence. A net z{d) ¢ § with a directed set 4 is called semi-
convergent with respect to U if gu(w(é)), ded, ped, converges uniformly
on @, for every @ e U. A net x(J), 6 e 4 is called convergent to » if p(w(8))
converges to @(z) uniformly on @, for every @ e .

(8.1) Semi-convergence (convergence) is preserved by equivalence relation
of unities.

The proof of (5.1) is a routine check of the definition of equivalence
relation of unities. :

(8.2) UW~A* iff any net x(8) 6 e A has a subnet ©(3(y)), y e I' which is
semi-convergent with respect to 9.

Proof. Lemms (3.1) shows that any net has a subnet which is seri-
convergent with respect to 9*. It is also semi-convergent with respect to
U if 9 is equivalent to A*. To prove the converse direction, one may adopt
the proof of (3.2) with a slight change. Let A (s) be a maximal set with
& property: x,ye A(e), # #y implies |p(z)—p(y)| > ¢ for some @ ed.
Suppose A (s) contains a sequence of distinet elements, then by the as-
sumption, there exists a subnet #(8), 6 €4, which is semi-convergent
with respect to 9, namely, except finitely many distinct elements,

lp(z()—ple(d))<e for all ped.

However this contradicts the assumption, hence A (e) containg finitely
many elements. This is the only place where the assumption (@ < B for
some simple unity B) is used in the proof of Lemma (3.2) and the following
Theorem (3.3). Therefore the assumption can be replaced by the agsimption
of this theorem to prove @ ~0* and 9% ~Y*. -

§ 6. Application to uniformities. Define (x, ) ¢ U(D, &) it [p(x)—p(y)|< ¢
forall g e @. Let U(D,¢)(x) be a set of all y such that (z,y) e U(D,¢). Let B
be a set of all possible finite intersections of U(D,e), (D,e) eUx {g; e >0}
3 satisfies the base conditions, that is, (1) a finite intersection of n;ember:s

icm
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"
of B is again a member of B, and (2) ye() U(Di,1/2¢)(2) and
i=1 .

n
M U(P:, &) (x). Therefore there exists

i=1

" a uniformity () with a base .

(6.1) If U contains any finite union of its ‘u,n:its,'the‘n a base B of W (A)
is {U(D,e); (P,e) e UK {&; & > 03}

Proof. The following inclusions prove the proposition.
w n n
U(U@“Miﬂei)gﬂ U(@i,si)g U(U@i,M&Xa‘i).
i=1 =1 i1 K

(6.2) A < B iff WA CU(B), thus A~B iff U (YA) = U(B).

The proof of this proposition is again a routine check of the definition
of equivalence of unities.

(6.3) Let % be {U(D, ¢); (D, ¢) e AX {&; £ >0}}. Then B is a base of
uAA) (A= {2; 23UY.

Proof. By (6.1), B is a base of U(QM). Since QINQ—I, B is also a base
of U(A).

(6.4) W(N) has a countable base iff W is equivalent to a unity of count-
able units.

Proof. By (1.8), one may assume 2 is a chain of countable units.
Therefore B = {T(D,1/n); (P, 1/n) e AX {Ijn; n=1,2,3,..}} is a base
of U(Y) and obviously P$ is countable. Conversely suppose {U(n);
n=1,2,3,..} is a countable base of (). For each U(n), there exists
U(®(n), e(n)); (D(n), e(n)) e A {e; & >0} such that U(®(n), &(n)) C U (n)
because {U (D, e); (D, e) e UX {e; e > 0}} is also a base of U(A). Let B be
a unity of all such @& (n); n =1, 2,3, .. Obviously B is countable and B
is also equivalent to % because for any & « oA and ¢ > 0, there exists U(n)
such that U(P(n), s(n)) CU(n)C U(D, ). Hence B is also equivalent to A.

A semi-convergent (convergent) net with respeet to % is a Cauchy
net (convergent net) with respect to W(A) and vice versa. Since a totally
bounded uniformity is characterized by the induced uniformity from
a simple unity, Theorem (5.2) can be applied to the well known theorem:
a wniformity is totally bounded iff any net has a Cauchy subnet.

§ 7. Completion. A space S is called complete with respect to a unity A
if every semi-convergent net is convergent. Obviously this definition is
compatible with the completeness of a uniform space § with the induced
uniformity (). If 8 is not complete, then there exists a completion
of § in the following sense.
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DEFINITION. A space § with a unity A is a completion of 8 (with
a unity %), it the following conditions are satisfied:

1 8ck.

(2) g is complete with respect to 9.

(3) aq agrees with % on 8, that is, there exists a one to one corre-
spondence T from 9* on to QI* sueh that (i) for every ¢ e W*, p(2) = T{p) (x)
for all z ¢ 8, (u)Qitelff@—{T ); @ € @} for @ e .

(4) For any » e:ST, there exists a net in § which converges to z with
respect to 1.

(5) For any distinct « « S—Sandye S there exists zp «9* such that

(=) # 9 (y).
A completion is denoted by either appair (S QI) or g triple (S QI .’Z’)

A completion is usually constructed by imbedding a space into
a complete space and taking the closure of the image. However a method
used here is constructive. First, a function on A* is defined associated
with & net in 8, which is semi-convergent but not convergent. A union
of all such functions and the original space § is a completion. A unity
on this space is defined in a natural way. The detail follows.

Let x;¢8 (0 €4) be a net which is semi-convergent but not con-
vergent. Since ;€8 (6e4) is semi-convergent lime(w,;) always exists

) ded

for every @ e A*. Define f(p) = limqn(w,,) for p ¢ A, Let S be a union of &

and all such functions defined above Bach ¢ of %* can be extended to P
a function on 8 in a natural way: Define

9(2) = p(x)
?(f) = flo)

Such an extension of functions of A*is denoted by amappmg T: T(p)="p.

Also define a unit & = {T(q;), @e @} for @ ¢ and a unity oA = {5 D e A

(7.1) THEOREM. 4 iriple (S ,% y T) s a completion of (S, 9A).
Proof. Obviously a triple is constructed to satisfy conditions (1)
‘and (3). (4) By the definition of feS—38, Tp(f)=f(<p)—11m<p(w,,) for

@ «¥*, and a net qa(@,) converges to (f) uniformly on every cD €. Hence
a net ;€ 8 (J e4) converges to f with L respect to 1. (5) Since members
of §—§ are functions on U, f#geS—48 implies that flo) #g(p p) for
some @ « A*, thus p(f) = P(g) for some P  A*. Suppose that for f e 8- 8,
there exists # € § such that p(f) = P () for all 3 Qe 9*. Then every net of §

forall =zeS,
for all fed—8

icm
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which converges to f, must converge to . However by the definition of £
there exists a net of §, which converges to f but to none of elements of .

(2) Let ’yae§ (6ed) De semi-convergent with respect to 9. Define
a function f on A* by flg) = LimYp(y,) where ¢ = T(¢). Then for a pair
bed

(¢, @), ¢ >0, D, there exists y, such that |f(p)—p(y,)| < /2 for all
@ € @. By (4), there exists = ¢ § such that |9 (y,)—o(z)] < a/" for all ¢ e @,
thus for a pair (¢, @), there exists z e S such that |flp)—¢(x)] < e f01
all pe @. A set I'= {(&, P); ¢ >0, D ¢ A} is a directed set prowded with
an order which is defined by (¢, SF’) = (e,P)if ez ¢ and OCY. A set
of elements of 8 selected above, associated with members of I', is a net
which is semi-convergent. Let it be denoted by {w,} (y  I'). Since limg ()

pel
= f(p) and convergence is uniform on each @ ¢ ¥, f is a member of §—
provided that a net {z} (y eI') does not converge to an element of S.

Then obviously a net {y,} (5« 4) also converges to f with respect to L.

If a net {w,} (y ¢ I') converges to an element & of S, then a net {y,;} (5 € 4)

should also converge to # becanse limg(z,) = ¢(z) = f(p) and limg (y,)
yel’ del’

= f(p) uniformly on &.

(7.2) LeMmA. Let (g, ﬁ) be a completion of (8, ). Any net of S, which
converges to an element of S— 8, converges to the unigue element.

Proof. Suppose a net converges to z «§—8 and y e§ and o EX'R
Then p(z) = p(y) for all'p e A*. However this contradicts the condition (5).

(7.3) TumoreM. Let (S, A, T) and (8, W, T') be completions of (S, A).
Then there emists an one to one mapping T from S on to 8 such that T () (%)
= T'(p){T(%)) for all %8 and p A

Proof. By the condition (4) of completion, for any o ¢ - 8, there
exists a net {u,;} (6 € 4) of 8, which converges to #. By (7.2) this net does
not converge to any elements of S. Since 8’ iy also a completion of S,
anet {x;} converges to 2’ ¢ §'— §. Again by (7.2), #' is determined uniquely.
Any net {y,;} (6 € 4) of 8 which converges to % also converges to z’ with

respect to A’ because I" a set of ordered pairs {x,s, Ys); (Ysy 5), 6 € 4} 18
a directed set provided with an order: -

(Yas %) < (T Yor)

and (Y5 %) < (Ysrs o)

(s ¥s) < @5y Ysr) s (%55 Ys) < Wy D) »

it 6 < ¢, and a net {x;} (0 e 4) and a net {y,;} (0 € 4) are subnets of a net
{=,} (y sP) which defined by z, = the first coordinate of y. Hence re-
gardless of the choice of a net, #' is uniquely determined. Define I'(%) = &’
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for 7e S—8 and T(x) = for z e §. Since for any ¥ « §—8 and &> 0,
there exists ¢ 8 such that

1T(@) (@ —T(g) (@) <e2  and [T (F)— () (@) < &2

for all @ eA*,

IT(p)(m)—T'(@)T (@) <e
A mapping T is obviously one to one and onto.

A mapping T defined in (7.3) is uniform isomorphism with respect
to the induced uniformities. Therefore (7.3) proves the uniqueness of
the completion up to the uniform isomorphism. A reason why the con-
dition (5) is added is to garantee the uniqueness of the completion no
matter the original space S is a Hausdorff space or not, in other words,
members of %* may not separate elements of §.

for all g e A%,

§ 8. Application to metric wniformities. Let @ be a unit, Define a metric
i by m(x, y) = sup jp(x)—¢(y)|. Then a metric uniformity U (m) is the
peP

induced uniformity from a single unity {®}. Conversely any metric uni-
formity is the induced uniformity from a single unity becanse a set of
functions, {@(y); ¢(y) (@) = Min{n(z, y), 1} y < 8} is a unit which induces
a metric uniformity W(n).

By (4.1), any unity of countable units is equivalent to a single unity,
therefore Theorem (6.4) implies a classical theorem: a wniformity is metyie-
able iff it has a countable base.

§ 9. Uniforn continuous mappings. Let (S,U) and (R,B) be spaces with
unities A and B respectively and let M be a mapping from § to R. By
composing M to each function of a unit @ of B, a unit on § is obtained,
which is denoted by ®M, that is, ®M = {pM; @e®}. A unity which
consists of all these units @M, P « B is denoted by BI.

DErFIviTION. A mapping M from (8,%) to (R,B) is called uniformly
continuous if BH < U.

Obviously this definition is compatible with a definition of a uni-
formly continuous mapping with respect to the induced uniformities.
The following theorem is self-explanatory from the definition.

(9.1) TEEOREM. Let M be o mapping from a space 8 to a space B with

a unity B. Then BM is the weakest unity on 8 such that M is uniformly
continuous.

‘ ‘By (6.2), a weaker unity induces a weaker uniformity, thus (9.1)
implies that the induced uniformity from BI7 is the weakest uniformity
on the domain space such that M is uniformly continuous.

icm
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On the otherhand, if & mapping M is defined from a space 8 equipped
with a unity 9, to a space R, then it is possible to define a strongest unity
B on R such that M is uniformly continuous. Obviously the induced
uniformity from such a unity is the strongest uniformity on the range
space such that M is uniformly continuous. Conventional definitions of uni-
formities are not proper to define such a uniformity on the range space.

(9.2) TurorEM. Let M be o mapping from (8,%) to R. Then a unity
B = {@; PM << U} is the strongest unity on R such that M is uniformly
Continuous.

Proof. Since BM <, M is uniformly continuous. Suppose there
is & unity € on B such that M is uniformly continuous. Then by the defini-
tion of uniform continuity of a mapping €M < U, thus every umit of
€ belongs to B. Therefore € < B.

~ § 10. Relation to weak topology. A wuniform topology derived from
a uniformity () 1s obviously the same topology derived from con-
vergence systems defined in § 5. If U is a simple unity then it is a weak
topology from functions which belong to % as units.

(10.1) TeEroREM. Let T(N) be a uniform topology derived from a uni-
formity W(A). Then there exists a unity B such that W~B and T(A) = T(B*),
namely T(N) is a weak topology by functions of B .

Proof. For ®eUA and aefS, define (f,a)(x)= suplp(®)—g(a).

@eD

Let @ Dbe a set of all such functions indexed Dby 8. As it has been proved
in Lemma (2.1), o is equivalent to @. Let B be a unity of such & defined
from each @ «9. Obviously U is equivalent to B. Let T(B*) be a weak
topology from functions of B*. Since y e U(D, £)(») implies |(f, a)(z)—
—(f, a)(y)| < & for all (f, a)e®, a T(B*)-open set is T(A)-open. Con-
versely |(f, @)(2)—(f, )(y)] < & implies that

sup o (@) — ()l = |(f; 2)(2)— (f, ) () < ¢,

PpED

thus a T(A)-open set is also T(B*)-open. Therefore T(A) = T(B*).
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Some Wallman compactifications
of locally compact spaces

by
H. L. Bentley (Toledo, Ohio)

In 1938, Wallman [14] introduced the compactification of a T, space
known by his name. In 1964, Frink [4] used a modification of Wallman’s
procedure to obtain a certain class of compactifications of Tychonoff
spaces; these compactifications have been called Wallman compactific-
ations. Using the concept of normality of a base F for the closed sets
in a Hausdorff space X, Frink constructed a compactification of X,
denoted by w(¥), as the space of all ultrafilters of sets of &. By choosing
different bases & for a mon-compact Tychonoff space X, different Haus-
dorff compactifications of X may be obtained in the form of Wallman
compactifications w (F). Frink asked whether every Hausdorff compactifi-
cation can be obtained by this construction. This question remains
unanswered; however, many partial results have been obtained: [1], [2],
(31, [8], [6], [71,'[9], [10], [11], [12], and [13]. Thus, there has heen some
interest in methods of manufacturing normal bases. This paper is devoted
to the study of a general method of constructing such bases in locally
compact spaces. Our method is an amplification of the construetion of
the Alexandroff compactification. As an application of our results, we
are able to prove that certain compactifications not previously known
to be Wallman are indeed so. For example, we prove that if the remainder
in a compactification Y is a certain type of retract of ¥ then ¥ is a Wallman
compactifichtion. ’ )

Throughout this paper, all topelogical spaces are assumed to be
Hausdorff and locally compact; also, we let X denote a fixed locally com-
pact Hausdorff space.

1. The construction of normal bases. Let & be a family of closed sub-
sets of the space X. F is a ring iff & is closed under finite unions and inter-
sections. F is disjunctive iff given any closed set B and any point z ¢ H,
there exists A ¢ F such that 2 e 4 and A ~ B = @. F is normal iff given
any two- disjoint sets A;, 4, e F there exist Oy, Cp ¢ & such that 4, C;
=0, 4,n0,=0, and O v 0, = X. F is a normal base iff & is normal,


Artur




