

28



is not exact. But the coefficient group  $H_0(pt; \mathbf{Z})$  for our theory is  $\hat{\mathbf{Z}}$ ; and it turns out, interestingly, that the limit of the system corresponding to (6.3) (with  $\mathbf{Z}$  replaced by  $\hat{\mathbf{Z}}$ ) is exact.

It is clear from §§ 2-5 that for each abelian group G we get a cohomology theory for closed pairs with

$$H^{n}(X, A; G) = H^{n}(\operatorname{Hom}(\overline{C}(X; \mathbf{Z})/\overline{C}(A; \mathbf{Z}), G)).$$

(6.4). What is the relation of this theory to Čech cohomology?

## References

- S. Eilenberg and N. Steenrod, Foundations of Algebraic Topology, Princeton 1952.
- [2] M. Machover and J. Hirschfeld, Lectures on non-standard analysis, Springer Lecture Notes in Mathematics 96 (1969).
- [3] A. Robinson, Non-Standard Analysis, Amsterdam 1966.
- [4] and E. Zakon, A set-theoretical characterization of enlargements, Applications of Model Theory to Algebra, Analysis and Probability, New York 1969.

UNIVERSITY OF KENTUCKY Lexington, Kentucky

Reçu par la Rédaction le 14. 4. 1970

## The product of certain measurable spaces

by

## Christopher Todd (Bolton, Conn.)

Let X and Y be topological spaces and let S(X) and S(Y) be the  $\sigma$ -rings of Baire sets of X and Y respectively, i.e. the  $\sigma$ -rings of subsets generated by the compact  $G_{\delta}$  sets of X and Y.  $S(X) \times S(Y)$ , the cartesian product of S(X) and S(Y), is the  $\sigma$ -ring of subsets of the topological product  $X \times Y$  generated by the family  $G = \{E \times F | E \in S(X), F \in S(Y)\}$  of subsets of  $X \times Y$ . It is a well known fact that for locally compact Hausdorff spaces X and Y,  $S(X) \times S(Y) = S(X \times Y)$ . It is the purpose of this note to examine the corresponding situation for the  $\sigma$ -rings Z(X) and wb(X) generated respectively by the zero sets and the closed  $G_{\delta}$  sets of X. Following Berberian [1] we will call the elements of wb(X) the weakly Baire sets of X. In the following sufficient conditions on the product  $X \times Y$  and on the spaces X and Y will be given to insure that  $Z(X) \times Z(Y) = Z(X \times Y)$  and that wb(X) × wb(Y) = wb( $X \times Y$ ). In the latter case the results give a partial answer to a question posed by Berberian ([1], p. 183).

Definitions and notation will be introduced as they become necessary. All topological spaces under consideration will be assumed to be completely regular and Hausdorff. The Stone-Čech compactification of such a topological space X will be denoted by  $\beta X$ .

A subset Z of a topological space X is said to be a zero set of X if there exists a continuous real valued function f on X such that  $Z = Z(f) = \{x \in X \mid f(x) = 0\}$ . It is obvious that f may be so chosen such that  $0 \leq f(x) \leq 1$  for every x in X. A subset of X is called a co-zero set if it is the complement of a zero set of X. Since X itself is always a zero set (and a co-zero set), the  $\sigma$ -ring Z(X) is in fact always a  $\sigma$ -algebra. It follows that Z(X) is generated also by the co-zero sets of X. Similarly, since any topological space is a closed  $G_\delta$  set we have the same situation for the  $\sigma$ -ring wb(X). Every compact  $G_\delta$  set in a completely regular Hausdorff space X is a zero set and every zero set is a closed  $G_\delta$  so that for these spaces we always have the relation  $S(X) \subseteq Z(X) \subseteq \text{wb}(X)$ . If a topological space X is normal then every closed  $G_\delta$  set is a zero set so that in this case wb(X) = Z(X).

A topological space X is said to be  $\sigma$ -compact if  $X = \bigcup K_n$  where each  $K_n$  is compact. If these sets can be so chosen so that each  $K_n$  is contained in the interior of  $K_{n+1}$  then X is said to be regularly  $\sigma$ -compact. If X is locally compact, Hausdorff and  $\sigma$ -compact then it is an easy argument to show that X is regularly  $\sigma$ -compact. A  $\sigma$ -compact Hausdorff is certainly paracompact and is therefore normal. We may now state

(1) Theorem. If X and Y are locally compact,  $\sigma$ -compact Hausdorff spaces then  $Z(X) \times Z(Y) = Z(X \times Y)$ .

Proof. First note that the topological product  $X \times Y$  must be also locally compact,  $\sigma$ -compact and Hausdorff so that it is regularly  $\sigma$ -compact. Now if C is a compact subset of a locally compact Hausdorff space and U is an open set containing C then there is a compact  $G_{\delta}$  set D such that  $U \supset D \supset C$ . It follows that a locally compact,  $\sigma$ -compact Hausdorff space X is a countable union of compact  $G_{\delta}$  sets (and consequently is a Baire set). It is now immediate that any zero set of X, Y, or  $X \times Y$  is a countable union of compact  $G_{\delta}$  sets and hence is a Baire set so that S(X) = Z(X), S(Y) = Z(Y) and  $S(X \times Y) = Z(X \times Y)$  so that  $Z(X) \times Z(Y) = Z(X \times Y)$ .

(2) COROLLARY. If X and Y are locally compact,  $\sigma$ -compact Hausdorff spaces then  $\operatorname{wb}(X) \times \operatorname{wb}(Y) = \operatorname{wb}(X \times Y)$ .

**Proof.** The corollary follows trivially from the theorem and the preceding remarks.  $\blacksquare$ 

A topological space X is said to be *pseudocompact* if every continuous real valued function on X is bounded. If a completely regular Hausdorff space is pseudocompact then it is easy to show that every zero set Z in  $\beta X$  must have a non-empty intersection with X and in fact this property characterizes pseudocompact spaces. If Z is a zero set of X we will denote the closure in  $\beta X$  of Z by  $\operatorname{Cl}_{\beta X} Z$ . We will need the following fact.

(3) LEMMA. If X is a completely regular Hausdorff space which is pseudocompact and Z is a zero set of X then  $\operatorname{Cl}_{\beta X} Z$  is a zero set of  $\beta X$ .

Proof. Given a zero set Z of X let f be any continuous function on X such that Z=Z(f) and such that  $0 \le f(x) \le 1$  for every x in X. Let  $\hat{f}$  be the continuous extension of f to  $\beta X$  and let  $Z(\hat{f})$  be the zero set of  $\hat{f}$  in  $\beta X$ . We will show that  $\operatorname{Cl}_{\beta X} Z=Z(\hat{f})$ . It is obvious that  $\operatorname{Cl}_{\beta X} Z\subseteq Z(\hat{f})$ . Let  $x_0$  be any point of  $Z(\hat{f})$  and suppose that  $x_0$  is not in  $\operatorname{Cl}_{\beta X} Z$ . Since  $\beta X$  is a compact Hausdorff space there exists a continuous function g on  $\beta X$  such that g is identically 1 on  $\operatorname{Cl}_{\beta X} Z$ ,  $g(x_0)=0$  and  $0 \le g(x) \le 1$  for every x in  $\beta X$ . Consider the function  $g+\hat{f}$ .  $(g+\hat{f})(x_0)=0$  and  $g+\hat{f}$  is identically 1 on  $\operatorname{Cl}_{\beta X} Z$  so that the zero set  $Z(g+\hat{f})$  does not intersect  $\operatorname{Cl}_{\beta X} Z$ . Since X is pseudocompact  $Z(g+\hat{f}) \cap X$  is not empty so that there is a point x in X such that  $(g+\hat{f})(x)=0$  and hence f(x)

 $=\hat{f}(x)=0$  so that x is in  $Z(f)\cap Z(g+\hat{f})$  which is a contradiction. Therefore  $\operatorname{Cl}_{\mathcal{B}X}Z=Z(\hat{f})$ .

If the product  $X \times Y$  of the topological spaces X and Y is pseudocompact then both X and Y are necessarily pseudocompact. The converse, however, is not true. For any completely regular space X the family of co-zero sets of X is a base for its topology and consequently if X and Y are completely regular the family of cartesian products of co-zero sets of X with co-zero sets of Y is a base for the topology of  $X \times Y$ . It is easy to show that for any topological spaces X and Y the relations  $Z(X) \times Z(Y) \subseteq Z(X \times Y)$  and wb $(X) \times$  wb $(Y) \subseteq$  wb $(X \times Y)$  always hold. We give next a sufficient condition on the product  $X \times Y$  that  $Z(X) \times Z(Y) = Z(X \times Y)$  which depends on a theorem due to Glicksberg [4] which states that for completely regular Hausdorff spaces X and Y, if  $X \times Y$  is pseudocompact then  $\beta X \times \beta Y$  is identical to  $\beta(X \times Y)$ , that is the identity mapping of  $X \times Y$  onto itself extends to a homeomorphism of  $\beta(X \times Y)$  onto  $\beta X \times \beta Y$ .

(4) THEOREM. If X and Y are completely regular Hausdorff spaces and  $X \times Y$  is pseudocompact then  $Z(X) \times Z(Y) = Z(X \times Y)$ .

Proof. Since  $Z(X) \times Z(Y) \subseteq Z(X \times Y)$  it is sufficient to show that any zero set Z of  $X \times Y$  is in  $Z(X) \times Z(Y)$ . Let Z be such a zero set. Then by (3)  $\operatorname{Cl}_{\beta(X \times Y)} Z$  is a zero set of  $\beta(X \times Y)$  and thus since  $X \times Y$  is pseudocompact of  $\beta X \times \beta Y$ . It follows that  $\operatorname{Cl}_{\beta(X \times Y)} Z$  is a compact  $G_{\delta}$  set in  $\beta X \times \beta Y$  so that  $\operatorname{Cl}_{\beta(X \times Y)} Z = \bigcap_n O_n$  where  $O_n$  is an open subset of  $\beta X \times \beta Y$  for each n. Now each  $O_n$  is a union of sets of the form  $E \times F$  where E is a co-zero set of  $\beta X$  and F is a co-zero set of  $\beta Y$ . Since  $\operatorname{Cl}_{\beta(X \times Y)} Z$  is compact a finite number k of these rectangular co-zero sets must cover  $\operatorname{Cl}_{\beta(X \times Y)} Z$  so that we have for each n

$$\operatorname{Cl}_{\beta(X\times Y)}Z\subset \bigcup_{i=1}^k (E_{n,i}\times F_{n,i})\subseteq O_n$$
.

If we let  $\hat{E}_{n,i} = E_{n,i} \cap X$  and  $\hat{F}_{n,i} = F_{n,i} \cap X$  for each i and n, then  $\hat{E}_{n,i}$  and  $\hat{F}_{n,i}$  are co-zero sets of X and Y respectively and we have

$$Z \subset \bigcup_{i=1}^k (\hat{E}_{n,i} \times \hat{F}_{n,i}) \subseteq O_n \cap (X \times Y)$$
.

Since  $Z = \bigcap_n (O_n \cap (X \times Y))$  it now follows immediately that Z is in  $Z(X) \times Z(Y)$  and hence that  $Z(X) \times Z(Y) = Z(X \times Y)$ .

(5) COROLLARY. If X and Y are completely regular Hausdorff spaces,  $X \times Y$  is pseudocompact and X, Y, and  $X \times Y$  are normal then  $wb(X) \times wb(Y) = wb(X \times Y)$ .

Proof. The proof follows directly from (4) and from the fact that for a normal space X, Z(X) = wb(X).

32



The condition of normality on the product space  $X \times Y$  in the above corollary is not necessary as can be seen from the following example. Let  $\Omega_0$  be the space of all ordinals less than the first uncountable ordinal with its usual order topology and let  $\Omega$  be its one point compactification.  $\Omega$  and  $\Omega_0$  are normal and pseudocompact and  $\Omega_0 \times \Omega$  is pseudocompact but is not normal. Hence  $\operatorname{wb}(\Omega_0) \times \operatorname{wb}(\Omega) = z(\Omega_0) \times Z(\Omega) = Z(\Omega_0 \times \Omega)$ . However, every closed  $G_{\delta}$  set in  $\Omega_0 \times \Omega$  is a zero set (see for example [3]. p. 129) so that  $\operatorname{wb}(\Omega_0 \times \Omega) = Z(\Omega_0 \times \Omega)$ .

In (4) and (5) the sufficiency conditions are given in terms of the product space  $X \times Y$ . For a certain class of completely regular spaces we may state the conditions in terms of X and Y. We will need a corollary to a theorem of Frolik [2] which states that if  $X \times Y$  is a completely regular, pseudocompact Hausdorff space and f is a continuous function on  $X \times Y$  then the function F defined on X by  $F(x) = \sup_{u \in Y} f(x, y)$  is a continuous function on X.

(6) LEMMA. Let X be a locally compact Hausdorff space and let Y be a completely regular, pseudocompact Hausdorff space. If f is a continuous function on  $X \times Y$  then the function F defined on X by  $F(x) = \sup_{y \in Y} f(x, y)$ is a continuous function on X.

Proof. It is easy to show that the product of a compact space and a pseudocompact space must be pseudocompact (see [3], p. 134). Let  $x_0$  be an arbitrary point of X and C a compact neighborhood of  $x_0$ . Then  $C \times Y$ is pseudocompact, f is a continuous function on  $C \times Y$  and hence by Frolik's theorem the function F is continuous at  $x_0$ . Since  $x_0$  was arbitrary, F is continuous on X.

(7) LEMMA. Let X and Y be pseudocompact, completely regular Hausdorff spaces and let X be locally compact, then  $X \times Y$  is pseudocompact.

Proof. The lemma is easy consequence of (6). It also appears as a special case of Theorem 3.3 in [2].

We may now state the previous results in the following form:

(8) THEOREM. If X and Y are completely regular, pseudocompact Hausdorff spaces and either X or Y is locally compact then  $Z(X) \times Z(Y)$  $= Z(X \times Y).$ 

Proof. The theorem is a routine consequence of (4) and (7). Theorem (8) has the obvious corollary for weakly Baire sets which is analogous to (5) and which we omit here.

Remarks. In Theorem 1 and its corollary the results follow clearly from the identification of both the zero sets of X and the closed  $G_{\delta}$  sets of X as Baire sets and the fact that  $S(X) \times S(Y) = S(X \times Y)$ . It is less obvious that a similar situation obtains in Theorem (4) and its corollary,

that is when  $X \times Y$  is pseudocompact. We have noted that when X is nseudocompact every zero set in  $\beta X$  must intersect X and shown that if Z is a zero set of X then  $\operatorname{Cl}_{\beta X} Z$  is a zero set and hence a compact  $G_{\delta}$ in  $\beta X$ . It is equally easy to demonstrate that if Z is a zero set (a compact  $G_{\delta}$ ) in  $\beta X$  then  $\operatorname{Cl}_{\beta X}(Z \cap X) = Z$  so that there is a natural one to one correspondence between the zero sets of X and the compact  $G_0$  sets of  $\beta X$  and hence between Z(X) and  $S(\beta X)$ . Thus Theorem (4) will follow from the fact that  $S(\beta X) \times S(\beta Y) = S(\beta X \times \beta Y) = S(\beta (X \times Y))$ . It is therefore natural to ask whether we may have the relation  $\overline{Z(X)} \times Z(Y) = Z(X \times Y)$ when the zero sets of the respective spaces cannot be identified with the Baire sets of the spaces or of their Stone-Čech compactifications. The answer to this question is not known to the author.

## References

- [1] S. K. Berberian, Measure and Integration, New York 1965.
- [2] Z. Frolik, The topological product of two pseudocompact spaces, Czech. Math. J. 10 (1960), pp. 339-349.
- [3] L. Gillman and M. Jerison, Rings of Continuous Functions, Princeton 1960.
- [4] I. Glicksberg, Stone-Čech compactifications of products, Trans. Amer. Math. Soc. 90 (1959), pp. 369-382.

R. P. I. GRADUATE CENTER East Windsor Hill, Connecticut

Reçu par la Rédaction le 1. 7. 1970