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is not exact. But the coefficient group Hy(pt; Z) for our theory is 2; and
it turns out, interestingly, that the limit of the system corresponding
to (6.3) (with Z replaced by Z) is exact.

Tt is clear from §§ 2—5 that for each abelian group & we get a co-
homology theory for closed pairs with .

HY(X, 4; 6) = H"[Hom (C/(X; 2)[0(4; Z), @) -

(6.4). What is the relation of this theory to Cechi cohomology?
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The product of certain measurable spaces
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Christopher Todd (Bolton, Conn.)

Let X and Y be topological spaces and let §(X) and §(¥) be the
o-rings of Baire sets of X and Y respectively, i.e. the ¢-rings of subsets
generated by the compact Gs sets of X and Y. §(X) x 8(¥), the cartesian
product of S(X) and S(Y), is the o-ring of subsets of the topological
product X X ¥ generated by the family & = {EX F| Ee8(X), F e 85(Y)}
of subsets of X x Y. It is a well known fact that for locally compact
Hausdortf spaces X and ¥, S(X)x §(¥)= 8(XxX). It is the purpose
of this note to examine the corresponding situation for the o-rings Z(X)
and wb(X) generated respectively by the zero sets and the closed G, sets
of X. Following Berberian [1] we will call the elements of wh(X) the
weakly Baire sets of X. In the following sufficient conditions on the product
X %Y and on the spaces X and ¥ will be given to insure that Z(X)x
Z(¥)= Z(X xY) and that wh(X)Xwb(¥)=wb(X xY). In the latter
case the results give a partial answer to a question posed by Berberian '
(11, p- 183). ‘ '

Definitions and notation will be introduced as they become necessary.
All topological spaces under consideration will be assumed to be com-
pletely regular and Hausdortf. The Stone-Cech compactification of such
a topological space X will be denoted by SX.

A subset Z of a topological space X is said to be a zero set of X if
there exists a continuous real valued funetion f on X such that Z = Z(f),
= {zeX| f(x) = 0}. Tt is obvious that f may be so chosen such that
0 < f(x) <1 for every @ in X. A subset of X is called a co-zero set if it
is the complement of a zero set of X. Since X itself is always a zero set (and
a co-zero set), the o-ring Z(X) is in fact always a o-algebra. It follows
that Z(X) is generated also by the co-zero sets of X. Similarly, since any
topological space is a closed G5 set we have fhe same situation for the
o-ring wh(X). Every compact G set in a completely regular Hausdorff
space X is a zero set and every zero set is a closed G so that for these
spaces we always have the relation §(X)C Z(X) C wh(X). If a topo-
logical space X is normal then every closed G; set is a zero set so that
in this case wb(X) = Z(X). '
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A topological space X is said to be o-compact if X = | J K, where
each K, is compact. If these sets can be so chosen so that each K, ig
contained in the interior of K,., then X is said to be regularly o-compact,
If X is locally compact, Hausdorff and o-compact then it is an easy
argument to show that X is regularly o-compact. A o-compact Hausdortt
is certainly paracompact and is therefore normal. We may now state

(1) TemoreM. If X and X are locally compadt, o-compact Hausdorff
spaces then Z(X)yxXZ(¥Y)=Z(XxY).

Proof. First note that the topological product X x ¥ must be also
locally compact, o-compact and Hausdorff so that it is regularly ¢-com-
pact. Now if ¢ is a compact subset of a locally compact Hausdorff space
and U is an open set containing C then there is a compact G set D such
that U D.DD C. It follows that a locally compact, o-compact Hausdorff
space X is a countable union of compact @, sets (and consequently is
a Baire set). It is now immediate that any zero set of X, ¥, or X X Y is
a countable union of compact G5 sets and hence is a Baire set so that
8(X)= Z(X), 8(¥)= Z(Y) and S(XxY)=Z(XxY) so that Z(X)x
Z(Y)=Z(XxY).n

(2) CoroLLARY. If X and Y are locally compact, o-compact Haus-
dorff spaces then wh(X)xX wb(¥)= wb(X x¥).

Proof. The corollary follows trivially from the theorem and the
preceding remarks. W

A topological space X is said to be pseudocompact if every continu-
ous real valued funetion on X is bounded. If a completely regular Haus-
dorff space is psendocompact then it is easy to show that every zero set Z
in #X must have a non-empty intérsection with X and in fact this property
characterizes psendocompact spaces. If Z is a zero set of X we will
denote the closure in X of Z by ClxZ. We will need the following fact.

(8) Imyma. If X is a completely regular Hausdovff space which is
_pseudocompact and Z is a zero set of X then OlsxZ is a zero set of pX.

Proof. Given a zero set Z of X let f be any continuous function
on X such that Z= Z(f) and such that 0 < f(w) <1 for every « in X.
Let f be the continuous extension of f to BX and let Z(f) be the zero set
of fin BX. We will show that ClyxZ = Z (f). It is obvious that ClyxZ
Q‘Z(f). Let », be any point of Z(f) and suppose that @, is not in Clyx Z.
Since X is a compact Hausdorff space there exists a continuous fune-
tion g on BX such that g is identically 1 on ChxZ, g(z,) =0 and
0 < g(2) <1 for every z in fX. Consider the function g-+7. (g-7) () = 0
and g+ is identically 1 on ClixZ so that the zero set Z(g 4F) does not
intersect Clax Z. Since X is psendocompact Z(g+f) ~ X is not empty so

that there is a point # in X such that (g+7) (@) = 0 and hence flx)
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=f(@)=0 so that # is in Z(f) ~ Z(g+f) which is a contradiction.
Therefore ClsxZ = Z(f). &

Tf the product X XY of the topological spaces X and Y is pseudo-
compact then both X and ¥ are necessarily pseudocompact. The con-
verse, however, is not true. For any completely regular space X the
family of co-zero sets of X is a base for its topology and consequently
if X and Y are completely regular the family of cartesian products of
co-zero sets of X with co-zero sets of ¥ is a base for the topology of X x ¥.
Tt is easy to show that for any topological spaces X and ¥ the relations
Z(X)x Z(Y) C Z(X xY) and wb(X)Xwh(Y) C wh(X x ¥) always hold.
We give next a sufficient condition on the product X x ¥ that Z(X)x
Z(Y)= Z(XXY) which depends on a theorem due to Glicksberg [4]
which states that for completely regular Hausdorff spaces X and X,
if X x ¥ is pseudocompact then X X Y is identical to B(X X X), that
is the identity mapping of X X ¥ onto itself extends to a homeomorphism
of B(XxY) onto pX x BY.

(4) TuroREM. If X and Y are completely regular Hausdorff spaces
and X XY is pseudocompact then Z(X)x Z(¥)= Z(X x ¥).

Proof. Since Z(X)X Z(Y) C Z(X X Y) it is sufficient to show that
any zero set Z of X X Y is in Z(X) x Z(Y). Let Z be such a zero set. Then
by (3) ClgxxmZ is & zero set of f(X X ¥) and thus since X x ¥ is pseudo-
compact of X X Y. It follows that ClgxxrZ is a compact G set in
BX % BY so that ClgxxrZ = () On Where O, is an open subset of X X ¥

for each n. Now each O, is a union of sets of the form Z X F where F is
a co-zero set of X and F is a co-zéro set of Y. Since Clyxxr)Z is compact
a finite number % of theseé rectangular co-zero sets must cover ClyxxrnZ
so that we have for each n

k
ClaxxnyZ C | (B X F,i) C On .
i1

If we let E’W; = Bp; ~ X and Fn,i = Ky X for each ¢ and », then En,i
and I, ; are co-zero sets of X and ¥ respectively and we have

N ~
ZC | (B % Fpq) € Op n (XXT) .
i=1

Since Z = (1 (Ou ~ (X x X)) it now follows immediately that Z is in
Z(X) % Z(Y) and hence that Z(X)x Z(¥)=Z(XxY). m

(5) CororrARY. If X and Y are completely regular Hausdorff spaces,
X XY is pseudocompact and X, ¥, and XX Y are normal then wb(X)x
X Wh(¥) = wh(X X X).

Proof. The proof follows directly from (4) and from the fact that
for a normal space X, Z(X)= whb(X). &
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The condition of normality on the product space X X ¥ in the above
corollary is not mnecessary as can be seen from _the following example,
Let O, bethe space of all-ordinals less than the first uncountable ordinal

. with its usual order topology and let 2 be its one point compactification.
0 and Q, are normal and pseudocompact and 2, x£ is pseudocompact
but is not normal. Hence wb(0,) X wh(Q)=2(2,) X Z(2) = Z(2, x Q).
However, every closed G5 set in 2,x 2 is a zero set (see for example [3],
p. 129) so that wh(Q,x Q)= Z(2,X9).

In (4) and (5) the sufficiency conditions are given in teérms of the
product space X X Y. For a certain class’ of completely regular spaces
we may state the conditions in terms of X and ¥. We will need a corollary
to a theorem of Frolik [2] which states that if XX ¥ is a completely
regular, pseudocompact Hausdorff space and f is a continuous function

on X xY then the function F defined on X by F(z)= sullif(m,y) is.
ve

a continuous function on X.
(6) LEMMA. Let X be a locally compact Hausdorff space and let ¥ be
a completely regular, pseudocompact Hausdorff space. If f is a continuous
function on X XY then the function F defined on X by F(z) = su}) flz,y)
yel
is a continuous function on X.

Proof. It is easy to show that the product of a compact space and
a pseudocompact space must be psendocompact (see [3], p. 134). Let , be
an arbitrary point of X and ' a compact neighborhood of x,. Then ¢ x ¥
is pseudocompact, f is a continuous function on OX Y and hence by
Frolik’s theorem the function F is continuous at @,. Since #, was arbitrary,
F is continuous on X. m

(7) LeMmA. Let X and ¥ be pseudocompact, completely reqular Haus-
dorff spaces and let X be locally compact, then X XY s pseudocompact.

Proof. The lemma is easy consequence of (6). It also appears as
a special ease of Theorem 3.3 in [2]. m

We may now state the previous results in the following form:

(8) TemorEM. If X and Y are completely regular, pseudocompact

Hausdorff spaces and either X or Y is locally compact then Z (X)X Z(X)
= Z(X X Y).

Proof. The theorem is- & ‘routine consequence of (4) and (7). m

Theorem (8) has the obvious corollary for weakly Baire sets which
is amnalogous to (5) and which we omit here.

Remarks. In Theorem 1 and its corollary the results follow clearly
from the identification of both the zero sets of X and the closed @ sets

of X as Baire sets and the fact that §(X)x 8(Y)=S(XxY). It is less
obvious that a similar situation obtains in Theorem (4) and ity corollary,
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that is when X XY is pseudocompact. We have noted that when X is
pseudocompact every zero set in X must intersect X and shown that
if Z is a zero set of X then ClgxZ is a zero set and hence a compact G,
in pX. It is equally easy to demonstrate that if Z is a zero set (a compact G,)
in BX then Clpx(Z ~ X) = Z so that there is a natural one to one eorre-
spondence between the zero sets of X and the compact G sets of X and
hence between Z{(X) and 8(AX). Thus Theorem (4) will follow from the
fact that S(BX)X 8(pY)= S(BXXAY)= 8(f(Xx¥)). It is therefore
natural to ask whether we may have the relation Z(X) x Z(¥) = Z(X x ¥)
when the zero sets of the respective spaces cannot be identified with the
Baire sets of the spaces or of their Stone-Uech compactifications. The
answer to this question is not known to the author.
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