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I am gratefull to doc. R. Engelking' for suggesting the problemsg
and for some valuable remarks. :

Added in proof. A generalization of Theorem 2.8 is contained in H. H. Wicke
and J.M. Worrell, Jr., Open continuous mappings of spaces having bases of countable
order, Duke Math. Journ. 34 (1967), pp. 255-272. One can prove that the theorem
remains valid if ¥ is complete.
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Tate resolutions for commutative graded algebras
over a local ring

by
Tadeusz Jézefiak (Bydgoszcz)

Introduction. Let R be a commutative Noetherian ring with a unib
element.

Tate has construeted in [11] for cyeclic R-modules free resolutions
with additional algebra structure and used them for the study of the
functor Tor®. Only recently (see [4], [8], [10]) it has turned out that for
a local ring B and residue class field % the Tate resolution has an im-
portant property: it is minimal. A minimal resolution F determines
completely the algebra TorF(k,%): we have Tor®(k, k)~F®Fk. These
two properties: the algebra structure and minimality facilitate the in-
vestigation of the structure of the homology of the ring R.

The main purpose of the present paper is to build the theory of Tate
resolutions for graded commutative algebras over a local ring R (called
R-algebras in this paper, cf. (1.1)).

From the existence of the Tate resolution of an R-algebra 4 we
obtain the following formula for the Poincaré series of A:

_ TR R i e 2 e _
(L — ™1 — )L —)™ ...

F(4)

The organization of the paper is-as follows:

In § 1 we recall the definition of an R-algebra and some basic
properties of the category of graded modules over such an R-algebra.

§ 2 contains the definition and properties of a normal sequence in
an R-algebra. The main result of this section is a characterization of
those R-algebras whose unique maximal homogeneous ideal is generated
by a normal sequence. !

In §3 we define bigraded I'-algebras and differential I'-algebras.
Furthermore we present the basic construetion of the differential .I'-al-
gebra A(M; > obtained from the differential I'-algebra A by the ad-
junetion of the R-module M by means of the map ¢: M —=Z(A).
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In § 4 we construct the Tate resolution X of an R-algebra 4. as the
sum of an ascending chain of differential I'-algebras FiX, ¢ = 0, 1,2,..
The basic properties of X, minimality and invariance, are also proved.
' In § 5 we give the full characterization of those R-algebras for which
X = F X. These are exactly algebras isomorphic with the tensor product
of exterior and symmetric algebras of free modules.

In § 6 we apply the theory of the Tate resolutions to the computation
of the Poincaré series. The last theorem of this section contains the
relationship between the Poincaré series for 4 and 4, where 4 is the
residue algebra of 4 by a non-zero divisor of A.

Some results of the present paper were announced in [6].

§ 1. R-algebras. et R be a conimutzutive local ring with a wunit
element.

(1.1) DEFINITION. An associative, graded algebra A =‘69 A over B
i=0

will be called an R-algebra in this paper if the following c‘c:nditions are
satisfied:

(i) 4 is a finitely generated R-module for %= 0,

(ii) 4 has a unit element 1 €4, such that 4,=R.1 ~ R,
(i) @b = (-1)"-a, for ae 4y, bedy,
(iv) @ =0, for ac 4,1 odd.

An element a e 4; is called a homo,

gencous element of degree 1. We
shall write 7= 3(a). e

(1.2) DEFINITION. By a graded A-module M = @ M, we shall mean
a>0

in this paper a locally finite graded 4-module,
generated R-module.

We denote by A-Mod the category of graded A-modules and their
homogeneous homomorphisms of degree 0.

For the eonvenience of the reader
some basic properties
and [3].

i Le; m Ze the @que maximal ideal in R and let & — Rjm. We write
=m ;;91 t. The ideal T is the unique maximal homogeneous ideal
in 4 and 4jT~%.

ie. each M, is a finitely

and for references we recall below
of the category A-Mod. For the details see [2]

u =(1.3) NARAYAMA Lmwnwa. If M cobA-Mod, then IM = M implies
(1.4) DEFINITION. An

epimorphi; v M - i
called a minimal epimorph el Beleal J ¢ morph 4-Mod, is

tsm if the following condition is satistied:
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for arbitrary Y eobA-Mod, gemorphA-Mod, g: Y —>M, if the
morphism YLMLN is an epimorphism, then ¥>M is also an epi-
morphism. .

If M, N are objects in A-Mod and f: M N is a morphism in A-Mod,
then we write M = M|IM, and denote by f: >N the mapping in-
duced by f.

(1.5) Let f: M N be. a morphism in A-Mod. The following condifions
are equivalent:

(i) f s @ minimal epimorphism,

(i) f is an isomorphism, v

(iif) f i an epimorphism and KerfC IM.

(1.6) DEFINITION. A set ¥ of homogenesus generators of the graded
A-module M is said to be a minimal set of generaiors of M if any proper
subset of ¥V does not generate 1.

(1.7) Any graded A-module possesses a minimal set of gemerators.
The set V = {v;} of homogeneous elements of the A-module M is & minimal
set of generators of M if and only if the set {Bi} of residue classes modulo I
forms @ base of a k-vector space M. :

(1.8) In the category A-Mod there are emough minimal epimorphisms,
i.e. for arbitrary DM e ob A-Mod there exist a free module F e 0b A-Mod and
a minimal epimorphism f: F —M.

(1.9) Any projective object of the category A-Mod is a free module.

(1.10) DErFINITION. A free resolution (F, d) of the graded A-module
M is called a minimal resolution provided dF C IF.

(1.11) An cwbitmvy' object of the category A-Mod possesses a free
minimal resolution.

(1.12) Any two minimal free resolutions of a graded A-module M are
isomorphic.

§ 2. Normal sequences. Let A be an R-algebra. We write I' = i@xAi'

Recall that I = m@I’, where m denotes the uniqgue maximal ideal in R.
(2.1) DEFINITION. A homogeneous element £ of I is called & non-zero
divisor in A if the following condition is sabisfied:
(0):(&)=0 it  9(f) is even,
(0): (&)= (&) i 9(&) is odd.
(2.2) DEFvITION. Let &, ...,& be a sequence of ‘homogeneous
elements of the ideal I. The sequence &, ..., & is called a normal sequence
in A if for an arbitrary 7, 1 <4< n, the image of & in A[(£, vy Ei-1) 4

is a non-gero divisor in A/(&, ..., £i-1)A. "
15
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1

(2.3) TEHEOREM. If &, ..., & 48 @ normal sequence in A and ¢ is qn

arbitrary permutation of the set {1, 2, ..., n}, then the sequence oy, £uy, ...
«ery Sutmy 48 also normal.

Proof. Since each permutation is a produet of transpositions, it
suffices to prove the theorem for the fransposition changing 1 and 2.

Consider four cases: 1) 9(&,) even, 9(&,) even, 2)9 (&) even, d(&,) odd,
3) (%) odd, 2(&) even, 4) 9(&) odd, 9(&,) odd.

ad 1). We must prove the equalities (0): (&) =0, (&): (&) = (&)
Write M = (0): (&). If @ e M then a&, = 0. Since the sequence &, ..., &,
is normal, it follows that o € (&), @ = bé&; it implies b &, = 0. Bus & is
% non-zero divisor, and so we have b, =0 and be M; consequently,
aeIM. We have proved that M = IM and from Nakayama Lemma it
follows that M = 0.

Since the sequence &, ..., & is normal, we have a chain of impli-
cations: : ‘

celby): (&) =ck e (b)) >0k =bE=be (&)

>b=o0&=>c5 = e bh=>0—0b=0c= o e(f).

Therefore (£,): (&) = (&,).

ad 2). We shall prove that (0): (&)= (§) and (&2): (&) = (&) Let
M= (0).: (&), N = (&,). From a ¢ M and from the normality of &, ..., &
we obtain ¢ = b, &+ b,£,. Multiplying this by &,, we have b, & &, = a&, ; 0
50 b1§2 = 0 but this means that b, « M. Consequently, M= IM-+ N and
?)y ?\Ia‘ka,ya,ma, Lemma M = N. The proof of the formula (&:): (&) = (&)
is similar to the proof of the appropriate formula of 1). ’

ad 3). We must prove (0): (£) =0 (£): (&) =
= o) =0, (&) (&) = (&, &). If ag=0
thex% o =b& and 50 b& &, = 0. Since &, ..., &, is normal,’wze obta,i;nz suc-
cessively b, (£), b e (&). Therefore a = 0 and the equality (0): (&) — (0)

has been proved. Now let a €(g,): (£1); this means that a&, = bfg_a,nd,

further, from the normality of the sequence &1y ey We geb b= cf
afy = c& &, (a—cy) §=0,a= 6& 0k € (£1y &). ,

ge, 0 4 Wo shall prove that (0): (&) = (&), (£): (5) = (&, &). Let
L=0; mceiél, «y &n 18 mOrmal, we have g — bé,+ c&,. Multiplying it
by &, we obtain b £, = 0 and using once more the normality of &, ..., &
we ;g,et b e‘(‘fl', E%) and finally a € (&,). The proof of the equality 1(’5 ) ',(E;
= (&, 552) Is similar to the proof of the appropriate formula in 3), o
Observe that Theorem (2.3) follows simply from Proposition (5.1).

By Theorem (2.3) we. may speak of a normal set.

The following proposition gives s ch s
ated by a normal set, g characterization of algebras gener-
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(2.4) PROPOSITION. Let A be a finitely generated R-algebra. The
fowolling conditions are equivalent:

() A~ AM®SN, where M ond N are free R-modules and ADM,
SN denotes exterior and symmetric algebras, respectively,

(ii) any minimal set of generators of I' is a normal set in 4,

(iii) there ewists a minimal normal set of generators of the ideal I'.

For the proof of Proposition (2.4) we shall need

(2.5) LeMMA. Let &, ..., én, eI’y De a normal sequence in A and
let 9(&), i =1, .., 7, be odd numbers, and (&), i = r41,...,n, be even
numbers. Denote by B the algebra A(Rw: @ ... Rz,) @ R[&r i1, ..., 2] and
define grading in B by 9(w:) =3(&). The homomorphism ¢: E—~>A such
that @(z:) = & 8 injective.

Proof. It is evident that for » =1 the homomorphism ¢ is an in-
jection. The proof will be by induction on n, so it will be supposed that
the lemma is true for an arbitfary E-algebra and for all normal sequences
of length <m, n> 1. Consider two cases:

1) r> 0, ie. 2(&) is odd.

Bach element 2 of the algebra I can be written uniquely in the
form %= z,a+b, where a and b are polynomials in @, .., &, Wwith
coefficients in R. The homomorphism ¢ induces the mapping p: Ejx, E
> AJE A, From zeKerp it follows that g(b+2H)=0. Applying the
induction hypothesis to the algebra A/& A and to the sequence &+
FEA, ., & A we find that @ is an injection, i.e. b4+, F =0 and
consequently b = 0. Hence x = #,a; thus we have £, ¢(a) = 0. Since §, is
a non-zero divisor in A, we have ¢(a) < & 4. Hence g(a+,F) =0 and
finally @ = 0. This proves Kerg = 0. v

2) r =0, ie. J(&) is even.

Let 7 denote the mapping induced by ¢, ¢: B, B-AJ5 A o= a+
+a 2+ .. —{—akw{“, @i € R[#y, ovy @), and « € Kerp, then o(ay+ 5, E) = 0.
From the induction hypothesis it follows that @ is injective, ie. a2 E
=0 and s0 @, = 0. This implies & = (e, + a7+ ...). But & is & non-zero
divisor in 4, and so we have "= a,+ agwl—}-...—;—akwf'l e Kerg. Applying
similar arguments to the element 2’ as above, we prove a, = 0 and fz;rther
@y = ... = ap = 0. Hence z=0 and Kerg = 0.

Proof of Propositioﬁ (2.4). In view of (1.7) the implication
(ii) = (iii) is obvious.

(iii) = (). Let &, .., & De @ minimal normal set of generators of
the ideal I'. By Theorem (2.3) we may assume that 9(&;) are odd for
i=1,..,r and even for {=r+1,..,n From Lemma (2.5) we get an
injective map ¢: B —A. Since the elements &, -, én generate I', it follows
that ¢ is surjective. Hence B ~ A.


Artur


214 T. Jézefiak

N)=>@). ¥ A=ARs,®..DR2%)QR[%ri1, ..., Tn], then the ge-
quence &, ..., ¥ is normal in 4. Let &, ..., & be an arbitrary minimg]
set of generators of the ideal I'. From (1.7) it follows that m = m, and
it may be assumed that (zs) =9(&) for i=1,..,n. We define the
homomorphism y: 4 -4 by putting p(#:) = &. It is surjective of course.
On the other hand, each homogeneous component of 4 is a free R-module
of finite rank and therefore the surjectivity of y implies injectivity. Hence
¥ I8 a an isomorphism and the sequence &, ..., &, is normal in 4, being
the image of the normal sequence @, ..., %, by the isomorphism .

(2.8) TuEOREM. Let A be o finitely generated R-algebra. The JSollowing
conditions are equivalent:

(i) the ring R is a regular local ring and A~ AM® SN, where M
and N are free R-modules, , '

(ii) every minimal set of generators of the ideal I is normal in 4,
(iil) there exists a minimal normal set of generators of the ideal I.
Proof. The implication (ii)= (ifi) is trivial.

(iii) > {i). Let &, ..., be a normal sequence which is a minimal
set of generators of the ideal I. It may be assumed that (&) <9(&)
for i< j. Hence there exists a natural number §;8< m, such that
f1y vy Esem and Ly, ...y &y e I'. The sequence &1, .., & is a minimal
normal set of generators of the ideal m in R and therefore B is regular.
Denote by P the ideal in A generated by the elements Es11y nvy &n. Bach

s

element from I” can be written as a sum a+ g, where o = &y, a eI,

n =

f= ig‘l: Bié, Pre A. Since a ¢ II', f « P, we have IT'+ P — I’ and from

Nakayama Lemma it follows that P — I’ Hence the sequence &, vy &
is & minimal normal set of generators of the ideal T '

and applying Propo-
sition (2.4) we finish the proof.

(D =(i). ¥ &,..,& is & minimal set of generators of I and
iy ey bs €My &pyy .y £ e I, then the sequence &i,..., & is a minimal
set of generators of m in R and by the regularity of R it is a normal

set in R. From Proposition (2.4) it follows that the sequence £siq, ..., &y

is normal in A. From the definition of normality we immediately infer

that the sequence &, ..., £ 18 also normal in 4.
The notion of a normal set
cardinality.

(2.7) DEFINITION. A sot 5

gebra A is called a normal set it every finite subse

. t of Z forms a normal
sequence (in the sense of Definition (2.2)).

can be generalized to sets of arbitrary

£ of homogeneous elements of an R-al-
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(2.8). Using this definition of a normal set, we can easily show by
gimple direct limit arguments that Theorem (2.6) is still valid for R-al-
gebras which are not finitely generated.

§ 3. Bigraded I™-algebras. Let 4 be an R-algebra.

(8.1) DEFINITION. An A-module M is called a bigraded A-module
it M= @ M, where M« , is a graded A-module, ¢ > 0.
>0 )
1t 14\14*,,1 = @ M,,, is a grading in Ms 4, then an element r e My o is
P>0
called homogeneous of degree (p,q). We shall write p =23(2), ¢ = w(z).
' (3.2) DEFINITION. A bigraded A-module 4 is called a bigraded
commautative A -algebra if .
(i) for each pair (p, ¢) of natural numbers the biadditive, associative
mapping of graded A-modules of degree 0 is given,

(@, ) 129,

which is bilinear in the following sense: we have

A, X Ax, g >Ax,p1g s

(a8)-y = (—1)" "% (ay) = a(z-9),
for homogeneous a ¢ A, & € Ax,p, y € Ax g,

(ii) for homogeneous @,y ¢ 4
ez o(y)+olxdely

@y =(-1) y-a,

(ifl) 2t = 0 if 3(z)+ w(®) is odd,

(iv) 4 has a unit element 1 e Axo. )

(3.3) DEFINITION. A Digraded commutative A-algebra A is called
a bigraded I'-algebra over A if ib is endowed with the sm}ct»ure of an
A-algebra with divided powers, i.e. there are ‘defined mappings yx: 4,,,4
>Appgn, p =0, ¢> 0, p+g even, k=0,1,2, ..., such that the following
conditions are satisfied:

(1) (e} =1, ya(2) ==, :

13!
(i) yu(@)-yal@) = (b, B)- yren(®), where (k, )= (k-+h)}/k!-hl,

(ifi) yuz+y) = kﬁ_%zkykl(w»m(y),

(iv) yu(Am) = A’pu(w), for Ae A, r even,

0 if 9(2)+ o(z) is odd, E>1,
(V) yulo-9) = {70! y(w)yu(y) if 3(z)+ w(z) is even and w(z)>0.
Observe that if 4;= 0 for ¢> 0 and Ap,g= 0 for p>0, then the

algebra’ 4 may be identified with a graded I'-algebra ovetr R J(:ejf]’fi)%))e
Teot 4 and B be bigraded I'-algebras over A and let f:

i homo-
a homomorphism of A -algebras of degree (0,0). Tt is called a
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morphism of bigraded I'-algebras it f(ve(@)) = 74(f(2)) for @ € Apq, ptg
even, g > 0.

Let I'y-Bialg denote the category whose objects are bigraded Ial-
gebras over 4 and whose morphisms are homomorphisms of bigraded
I-algebras.

At first we will be interested in bigraded I-algebras over a com-
mutative local ring E.

(3.4) In the category I'r-Bialg there exist arbitrary coproducts (see [1]).

If 4,B are bigraded I-algebras over E, then the algebra A QB ig
their coproduct with multiplication given by

(a®D) (3, @by) = (—1) P70y @ pb, .

»
Divided powers are defined as follows: if =D &®b; ¢ 4;,;@ By, then
t=1

[ _2 (@,®b3) ... (@5, ®by)  if i47, r+5 are odd,

1<€i1< . <RSP .
yi(@) = > (@'®1) ... (657 ® 1) (L@ y1(B))) ... (L® Yip(B))
Kttt hp=k )
if 444, r+s are even.

(3.5) From (3.4) it follows that if 4 e ohI'4-Bialg, B ¢ ob I'r- Bialg,
then 4® B e obI4-Bialg.

(3.6) Let M be a bigraded R-module. Write M*= @ M, ,, M~

_ : . + - p+g even
2H_S%MM,U,Q, We have M=M"@M". If M=M", we put AM

= ® 4M,, a,nd’deﬁne the grading of & = @A .. A%y, & £ 0, ;¢ My,

P,920

by 9(z) = #p, w(s) = ng. The algebra AM with such grading becomes
a commutative bigraded R-algebra.

(3.7) The algebra AM can be endowed with a unique [-algebra

»
structur = D%, o = :
e such that for m_g;w s 80 =) AAd?) o) e M4, n even,
we have

ey = D g®p ag®
1K< e <Tp<p ot

@ tDﬂe{nm’ce by A-Bi.m?d the: category of bigraded A-modules M such
ha Mso =.0 and their homogeneous homomorphisms of degree (0, 0).
We define the functor I: T'r-Bialg—>R-Bimod, I(d) = @ Ap,

for A ¢ obI'r-Bialg and I(f)=f|I(4) for f: AB. e
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(8.8) There ewists a funcior I R-Bimod —Iz-Bialg which is a left
adjoint to the functor I, i.e.

I'z-Bialg(I'My, 4) ~ R-Bimod(M, I(4)) .

An outline of the construction of the funetor I' (see also [7]). For
M= MY @M~ we define IXM) = I{M*>®@ (M~ and I\M™ 5= AM",
Ify = Af; from (3.7) it follows that it is in fact & bigraded I™algebra.
Mo define T¢M™> we begin with the assignement to each pair (x, %) an
indeterminate X, xy, where x is a homogeneous element of M™,3(z)+ w ()
is even, and % is natural. Then we form the algebra Q= R[X(s; ] of
polynomials in Xz, 1 over B and bigrade it by setting (X, ») = k-2(),
(X 1) = k- w(®). The ideal a generated in Q by elements of the form

td k
X1y Xog,m—4 Xia,m
X1y Xioymy—(Fy B) X o, 24m

Xigtp.my— Z Kz, X
it+i=k .

1 ¢ R, is homogeneous and we put IXM*y = QJa. We have the mapping
y: MT>IXM"y, y(@) = X@n moda, and it can be proved that the
algebra I'CM *y can be supplied with a unique I-algebra structure such
that yk(y(m)) = X(z 1 moda. The natural map y: M—>IY{M) is injective
if M is R-free. We shall identify » with y(z) by means of the map y.
(3.9) From (3.8) it follows that the functor I" preserves coproducts,
ie. IXM @NY ~ My Q@ I'KN>. “
(3.10) Let M be a free bigraded R-module on one generator x of
degree (p, q). If p+g¢ is odd, then I'(M) is a free R-module of rank 2,
I{My= R®Ruw, 22 = 0. If p-+q is even, then I'M) is a free R-module
with a countable basis 1, :(®), yal@)s ey VE(E); s multiplication being

- determined by

() - ya(@) = (B, B)yren(®) -

Tf M is & free bigraded R-module with basis {#s}ieq, then we shall
often write I'(MY = T{®i}iead-

(8.11) DEriNITION. A bigraded I'algebra 4 over 4 is called a dif-
ferential I-algebra if an A-homomorphism d: A—>A' of degree (0, —1)
is defined such that the following conditions are satisfied:

(i) @& =0, :

(i) d(xy)= dz-y+ (—1)"? @-dy, for homogeneous &,y €A,

(i) - yu(®) = yrp-a(w)dz, for homogeneous % A4, d(z)+w(z) even,
w(z) > 0.
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The map d will be called a differential on A. We will sometimes
denote it by da. )

Let Z(A) be the kernel of ¢ and let B(4) be the image of d. Then
Z(A) is a bigraded I-algebra and B(4) is a homogeneous ideal in Z(4),
The residue class algebra H(A)= Z(A)/B(4) is called the homology
algebra of A and has the structure of a commutative bigraded A -algebra.

(3.12) Let 4 be a differential I-algebra over :A and let M be an object
of the category R-Bimod. By (3.5) the algebra A®I<M) is a bigraded
Ialgebra over A. Let ¢: M->Z(A) be a homomorphism of bigraded
R-modules of degree (0, —1).

We shall prove the following

(3.13) TEEOREM. The algebra AQITCM) can be endowed with a wnique

differential d such that
(i) A®IKM) is differential I-algebra,
(i) d1®r)=¢@)®1 for M,
(iif) did = . '
Proof. Since XMy = IXM S>®I(M'S it is sufficient to prove the
theorem for M = M™ and for M = M~, separately.

1) M= M". From the definition of the algebra I'M) it follows
that there exists a unique R-linear mapping d: I'M> »AQIYKM)>
such that

1) d(yiz)) = p(#) @ yr-1(z) tor homogeneous x ¢ M,
@) dy) =AY+ (-111@y)de for y,ze (M.

2) M= M"r, In this case we define d: XM ~>A®P<M> as follows
(T, A e A ) = ig’: (1) @(#) @@y A e ABiA o A2r, 2y € M. Standard com-

putation shows that formulas (1), (2) ave fulfilled.
In both cases we define d: A® (M) AR IXM> by putting

d(a®x) = da@z+(—1)"Ya®1)dz

for hon%ogel'leo?fs elements a € 4, @ e '(M). We shall verify that d has
properFles (i)—{iii) of Theorem (3.13). It is evident that d is an A.-homo-
morphism. Now let a, b, z, 4 be homogeneous elements, a,b e A, x,y

e I'{M). Write 8(2)2(b)+ w(z)w(b) = a. We have
A(a@z)(b®y)) = d(( —1)"ab® ay)
= (-1)'da-b@ my+ (—1)""“y. @b ® wy+
DTN @ 1) I (10)y) +
+ (1)t 0 9 1) (1 @w) dy -
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On the other hand, we have

d(a@x)(b®Y)+(—1)"“® a®@x)d(b®y)
= (da®@e+ (—1)"(e®1)da) b®y)+
+(—1)" N a@a) (@ @y + (—1)" b @1)dy)
= (-1)da-b@xy+
. + ( _1)m(a)+ B(b)a(d:c)-l-w(b)m(dz)(ab @1)3.’3(1@ y) +
+ ( _l)m(tL)+w(:E)+ a(z)8(db)+w(x)w(db) a-db ® zy +
(=) G ®1) (1@ ) dy -

From this computation we have obtained the formula (ii) of (3.11).
The validity of the formula (iii) of (3.11) follows from (1) and from the
appropriate property of the algebra 4. The properties (ii) and (i) of
the theorem follow immediately from the definition of d.

We shall denote the differential I-algebra described in Theorem
(3.13) by A(M; @) and we shall call A(M; ¢y the differential I™algebra

. obtained from A by the adjunction of the module M by means of the
map ¢: M—>Z(A). It M is a free R-module with base {8;}iea, We shall
often write 4 ({S:}iea; ¢y for ALM; @).

From (3.9) and from Theorem (3.13) we obtain

(3.14) COROLLARY. If ¢: M—>Z(A), N-Z(A) are homomorphisms
of bigraded R-modules of degree (0, —1) then we have an isomorphism of
differential I-algebras '

AM; @> {N; gy ~A(MON; D1 -

The above corollary will be used freely in the next sections.

(3.15) Lmvma. Let A, A’ be differential T-algebras over A and let
a: A—>A" be an isomorphism of differential I algebras. Further, suppose
that M, M’ are free R-modules in R-Bimod and v: MM is an iso-
morphism. If @1 M—Z(A), ¢" M Z(4') are R-homomorphisms of
degree (0, —1) making the diagram

M %7(4) »H(A)
3) vy o § Bl
M 5 Z(A)>H(4")
commutative, then there exists “an isomorphism of differe'n,.tial T—algebras
w: AM; gy A’ (M5 ¢y such that the following diagram is commutaiive:

A A (M; o>

a

A cs A M 9"
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Proof. From the commutativity of the diagram (3) it follows that
for each m e M the element

(4) Tin_= ap (1) — 'y (m)

is a boundary in A’. Let a set {2;} be a homogeneous base of the R-mo-
dule M. We choose arbitrarily homogeneous elements ¢z ¢ A’ such that
T; = d't;. Then for an element m = 3 Aa; we define f,, — 2 At
By (4) we have for each meM

() ap(m)—g'p(m) = d(tn)

and the mapping m i1, is RE-linear. We define w: M —4'<M’; ¢y by
putting @ (m) = tm®@1-+1@y(m). From (3.8) it follows that @ has aunique
extension (also denoted by w) to the homomorphism w: I'{M) =AM o'y,
We define o by w(a®z) = a(a)w(z) for a ¢4, ¢ I'{M). It can eagily
be proved by using the formula (5) that o iy a homomorphism of dif-
ferential I'-algebras.

Now write f=a', 7=y and define for each m'e M’ 1%,

m’

= —fB(tymy). By applying the differential d to the last equality we obtain ‘

(6) By’ () — g (m’) = a(tw) .

Similarly as in the case of o we define a homomorphism &: <y
—-AM; @) such that d{m') = tw ®@14+1@n(m’) for m’ ¢ M'. Further,
let §: 4'CM'; ¢y >A(M; ¢) be a map such that 8(a'®@a') = f(a’). 9 ().
? is in fact the homomorphism of differential I-algebras and we shall
prove that o and ¢ are inverse to each other. By the universal property
of the functor I it is sufficient to prove do(a®@m) = a®m for m e M.
Immediately from the definition we have

B (e®m) = 3{(a(2) 1) (1 @1+ 1@ p(m))
=de(a)in®1+ a(a) @y (m))

= Bla(@)tn) ® 1+ (8a () © 1) ftyom @ 1+ 1 @ ()
= aﬁ(ﬁn)®1+at¢m®1+a®m
= a(ﬁ(ﬁn)“"w(m)]@l—{— a@m=aQ@m.

A similar computation shows that wd = 1Id.
We recall that if 4 is an E-algebra, then I' = @ A,.
i>1 '
algebras over A and let
algebras. Suppose that Hy(A)
A-module. Let M, M’ be free
A)y ¢'s M >Z,(4") are such

(3.16) TuEoREM. Let A, A’ be differential I-
a: A=A’ be an isomorphism of differential I'-
(and so Hy(A")) is annihilated by I' as an
E-modules from R-Bimod. If @r M—Z,(
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R-homomorphisms of degree (0, —1) that the composed maps §: AQM
> Zn(A) >Hn(A), 2 AQM' ~Z,(A") >Hu(A') are minimal epimorphisms
in the category A-Mod, then there exists an isomorphism w: A(M; @)
S>AM’; 9"y of differential I'-algebras such that the diagram

A A4 (M; gy

a\L iw
4S5 A5 ofy

is commutative. .

Proof. Since A@M, A®M' are free graded A-modules and §: AQ@M
>Hy(A), ¢': AQM' —~H,(A') are minimal epimorphisms, then it follows
from (1.12) that there exists an isomorphism p: A @M -4 M’ of graded
A-modules such that the diagram

AQM S H,(A)
(7 ) v ~, Hnla)
AQM-5H,(A)

is commutative. Now consider a functor T: A-Bimod —R-Bimod defined
by T(Y)=Y/I'Y. Since T(4AQM)~M, T(AQM')~M' and Hai(d),
Hy(4’) are annihilated by I’, then by applying the fumetor I' to the
diagram (7) we obtain the commutative diagram

M 25Z,(4) — HalA)
T(w)l’ , . | Hale)
M’L n(AI)_>Hn(AI)

Lemmsa (3.15) implies the existence of an isomorphism with the required
properties.

§ 4. Tate resolutions. Let A be an R-algebra. We recall that

T=ma ® A, and & = AJI. Notice that a differential I-algebra 4 over 4
i1
furnighes ug with a left differential complex in the category A-Mod
' a a @
e %A*,n+1—iA*,n'—A> o —iA*,u =0,

(4.1) TemorEM. There: exists a differential I-algebra X over A which
is o free resolution of the graded A-module k. o

Proof. We shall obtain X as the union of an ascending eham} .of
differential I*-algebras FoX C F,XC ... We define F,X to Dbe the trivial
Talgebra 4, ie. (FoX)xo= 4, (FoX)kp= 0 for p> 0, d=0. To de-
fine F,X we first choose a free bigraded RE-module M,,; and a homo-
morphism g: My ->I of bigraded E-modules of degree {0, =1) such
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that the homomorphism A4A®Ms:1—1I, a®m l>ap(m), is a minima]
epimorphism in the category A-Mod. For any homogeneous element
@e M, we have o(w)=1 of course. We define FX = FoX (M y; 5,5
(see (3.12), (3.13)). Clearly, H(F,X) ~ k. Now let M« be a free bigraded
E-module and let g»: Ms,—Z(F1X) be such a mapping of bigraded
E-modules of degree (0, —1) that the composed A-homomorphism
ARMy» 7y (FiX)>H,(F;,X) i3 a minimal epimorphism in 4-Mod,
We define F,X = FiX{Mxs; ¢2). Clearly, (FoX)s o= (FiX)«,, (FoX)y
= (FiX)x and consequently Hy(F,X)~k, H,(F,X)=0. Proceeding in
this way, we define induetively for ¢ > 0 :

FpiX = FX({My, a+13 ‘Pq+1>,7

where M+ .1 is a free bigraded R-module, w(#) = g-+1 for homogeneous
% e My gy, and @310 My g1 —>Z(F,X) is such an R-homomdrphism of
bigraded E-modules of degree (0, —1) that the A -homomorphism
A@Ms, g1 —Zg(FX) >Hy(F;X) is a minimal epimorphism in A-Mod.
Observe that it is always possible to choose a map @y, Wwith the above-
mentioned properties. If the elements of the seb {Ei}ica, & € Zy(FoX), are
representatives of a minimal set of generators of the A -module H(FX),
then we define My, 1, to be the free R-module with the homogeneous
base {i}ica, (i) =2(&), o(m)=g+1, and we' pub @gii(2) = &.

We define X= qgjquX. It follows immediately from the con-
struction that -

Hy(FX)~k, Hy(FX)=0 for l<i<g g=1,

and

Xig= (FX)s,q = (F4+1X)*,q = e
This proves that X is acyclic
graded A-module %.

(4.2) DEFINITION. The differential I'algebra X constructed as in
the proof of Theorem (4.1) is called g Tate resolution of the R-algebra A.
(4.3) Remark. By the same method as in the proof of Theorem (4.1)

8 free resolution of an arbitrary cyclic A-module can be built. More
generally this construction leads to the no

the bigraded I-algebra over 4 (see [5]).
(44) Remark. f A =R is a local r
a Tate -resolution of the ring R was fir
(4.5) Remark. Suppose that R i
t.he? class of -al'ggbra,s for which Tate resolutions exist may be enlarged.
If in the deﬁm’mm.l f’f an R-algebra we do not assume that homogeneous
components are finitely generated, then all the results of § 1 will still
be valid. This allows us to build Tate resolutions for such generalized

and is therefore a free resolution of the

tion of an acyclic closure of

ing with trivial grading, then
st constructed by Tate in [111.
8 a field. Under this aggumption

|
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R-algebras. The appropriate results of the present paper suitably modified
are valid in this more general sifuation.

A priori a Tate resolution depends on the choiee of the modules Ms ,
and the mappings ¢,. But we shall prove the following

(4.6) THEOREM. Any two Tate resolutions of the R-algebra A are iso-
morphic as differential I'-algebras.

Proof. Suppose that we have two Tate resolutions X, X', determined
by the modules Mi,n, M;,,, and the homomorphisms gy, ¢, Tespectively.
We shall construct isomorphisms wy: FuX->FX', =0,1,..., such
that the diagrams

F»);,X C—>Fn+1X

wnl' \Lmnﬂ

Fn-X, C—)Fn+1XI

are commutative. By passing to the direct limit we shall obtain the
required isomorphism «: X X',

! Since F,X = FyX'= A, we put ow,= Id. Next we construct the
isomorphism ;. Since the mappings A@M*,lel,‘ a®m1—>a,-¢1(?n),
A@Mi~I, a®m |- ap(m'), are minimal epimorphisms, there exists
an ison,aorphism P: A@Mx,~AQ®Ms, ; making the diagram

ARMy— I
7 |1
ARM,,,— [

commutative. We define the homomorphism w: F(M*, 1.> A @P(M}:, 11>
by putting zp(M) =7(m) for me M, and extex.ldmg it to the w: ;1 e
algebra I'{Mx 1) in o unigue manner by the universal property o e

- functor I' (see (3.8)). Finally we define w;: ART{My, 1> ~AQI(Mx, 1),

= M ). It is easy to verify that o, is
0 (a®@a) = (a®@L)p(w), a e A, © e I'(Mx,y ‘ ] :
a,xll( isomorphism of differential I'-algebras, the inverse being a map defined
i o1
similarly by means of the homomorphism Lo ) .

Noijv let » > 1. Observe that Hy(F,X) i3 annihilated b>y Ihesgilg:l &Iu
Indeed, any element from I is a boundleu'yt-n:ft_i ﬁniﬁrffh : Qgébms "X
the assumptions of Theorem (3.16) are sa istied for t ; g
F, X' and £he isomorphism wn, We obtain th% r:qmet} fizrgorahzslml g;n:;e

he Tate resolution. .

By Theorem (4.6) we may speak of & ate I Ry
deﬁneg the notion of a minimal free resolution n the ca,.tegozz nilﬂzly
Minimal resolutions are important .becan'lse .they. detemilirﬁal oplorey
the homology of an appropriate object, Le. 1ﬁ Fis i ?@k mtely
lution of M e ob.A-Mod, then we hgwe Tor4(M, k) —‘ty Wé o
the Tate resolution possesses this important property-
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(4.7) TeEOREM, The Tate resolution of the B-algebra A is a minimal
free resolution of the residue class field k, i.c. the associated differential
complex
; 5 d d

o> X s X, aee = X g—> 0

is minimal in the category A-Mod.

In the case of a local ring (i.e. 4 = R) several proofs of Theorem (4.7)
are known (see [4], [8], [10]). The theorem in its full generality can be
proved by using Gulliksen’s idea of applying a special class of mappings,
so called derivations. But the notion of derivation should be adapted
to the bigraded case in the following way:

(4.8) DEFINITION. Let 4 be a differential I'-algebra over 4. A homo-
geneous mapping J: 4 >4 is called a derivation of the algebra A if
(i) J is an A4-homomorphism,
({i) dyt = Jdy,

(if}) I (2y) = (=1)*O 0T (0).y a7 (y)

for homogeneous #,y ¢ 4. The pair (9 (J), w(J)) denotes the degree of J.
The proof of Theorem (4.7) can be based on Gulliksen’s beautiful
paper [4] by using this notion of derivation.

§ 5. X = F,X. The aim of this section is to give the full characteri-
zation of those E-algebras for which the Tate resolution is attained at
the first step of the construction presented in § 4.

Let 4 be an R-algebra and let {&,, ..., &n} be the set of homogeneous
elements contained in the ideal I. Denote by M the free bigraded R-module
with base 8y, ..., 8, I(85) = 3(&), 0(8;) = 1. Let @: M-I be such a map
of E-modules that ¢(8;) = & and denote by Y the differential I-algebra
obtained from A by adjoining the module M by means of the map ¢,
ie. Y=AM; gy= A48, ..., 85 (84) = &>, We shall prove at first

(5.1) PROPOSITION. The Following conditions are equivalent:

(1) the set {&, ..., &} is o normal set in A,

(i) Y is a free resolution of the graded A-module Al&, ..., &),
(i) Hy(¥) = 0.

Proof. The implication (ii) = (iii) is obvious. We
- implieation (iii) = (i)

set {&; ...y &nk :

Let n=1; if3(&) is even and v, = 0, & e A, then we have d(z® ;)
= x5 ®1 =-0 and by assumption z®38, is a boundary in ¥. But B,Y)
= 0, so that #®8;, = 0 and consequently == 0. Now let 9(&,) be odd
and let w&; =0, ze A, Similarly as above z®0; is a one-dimensional
cyele in Y. From H,(Y) = 0 it follows that #® 8, is a boundary, i.e. there

shall prove the
by induction on the number of elements in the
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exists 4 ¢ A such that ¢®8, = d[y®y,(8,)). This implies # = y&,, and
g is 2 normal sequence in A.

Now let » > 1 and assume that the implication (ifi) = (i) is true for
p < N By (3.14) we may write Y = Y'(;S’n; ¢(8n) = &> where Y’

= A8y ey Su-1; @(8:) = &), Consider two cases:

1) 2(&) is odd.

We have an exact sequence 0—>Y’—“>Y—’+Y—>0, oY) =y’ ®1,
oy’ ®7el8n) = ¥’ @ ye-1(8n), 9’ €Y', which induces the long homology
sequence
1) e >Hy(Y') > Hp(Y) >Hp_s(Y) > ... »

oo > H () S H(Y) S Hy(Y) > Hy(Y) S H(Y') > Hy(¥) 0 .

From the exactness of (1) and from the assumption of Hy(Y)= 0
it follows that H,(Y')= 0, and so, by the induction hypothesis, the
sequence &, ..., &n-1 is normal. Since HyY)= A4/(&, ..., &), H(Y')
= AJ(&yy vy En—1) We obtain from the homology sequence the short exact
sequence

0> AJ(Ery oy En) A (Ery ooy Ena) >A[(Ery oeey £n) >0,

the map 4 being multiplication by &,. The injectivity of 4 means simply
that &, is & non-zero divisor mod (&, ..., &n—1) and consequently &, ..., tn
form a normal sequence in A.

2) 9(&,) is even. o ,

Tn this cage we have an exact sequence 0-»>Y =YY -0, o(y')
=y’ ®L 1y’ ®1) =0, 7(y'®8s) =¥',y' ¢ Y’'. This short exact sequence
induces the long exact homology sequence

@) s (Y Hy ¥ ) S Hy o V) Hypm(V) > o
s H (V)2 H (V) S Hy(Y) > H(Y') LY ) I Hy(Y)—>0 .

It is easy to compute that A is just multiplication by_ifn. %) XI)Iy Ehg
exactness of the above sequence and from the assumption of Hiy{ ()5_31;
it follows that H,(Y') = &Hy(Y') and frox.n I\Ta,k.a,yama.hLben{J?la W.f g»}
H,(Y¥')= 0. From the induetion hypothesis we infer tha 12 f:) ]1:;;8
is & normal get in 4. The normality of the whole sequence &y ey n

from the exactness of the sequence

0~——>-H0(YI) — A/('Sly vy Eﬂ_l)iﬂo(Y') = A/(fl, very n—l) .

The implication (i)= (i) will also be proved.b"y‘ induetioz %n( % Ee(i)i
n=1.1f9(&) is even, then immediately from definition we Sg’e : ; N z:h
for ¢ > 1. Now let (&) be odd. If an element y= 2@ pi(Sy) 1

16
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mensional cycle, then z& = 0 and from the normality of & it followg
that there exists an element #'e.A with = '4,. This implies that Yy
= 2@ yi(8,) = A’ @ y:41(8)) is a boundary, i.e. Hy¥) =0 for i1,
Now suppose that the implication (i)=(ii) is true for p < n. We
write as above ¥ = Y'{Su; ¢(8n) = &, ¥ = A8y, oov) Sumss @(81) = &),
If 2(&y) is even then from the induction hypothesis it follows that Hy(Y)
= 0 for p > 1, and from the sequence (2) we obtain Hy(Y)= 0 for p > 1.
Since H(Y') = 4/(&, ..., éu-1) and because the sequence &, .., &, is

normal, the short sequence 0 —Hy(Y’) i>HO(Y’) —Hy(Y) 0 is exact. But
this means that H(Y)=0 and Hy(Y)=A4/(¢, ..., &). Now assume
that d(£p) is odd. From the induction hypothesis and from the exactness
of the long homology sequence (1) we obtain Hy(Y) ~H; (Y) for i> 1.
To finish the proof we have to show that H;(Y)= 0. Consider again
the exact sequence (1). Since {&,...,&} is a normal set, we Lknow
that the connecting homomorphism 4: Hy(Y)= A/(&, ..., &) —Hy(Y')
= A{(£1; ..., &n-1) I8 injective (because A4 is just multiplication by &)
So the exactness of (1) gives us H(Y)= 0.

From (2.8), Theorem (2.6), Proposition (5.1) and by easy direct limit
arguments we obtain

(5.2) TEEOREM. Let A be an R-algebra. The following conditions are
equivalent:

(i) the ring R is a regular local ving and A is isomorphic with the
lensor product of an exterior algebra AM and a symmetric algebra SN,
A~ AM®@SN, where M and N are free R-modules,

(ii) any minimal set of gemerators of the ideal I is a normal set.in A,

(ili) there exists a minimal normal set of generators of the ideal I,
{iv) if X is the Tate resolution of A, then X = FX,
(v) if X is the Tale resolution of A, then H,(F,X)= 0.

§ 6. Application to the Poincaré series. Let 4 be an R-algebra which
is finitely generated as an algebra over R. From this assumption it follows
that each homogeneous component F; of a minimal free resolution F of
a graded A-module % is a free A-module of finite rank. Since any two
minimal resolutions are isomorphic (see (1.12)), the numbers b; = rankF;
are independent of the choice of a particular minimal resolution. The
number b; will be called the i-th Betti number of the R-algebra A and

the formal power series 7(4) = 2 bité will be ealled the Poincaré series
=0

of A. In this seetion we shall apply the theory of the Tate resolutions

to the computation of the Poinearé series.

Let .X be the Tate resolution of the R-algebra 4. We recall that
there exists an increasing filtration FXCFXC.. in X and FpaX
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= Fy X (M, g115 g+1), ¢> 0. For the bigradéd R-module M write as

in (3.6) M= My, M= @ M,,. Further, write n,
p-+q even p+godd

= rankpMs,, mp=rankeMi,, p=1, 2, .. From the minimality of
the Tate resolution (see (4.7)) it follows

(6.1) CorOLLARY. The Poincaré series of a finitely gemerated R-al-
gebra A has the form

g (d) = (1+t);:‘(1+t:)”“(1—§-t2)"”"... .
(L—0)™ (L~ )™ — ™.

If every homogeneous element of the algebra A has an even degree,
then My, = 0 for p odd and Msi,= 0 for p even. Thus we have

(6.2) COoROLLARY. The Poincaré series of a finilely generated R-al-
gebra A which has only homogencous elemenis of even degrees has the form

7(4) _ f [ (L7
=0

(1 _tzp+2)m2p+! *

In particular, if 4 = R then the Poincaré series of a local ring R has
the above form (see [4], [10]).

(6.3) COoROLLARY. If the algebra A is not isomorphic with a polynomiql
algebra over a regular local ring, then the sequence of Betti numbers of A is
non-desreasing, by, < by < b, < ...

Proof. If the algebra 4 contains a homogeneous element of odq
degree, then My, % 0 and m, > 0. Thus Y bi-t' = § (4) = (1/(1—1)) Dest’
= (2 1) (S eith), 64> 0, and the corollary is proved. Suppose now th.a‘t
all homogeneous elements in A have even degrees. If A isnot a polynonqla,l
algebra over a regular local ring, then by Theorem (5.2) we }mve H,(F;X)
# 0, where X is the Tate resolution of A. But by (6.2) this n:eans that
my> 0 and similarly as above ) bit'= 7 (4)= 11—1) Y.

From Theorem '(5.2) it follows ‘

(6.4) COROLLARY. The Poincaré series of an R-algebra A has the form

_a+y™
T =t
if and only if R is a reqular local ring and A is ?somorphic 'wjth ﬁf ;f;[sg
product of an emterior algebra AM and a symmetric algebra SN, A =~
® 8N, where M and N are free E-modules. ’
Now as an application of the Tate regolutions we shall prove the

following change of rings theorem -
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(6.5) TrmorEM. Let A be o finitely generated R-algebra and let © be
a non-zero divisor in A. Write A = AJvA. For x ¢ I* we have

FA)=(1+0)F(A) i (=) s even,
sr(A)=1—1—_tsr(Z) i dw) s odd.

For zeI* we have

T4 =(1-)F () i 9((90) is even
g(4) =i—+1725r(z) i 9(@) s odd and chark =0 .

For the proof of the theorem we shall need two lemmas.

(6.6) LEMMA. Let A be an R-algebra and let © be a non-zero divisor in A.
Assume that A is o differential I-algebra over A and z e By(A). Therefore
there evists an element § € A+, such that A8 = v. Write A = Ajzd, § = §+
+ad ¢ Z,(A), 0 =8+B(A) e H(A). If f: A>A is a natural mapping
and fe: H(A)+H(A) a mapping induced by f, then H(A) is isomorphic
with (f+H (A)) (Rw) where Bw is a free R-module on one generator w. The
isomorphism is given by the correspondence o> w.

Proof. If 9(z) is even, then the arguments given in [11], Theorem 3,
for local rings work without changes in this more general situation.

Now assume that d(x) is odd. Since # is a non-zero divisor, we have

an exact sequemce of complexes 0454540, p(y+xd) = ay,
p(y) = y+wo4, yed. This exact sequence induces an exact homology
triangle

H(A)—"—H(4)

Ny

ma

where 4 is a conheeting homomorphism of degree —1. First we shall prove
Apila) = yialo)

A7) = A(2)-7' + (1) 20 4 (o1

Write ¥ = y-+ 4. From the definition of 4 it follows immediately that

(O]

the homology eclass of the cycle 7 is sent by 4 to the homology class of 2

where dy = xz. Since dyi(8) = @y;-4(8), we have the firgt formula in (i). The

second equality in (i) follows from the produet formula for the differential d.
To prove the lemm_a_ it. suffices to show that the arbitrary homo-

geneous element 7 e Hy(4) can be written uniquely in the form

(if) 7= (0] -+ ops{an)+ o Fyalo)ype(an) 0 as e Hyoy(A) .

icm
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This will be proved by induction on n. If 7 ¢ Hy(4), then (ii) is obvious.

Now if 7 e Hu(4), then 4(r) e Hy—1(4) and by the induction hypothesis
we have

A(e) = pulas)+ opu(as) + o+ ynoal(o)pylen) -
Congider the element

7 = 1—01/1*(&1)— - —'}’n(a‘)w*(a'fb) .

Since Ay, = 0, we obtain from (i) 4(yp(0)p,(a) = yp-1(0)p,(a). Thus we
have A(7v") = 4(v)—p{a) —opy(ae)— ... —pn-1(0)py{an) =0. The exact-
ness of the homology triangle implies that ' = p,(a,), and consequently
we have the formula (ii). To prove the uniqueness observe that for T satis-
tying (ii) we have A"(v) = yp,(as). S0 if 7= 0, we obtain successively
(o) = 0, Pulan-1) = 0, .., pu(a0) = 0.

Now we state the following lemma, proved in [11] for local rings:

(6.7) LeMMA. Let A be a differential I'-algebra over A. Assume that s is
o cycle in A and let B = A(S;d8 = s>. If the homology class o of s is
o non-zero divisor in H(A), then the inclusion map A B induces in
the homology a surjection with kernel oH (A), i.e. H(B)~ H(A)/cH(A).

Proof of Theorem (6.5). Consider first the case ¢ I®. This as-
sumption implies that # is a member of some minimal set of generators
of the ideal I (see (1.7)). But then in the construction of the Tate resolu-
tion X we can choose the base {S;} of the module M, ; such that for
8 =48, we have d8 =& If X is the Tate resolution of 4, then write
X = X/zX. By Lemma (6.6) we have H(X)=k{s), where ¢ is the
homology class of the cyele 8.

Now suppose that d(z) is odd. We define a differential complex V by
the exactness of the following sequence of complexes

(i) : 0-X 53X 5V 0,

where a is determined by the condition a(Fy(8)) = Fy:+:(S), 7eX. We
shall prove that ¥ furnishes us with a free minimal resolution of a graded
A-module k. From (ii) we get the exact homology sequence
s Hypa(V) 2 Ho( K =55 Hss (X)L H (V) > Hp oK) —>

From H(X)= k<o) and ay(yi(0)) = yisi(c) we infer that a, is an iso-
morphism. But then from the exactness of the. above sequence we geb
H(V) =0 for i > 0 and H,(V) = Hy(X) = k. The minimality of V ff)llows
from the minimality of the Tate resolution X. From (iii) we obtain the
exact sequence of graded A-modules 0 X, p>Xy,p41>Fapra >0 for
arbitrary p = 0. Since rankzX,,,=ranksX,p and bp = rankzV,,, I8
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the pth Betti number of 4, we have by.i = bpr1—bp for p >0, §j= b,

Consequently §(4)= (1—1)T(4): . .
Now consider the case when 2 (x) is even. Write W = X/SX. Since

8 =0, we have an exact sequence of complexes

0-WEXEWS0, ay+8X) = (—1)*Sy,
v X, and an appropriate exact homology sequence
() > Haa(X) 2> Hoo( W)L H (W) > Ho(X)—
e = Hy(X) 2 H( W) L5 H (W) 5 H(X)
L H W)L HW) S B X)L H (W) —>0

Since Hy(W)~k, H(X)="ke and a(1+8X)=7F, we have a,(1)= .
This implies that a, is an isomorphism and from (iv) we ozotain H,(W)=9.
Further, from the exactness of (iv) we know that Hy(W) = H,(W) is a zero

homomorphism and H,(X) —ﬁ‘+H2(W) is an epimorphism. But Hy(X) = 0,
80 that H,(W) = 0. Now assume that # > 1 and H, (W) =-Hy(W)=.
From Hy(X) = 0 for m > 1 and by the exactness of (iv) we get H, (W)
= 0. Since H,(W)=HyW)=0 and H W)~k we have proved by
induction that H(W)= k. Obviously W is a minimal resolution of I
From the exact sequence 0 >W, ,—>X, 511 Wi, pr1->0, p = 0, we obtain
the required relation §(4)= (141)3(4).

Now let zeI’. From this assumption it follows that in the Tate
resolution. X of A there exists such 2 homogeneous element §eX,;,
that dS = z and 8 ¢ IX. If, as above, X = X/zX, we know by (6.6) that
"H(X)=E{s)>. If 2(x) is even, then from Lemma (6.7) we infer that
W= X(T;dT = 8y is a free resolution of the graded A-module .
- Observe that W is a minimal resolution because d7 = S ¢ IX and that
o(T) = 2. This gives us the required formula 7(d)=(1—-)7(4). Sup-
pose that 9(x) is odd. If chark= 0, then H (X) = k<o) is isomorphic
with the ring of polynomials of the variable ¢. Thus ¢ is a non-zero divisor
in k<o) and by (6.7) we infer that the algebra W = X(T; dT — Sy is
3 minimal resolution of % over 4. Hence §(4) = (1+2)T(4).

From Theorem (6.5) we obtain -

(6.8) ComorraRY. If A= R[n,..
vartables @y, ..., &, then

Bly) = y 43X,

<y %] 45 a polynomial algebra in

F(4)=1+9"(R).

(6.9) CoroLLARY. If 4 = A(Rw, - @Ray) s the emtorior algebra of
the free B-module of rank n, then .

(1]
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