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Non-standard analysis and homology

by
M. C. McCord (Lexington, Ky)

Introduction. The spirit of Vietoris homology and Alexander—Spanier
cohomology is to use chains and cochains based on “small” simplexes
((n+1)-tuples of points) in a space. The situation for Cech homology
and cohomology is similar, except that the simplexes are (n-1)-tuples
of members of open covers of the space. Although one thinks intuitively
of “small” simplexes, one must resort technically to varions limiting
processes. Except for the case of Alefander—Spanier cohomology, the
groups are not even computed from a single chain or cochain complex.

The object of this paper is to show how the methods of non-standard
analysis, due to Abraham Robinson [3], can be used to define a homology
theory based on chains of infinitesimal simplexes. The homology groups
are computed from a single chain complex. All of the Eilenberg-Steenrod
axioms [1] (including exactness) ave verified. The proofs are given in such
a way that one automatically gets an associated cohomology theory by
composing the chain complex functor with Hom(-, &). The proofs are
geometrically intuitive and technically easy. In the case of excision,
for example, one does not have a subdivision problem as with singular
homology, because the chains are already “infinitely fine”.

The relationship with Cech homology has not yet been determined
(see § 6). However the theory has at least one property characteristic
of Cech theories: for compact Hausdorff spaces with a finite number of
components, the O-dimensional group detects components, not path-
components (see § 5).

We follow essentially the set-theoretic wversion of non-standard
analysis of M. Machover and J. Hirsehfeld [2] (ef. also Robinson and
Zakon [4]), but in the next section we offer a slightly different expo-
sition of the Dasic set-up. Hopefully the paper will be readable by
topologists having no particular familiarity with non-standard analysis.

1. Preliminaries. We work within Zermelo-Fraenkel set theory. If
X is a set, let | J X denote the union of all elements of X and let PX denote
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the set of all subsets of X. By a undverse let us mean a non-empty set W
satisfying the following condition:

A1) If XeW and YUy then XC U, UZXeW,
{X,Y}eU.

Given any set A we can construct a universe (in fact the smallest
universe) b such that 4 e U, as follows. Let 4y= 4 and for n > 0 let

Apor = An v (U 4n) v (PA,). Then let WU = | 4y. In the remainder of
n=0

PX e U, and

this paper we assume given a fixed universe al such that Ve WU

An enlargement of U consists of a set *QL, containing W and a re-
lation *e on *aL satisfying the two conditions (1.2) and (1.3) below.
Construct a first-order language; £ having symbols for the usual connectives,
quantifiers, variables, and punctuation; £ shall have U as its seb of con-
stants and shall have two binary relation symbols = and e. Interpreting
= as equality and ¢ as ordinary set membership, and understanding
quantification to be over U, one can define in the usual way the notion
that a statement S of € holds in . Interpreting L as equality, replacing &
by *¢, and understanding quantification to be over *qL, one has the
notion that a statement 8 of £ Kolds in *Ab. We then assume

(1.2) If 8 is a statement of L that holds in U, then S holds in *Us.

Tf A e*, the scope A of A is defined as the set of all # in *U sueh
that # *e 4. One conecludes from (1.2) that if A ¢ W, then A C A.

If 2,y € *U, the *unordered pair *{z, y} is defined to be the unique
clement z of *Ab such that 2= {x,y}. The existence (and uniqueness)
of # follows from (1.1) and (1.2). We define the *ordered pair ™(x,y) to
be *|z, *{z, y}}- This corresponds to #*pry in [2].

A relation R is called concurrent if for any finite subset {a, ..., @a}
of the left domain of R there exists an object b such that (as, b) e B for
each ¢ =1, ..., 7. The second assumption on enlargements is

(1.3) For each concurreni relation R e there ewists an element b
of *W such that *(a, b) *e R for all a (in W) in the left domain of R.

In the remainder of the paper we assume given a fixed enlargement
(*U, *¢) of AL

If X and Y are sets, let F(X,Y) denote the set of all functions
from X to Y. If X, ¥ € U, then by (1.1), F(X,Y) € U; each f*« F(X,Y)
gives rise to an element *f of X, ¥) as follows. If e X, let *f(x) be
the unique element y of ¥ such that *(»,y)*ef. The existence (and
uniqueness) of ¥ follows from (1.2). The evaluation of *f at # corresponds
to the operation *ap in [2]. When there is no danger confusion we write f(z)
instead of *f(x).

I X,Yeq, then it follows from (1.2) that the correspondence

(x, y) ="z, y) gives a bijection X ><Y—>(X X ¥Y). We shall make the
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practice of identifying these two sefs under this correspondence, and in
fact shall do & similar thing for iterated Cartesian products.

We understand that every group (@, -) shall be such that G e
(hence by (1.1) such that -e W). The set @ will be given the group oper-
ation induced by that on G.

Similarly we understand that every space (X, J) shall have X ¢ U
{(hence JeW). If a ¢ X, then the monad of a is u(a) = px(a) =\ {V:
aeVel}CX. )

2. Definition of the homology theory. Let @ be a fixed abelian group,
which we will use for coefficients. If X is a set, let G.X denote the abelian
group of all functions u: X —@ such that u(z) = 0 for all but finitely
many z in X. If g ¢ @ and @ ¢ X, then gz denotes the element of G.X whose
value at  is ¢ and whose value elsewhere is 0. If f: X »Y is a function, .
there is a unique homomorphism Gf: GX —+GY such that (Gf)(gz) = ¢(fz)
for all ge @, # ¢« X. In this way, G(:) is a functor from sets to abelian
groups.

Now we define a functor C(+) = C(-; @) from sets to chain complexes
by letting Cu(X) = GX"* for n>0 and COn(X) = 0 for n < 0. The dif-
ferential d: On(X) —Cp_i(X) is given as usual by

a(g(@gy ey Tn)) = N (1) g(@gy ooy By oy @) for w>0.
i=o

If f: X+ is a function, then O(f) is given by On(f) = 6™ for n > 0.

Next, we get a functor ¢ (-) from sets in U to chain complexes by
letting 0n(X) = (Oa(X)) The differential in {/(X) is induced by thab
in 0(X) (see the preceding section for induced functions). The fact thab
we indeed get a differential follows immediately from (1.2). Similarly,
iff X —Y¥ is a function (in W), the induced chain map 0(f) is given by
Culf) = *(Onl(1)-

Using @‘(~), we define a functor C(-) from spaces (in “U) to chain
complexes. Tf X is a space, an “n-simplex? (&, ..., #a) ¢ X*** will be
called infinitesimal if {®,, ..., #x} is contained in the monad of some point
of X. If n > 0, let Cu(X) be the subset of (4(X) consisting of all » such
that if oe X" and u(o) # 0 then o is infinitesimal. Let Ca(X)=0
for # < 0. The following lemma allows us to consider C(X)= (Cu(X))
as a sub chain complex of 0/(X) and to define induced chain maps by
rastriction.

2.1. Lemyma. If X is a space, then (a) Cn(X) is a subgroup of Ca(X),
and (b) the differential of C(X) maps Cn(X) into On—o(X). (¢) If f: X>T
is a continuous map, then On(f) maps Ou(X) into Cu(¥).

Proof. We prove these three statements by informal application
of (1.2).


Artur


24 M. C. McCord

(a) We have the following true statement in W: “If u, v € On(X),
oe X and (u-t7)(0) # 0, then u(s) # 0 or v(o) 7= 07 Then from (1.2)
we geb the statement: “If u, v e Gu(X), 0 € X™, and (u=2)(0) 5 0, then
u{c) # 0 or v(0) 7 0”. From this we conclude immediately that 1f U,
e Cp(X) then utve Cu(X).
(b) By a similar “transfer” we get the statement: “If u e On (X )
(Zus +rvy Tnm1) € X, and (du) (@, -, Fn-1) # 0, then there exXigts (Yo, -ry Yn)
X””‘1 such that (Yo, -y Yn) # 0 and {#gy <y ns} C {Yay oor Yu}". From
this it follows that if u e Cu(X) then du e Cps(X).
(c) Suppose u € Ca(X), (Yo, - ¥n) € ¥+, and On( ) (e )(f’/m -y Yn) # 0.
By transfer, we see that there must exnt (Bgy +vy Tn) € X™*' such that
U(&gy ooy @n) 0 2N (Yoy s Yn) = ([Bay ey fiOn)- Smce U(®yy «ey Pn) # 0,
there exists @ ¢ X such that {z, ..., #.} C p(a). Bub since f is continuous
ab a, we have f(u(a)) C u(f(a)) (see [3] or [2]). Hence {¥o, ..., ¥n} C p(f ().
This ecompletes the proof.
Thus we have the functor C(-). For single spaces the homology
groups we are after are given by

HoX; @) = Ha(O(X) -

For pairs of spaces we do the customary thing, but we must be a little
careful. Let (X, A) be a pair of spaces and let i: A +X be the inclusion
map. For each n, Op(i): Cp(d)->0n(X) is injective. By transfer C’n( ) 18
i_x_ljeetive, and by restrictlon Ou(i) is injective. This allows us to identify
C(A) with a sub chain complex of C(X) and we define

Hy(X, 4; 6) = HoO(X)[0(4)

Wiﬁh the ﬂobvious definition of induced homomorphisms. Since C(@)
CC(F)=0=0, we can identify H,(X,d; &) with H,(X; @).

For each pair (X,.4) of spaces we get, by the above, a short exact
sequence of chain complexes

0>0(4) ~C(X) ~0(X)[0(4) >0,

hence a homology exact sequence with an (obviously natural) homology

boundary. operator. It is easy to see that this short exact sequence splits
if A is closed. .

3. The homotopy axiom. Under a standard construction of the set R

of real numbers, it follows from (1.1) that R ¢ U, hence also I € U, whére

=[0,1]. The homotopy axiom is a consequence of the following
proposmon

3.1. ProposrmioN. If fy,fi: (X, A) (Y, B) are homotopic maps,

then the chain maps from C(X)|C(4) to C(X)/C(B) induced by fo and f,
are chain homotopic.
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Proof. Let h: (X, 4)xXI—(Y,B) be a homotopy from f, to f,. For
each positive integer m and each integer n, define a morphism
D(M)

(On(X) ’ Cﬂ(A))‘L(On«H( Y), Gu—H(B_))

by letting DI =0 if n< 0 and for n >0 letting DS be the unique
homomorphism whose value on a generator g(wy, ..., #») of Cn(X) is

3 5 el ), ol 2 o ), i )

7=1 1= 0

Tt is straightforward to calculate that D™ = (Df”) is a chain homo-
topy from C(f,) to O(fy). Now let m be an infinite positive integer (an
element of P—P where P is the set of positive integers). By transfer,
we get a chain homotopy D™ = (D) from ((f)) to C(f,) with the
following property:

I n>0, we On(X)[ue On(4)], e 7%, and (D{Pu)(z) # 0, then
there exist (Zp, ..., @) in X" [in A", t, ¢/ eI, and 4 €{0, ..., n} such
that u(2g, -.iy #n) 7 0, [t—1'| = 1jm, and 7= (h(wo, 1)y ey B(21, t) h(mi, 1),

oy h{@a, 1))

Tt follows easily then that DJ® maps (Cu(X), Cu(4)) into (Cati(¥),
Cni1(B)). Passing to quotients, we get the required chain homotopy.

3.2. Remark., This proposition (and its proof) can be generalized
by replacing the triple (I, 0,1) by any triple (K, a, b) where K is a con-
nected compact Hausdorff space and {a, b} C K. For the extra ingredient
gee the proof of 5.2.

4., Excision. Recall that for any pair (X, 4) of spaces we have agreed
to identify C,(A) with a subgroup of Cp(X) uhder the monomorphlsm C(3)
induced by the inclusion 4¢: 4 —X. Let us alse 1dent1fy G,,(A) with a sub-
group of Cr,,( ) under the monomorphism Oa(i). The excision axiom
follows from

4.1. PROPOSITION. Suppose X is a space, X, and X, are subspuces,
X, is closed, and X = int X, v int X,. Then the chain map

O(X)[C(X, ~ Xy) T (X)/C(Xy)
induced by inclusion is an isomorphism.

Proof. Let X, = X, n X,. Considering all the groups Ou(Xo), (X)),
Un(X,) a8 subgroups of G,,(X ), we need only show two things: (a) On(Xl)
A Cn(Xy) C Cn(Xy), and (b) Cu(X) C Cu(Xy) + Cn(Xo)-

Proof of (a). Suppose ueCn(X;) » Cn(X,). By transfer, we see
then that % € Cn(X;). To show further that % € Cu(X,), SEPDOSE (%o, -+, Tn)
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# 0, where {7, ..., 2n} C X, Since e COn(X,), there exists be X, such
that {Z, ..., #n} C p(b). It suffices to show thab beX,. But if b e X-X,
then since X, is closed, u(b)C (X—X;)=X—X;, so that {%gy wvey Tn}
C X-—X,, which is a contradiction.

Proof of (b). Suppose v e Un(X). By transfer, we get the existence
of an element % of Cy(X,) such that u(@g, ..., Tn) = 0(%, ...y Zu) for all
(Tgy -y Zu) In X" Choose such a . First we claim that u e Cn(X,). For
suppose {Zg -y a:n}CfYI and (g, ..., @) # 0. Then v(%, ..., ¥) # 0, 80
there exists @ ¢ X such that {zy, ..., #a} C u(a). If @ were not in X then
we would have {&, ..., &} C u(a) C(X -X)ycx —X%,, a contradiction.
Thus we have shown that u e Ca(Xy).

For the remainder, it suffices to show that v—u e Cn(X,). S0 suppose
that {Zgy -, 2} C X and (v—u)(@o, ..., ) 7 0. Since u and v agres on X,
some z; must be in X —X;, and v(%y, ..., @) # 0. Since v e On(X), there
exists @ ¢ X such that {, ..., o} C pl{a). Now a eintXy; otherwise, by
the hypothesis of the proposition, & ¢ int X, , and we would have {@, ..., ¥}
C (@) C (int X C Xy, Thus {@y, .., @} C p(a) C (inb X,) C Xy, and the
proof is complete. :

5. The dimension axiom. Behavior of H, For any space X we have
the augmentation e: Cy(X)->G given by &(Zigi(ai)) = Zigs. This induces
homomorphisms from 0,(X) and C,(X) into & which we still denote by e.
The following proposition shows that the dimension axiom holds for our
theory and that its coefficient group is G (not @).

5.1. ProPoSITION. If X is a one-point space then the following sequence
18 exact: .

0@ et Ty X) <2 T X) < ...

Proof. The sequence

0@ < Oy X) < O X) <2 ..
is exact, by a familiar calculation. Hence, by transfer, so is the sequence

0Bt Py X) <2 Ty ) <2 ..

But (a(X) = Ca(X) for all n.

5.2. PrOPOSITION. If X is a mon-empty, conmected, compact, Haus-
dorff space, then Hy(X; @)~G.

Proof. It suffices to show that the sequencek
0+— G Ty X) < Cy(X)

is sz{,et, The only non-trivial part is that kers C imd. Let N’ be the set
of neighborhoods of the diagonal 4 in X xX. We claim:

~
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(3.3). If UelN, zeGy(X), and e(z) = 0, then there exists ¢ e Cy(X)
such that de = 2z and such that ¢ is U-fine in the sense that c(zx,y) # 0
implies (z,y) e U.

Let U e N be given, and choose a fixed point a of X. Since the set
of U-fine 1-chains is a subgroup of 0,(X), (5.3) is implied by the following
statement: For each b e X and each g ¢ @ there exists a U-fine 1-chain ¢
such that dc= g(b)—g(a). But this is easy to see from the connect-
edness of X. )

Let u(d)={V: VeXN}. By [2], p.18 (cf. also [3], p. 90), there
exists U e N such that life u(4). Fix such a U. Suppose now z e 0o(X)
and &(z) = 0. Then by (5.3) and fransfer, there exists ce {(X) such
that dec =z and such that ¢(z,y) # 0 implies (z,y) e ﬁ'C#(A). But it
follows from Robinson’s characterization of compactness ([3], p. 93) that
every 1-simplex (#,9) in u(4) is infinitesimal, so that ¢ € 0y(X), and the
proof is complete. . !

Remark. Every homology theory is finitely additive [1], so 5.2
allows us to determine Hy(X; @) for any compact Hausdorff space with
a finite number of components.

6. Questions. Since our homology groups have a definition that
bears a resemblance to that of Vietoris homology (and Alexander—Spanier
cohomology), and since the 0-dimensional group looks at components
instead of path-components, one is led to ask:

(6.1). What is the relation of Ha(:; &) to Cech homology?

(6.2). What sort of inverse limit continuity does Hy(-; G) enjoy?

Tn view of the fact that our theory does satisfy the exactness axiom,
and in view of the continuity-versus-exactness problem ([1], p. 265) for
homology, one might at first wonder how positive responses to (6.1)
or (8.2) could be possible. But the counterexample given in [1] does not
appear to work for our theory (for any ). It applies to a theory whose
coefficient group H,(pt) is the integers Z. It depends on the fact that the
limit of the inverse system of (vertically written) exact sequences

0<——0«—0«— ...
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is not exact. But the coefficient group Hy(pt; Z) for our theory is 2; and
it turns out, interestingly, that the limit of the system corresponding
to (6.3) (with Z replaced by Z) is exact.

Tt is clear from §§ 2—5 that for each abelian group & we get a co-
homology theory for closed pairs with .

HY(X, 4; 6) = H"[Hom (C/(X; 2)[0(4; Z), @) -

(6.4). What is the relation of this theory to Cechi cohomology?
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The product of certain measurable spaces

by
Christopher Todd (Bolton, Conn.)

Let X and Y be topological spaces and let §(X) and §(¥) be the
o-rings of Baire sets of X and Y respectively, i.e. the ¢-rings of subsets
generated by the compact Gs sets of X and Y. §(X) x 8(¥), the cartesian
product of S(X) and S(Y), is the o-ring of subsets of the topological
product X X ¥ generated by the family & = {EX F| Ee8(X), F e 85(Y)}
of subsets of X x Y. It is a well known fact that for locally compact
Hausdortf spaces X and ¥, S(X)x §(¥)= 8(XxX). It is the purpose
of this note to examine the corresponding situation for the o-rings Z(X)
and wb(X) generated respectively by the zero sets and the closed G, sets
of X. Following Berberian [1] we will call the elements of wh(X) the
weakly Baire sets of X. In the following sufficient conditions on the product
X %Y and on the spaces X and ¥ will be given to insure that Z(X)x
Z(¥)= Z(X xY) and that wh(X)Xwb(¥)=wb(X xY). In the latter
case the results give a partial answer to a question posed by Berberian '
(11, p- 183). ‘ '

Definitions and notation will be introduced as they become necessary.
All topological spaces under consideration will be assumed to be com-
pletely regular and Hausdortf. The Stone-Cech compactification of such
a topological space X will be denoted by SX.

A subset Z of a topological space X is said to be a zero set of X if
there exists a continuous real valued funetion f on X such that Z = Z(f),
= {zeX| f(x) = 0}. Tt is obvious that f may be so chosen such that
0 < f(x) <1 for every @ in X. A subset of X is called a co-zero set if it
is the complement of a zero set of X. Since X itself is always a zero set (and
a co-zero set), the o-ring Z(X) is in fact always a o-algebra. It follows
that Z(X) is generated also by the co-zero sets of X. Similarly, since any
topological space is a closed G5 set we have fhe same situation for the
o-ring wh(X). Every compact G set in a completely regular Hausdorff
space X is a zero set and every zero set is a closed G so that for these
spaces we always have the relation §(X)C Z(X) C wh(X). If a topo-
logical space X is normal then every closed G; set is a zero set so that
in this case wb(X) = Z(X). '
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