Countable ‘dense ‘homogeneous spaces

by
Ralph Bennett (Auburn, Ala.)

1. Introduction. This paper is devoted to the study of topological -
spaces which are countable dense homogeneous (defined below). A first
countable connected space with this property is homogeneous and a metric
continuum with this property is necessarily decomposable, not irreducible
between any pair of points and has no cut points. Although manifolds
are countable dense homogeneous, this property does not characferize
manifolds as the universal curve also has this property. A proof that the
universal curve is countable dense homogeneous is obtained here as
a result of a theorem which shows that many spaces are countable dense
homogeneous. The paper concludes with statements of some open
problems. .

I thank Professor Ben Fitzpatrick for suggesting the problem of
deciding whether countable dense homogeneity characterizes manifolds
and both Professors Fitzpatrick and Ralph Ford for stimulating con-
versations which were held while I was working on this problem.

2. Basic properties. A topological space X is defined to be countable
dense homogeneous if it is separable and for any two countable dense
subsets M and N of X, there is a homeomorphism % of X onto X such
that h(M) is N,

THEEOREM 1. A countable dense 'homogemous connected space X satisfying
the first amiom of countability is homogeneous. ’

Proof. Let # be any point of X, Denote as M the set of all pointsy
of X such that there is a homeomorphism % of X onto- X taking z to y.
Suppose first that neither I nor X—M is dense in X. Then there is
a countable dense subset A u B of X such that A is a subset of
int(el(M)) ~ M and B is a subset of X —cl(H). Because X is connected,
there is. a point 2 in bd(X —clL(M)). Then {g} v A v B is countable: and
dense and some homeomorphism kb of X onto X sends {¢} v 4 < B onto
A U B. But clearly h(4) is a subset of 4 and h(B) is a subset of B and k(z)
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could not be in either 4 or B. So either M is dense or X —M is denge,
But if M is dense, M must be all of X since if z is any point of X ¢ne
could take a countable dense subset M, of M onto M, v {2} and 2 woulg
be in M. Similarly, if X —M is dense, then M is empty. But M containg ,
8o M is all of X and X is homogeneous.

Remarks. One needs the assumption that X is connected in
Theorem I because non-connected spaces such as the union of a 2-sphere
and a disjoint simple closed curve are countable dense homogeneous
but not homogeneous. The hypothesis that X satisfies the first axiom
of countability is used only to ensure that every dense subset has a count-
able dense subset. There are separable spaces which do not have thig
property. However, I do not know whether there is a countable dense
homogeneous space with a dense subset which is not itself separable.

As an immediate consequence of Theorem 1 and the well known
theorem that every continuum has at least two non-cut points, one has
that a countable dense homogeneous continuum has no cut points.

THEOREM 2. A countable dense homogeneous metrie continuum X is
not irreducible between amy two of its poinds.

Proof. Let p be any point of X. It is well known that the composant
X(p) of X generated by p is dense in X. (See [51, pp. 208-209, for in-
formation about composants.) Let ¥ be a countable dense subset of X (p)
containing p. If ¢ is any point of X not in X (p), then there is a homeo-
morphism of X onto X taking ¥ onto ¥ U {g}. But X is irreducible
between two points of ¥ U {g}, and not irreducible hetween any two
points of N, which is absurd. )

Because a non-degenerate indecomposable continuum is irreducible
between two of its. points, ([5], p. 213), a countable denge homogeneous
metric continuum eannot be indecomposable. It is known [3] that the
pseudo-are isz homogeneous. Therefore, the class of countable .dense

homogeneous metric continua is a proper subelass of the class of homo-
geneous metrie continua. . ’

3. A condition implying countable dense homogeneity, Define 2 topological
space X to be strongly locally homogeneous it for any point « of X and
open set U containing # there is an open set V containing # such that
if y is in V then there is a homeomorphism % of X onto X such that h(z)
is y and h(z) = 2z if 2 is not in U. Loecally euclidean Spaces are the most
obvious examples of strongly locally homogeneous ‘spaces.

TEEOREM 3. Suppose X is a locally compact separable metric space

and X is strongly locally homogeneous. Then X is countable dense homo-
geneous. ’
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Proof. We may assume the metric d on X is such that each sphere
S(x, ey of radius less than 1 has a compact closure, since X is locally
compact. By assumption X is separable. Let M and N be two countable
dense subsets of X,

A sequence iy, hy, ... of homeomorphisms of X onto X will be con-
structed such thab hy, ks, ... converges uniformly to a homeomorphism %
of X onto X taking M onto N.

The theorem is trivial if X is finite. Assume X is infinite. Denote
the members of M as p(1),p(2), .. in a sequence without repetitions.
Denote the members of N as g¢(1), ¢(2), ... in a sequence without re-
petitions. » )

Suppose a is a positive number less than 1/4. The homeomorphism &
will be constructed so as to move no point more than a. Let £(1) and (1)
be positive numbers such that 1. e(1) < a-27" and 2. if # and y are two

" points of S(q(l), y(l)), then there is a homeomorphism of X onto X

leaving every point of X —8(g(1), (1)/2) fixed and sending x to y. Let
n(1) be the smallest positive integer j such p(j) is in S(g(1), y(1)) . There
is a homeomorphism f, of X onto X such that 1. fi(p(i)) is'in ¥ if i <n(1),
2. for some integer j such t-ha,’Q 1<j<n(), filp(h)is g(1), 3. if z is not
in {J {8(p(1), £(1)/2): i <n(1)}, then fy(z) =z and 4. if = is m X, then
d(z, fi(x)) < (1). Denote as K (1) the compact set cl(U{S(p'(z), £(1)/2):
1<i<n(1)}). The homeomorphism f; can be obtained in nf) more
than n(1) steps by first sending p(n(l)) to ¢(1) and 1.3hen sending Fhe
remaining p(i) into N with functions leaving ¢(1) fixed and moving
points appropriately small distances. . »
Because S(K (1), (1)/2) has a compact closure? there is a positive
number 8(1) such that if # and y are any two points of X such that
- afu(@ = 6(1).
dm’ﬂf '1'2(1)’];;1 irllxe (sfrl:((la.)ll,gs]éygositiée)integer j such that ¢(j) is not in
filp (8): $<m(1)} Let &(2) and y(2) be positive numbt-ers ?ueh that
1. e(2) < a-27% 2. e(2) < 6(1)-27%, 3. £(2) < dlglr(V)), {ulp(D)) Hi< a(1)}),
and 4. if  and y are two points of S(¢(r(1)), y(2)), then there is a homeo-
morphism of X onto X leaving X —S(q(r'(l)) ,;8(2)/2) fized, and send-
ing z to y. Let n(2) be the smallest positive mt.eger greater tha,lxlli n(1)
such that f,(p (n(2)) is in S{g(r(1), y(2)). There is a homeomorphism f,
of X onto X such that 1. fofy(p(i)) is in ¥ if (1) <i< n(z?, 2. .for some
integer j such that n (1) < j << #(2), fgfl(p (5)) is q(lr(l)), 3. if # is not m
U{S{Ai(p @), e@)f2): n(@) < i< n(2)} then fi(w)=2 and a.lsg fz_]];}(pi?()a
=fi(p(i) it i <n(1) and 4. if # is in X, then d{falm), x) < .s(._,). e;n
as K(2) the compact set cl(U{S( (), s(l)/Z): n(l) < i< n(2) })
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There is & positive number -6(2) such that if d(@,y) =27"
d(fafil), ffuly)) = 0(2).

In the same way one can construct’ continuations of the sequences
begun above and obtain a positive number sequence e(1),8(2), ..
a positive integer sequence r(1), 7(2), ..; & positive integer sequence
n(1), n(2), ...; & positive number sequence 6(1), 6(2),...; & sequence
of compaet subsets of X, K(1), K(2), ...; & sequence of homeomorphismg
of X onto X,fi,fs -5 and a sequence of homeomorphisms of X onto
X, hy, ko, ... such that the following conditions are satisfied for each
integer % greater than 2:

1. ke is fiy by 18 foft and kg is fi ... fofi-
2. &(k) < a-27% ’
3. e(k) < 8(j)-27%" for j < k.

, then

4. r(%k) is the smallest positive integer j such that ¢(j) is not in
{he(p()): i < n(k)}. :

5. qlr(k)) is in {hesa(p ()): n(k) < i <n(k+1)}, which is a subset
of N.

6. If # is not in K(k), then fi(z) == and if i< n(k—1), hk(p(i))
= hk—l(? (‘i)). » - .

7. X o is in X, then d(fu(), 2) < &(k).

8. It d(z,y)> 27", then dlhu(z), haly)) > (k).

Because each f; moves no point more than a-z"j, the sequence

hy, by, ... converges uniformly to a continuous function % from X into X.
We need to see that A(X} is X, h has a continuous invergse, and & (M) = N.

By properties 4, 5 and 6, each g(j) is in some set hx(M) and is left fixed

by hm‘ for.m> k. So k(M) contains N. By properties 5 and 6, the con-
struction is clearly such that k(M) ix a subset of N. Therefore, & is one-
to-one from M onto N. ‘

Essentially the same argument can be used twice to show that h
takes X onto X and that b i3 a closed function. Suppose # is in X. There

is a sequence g(i(1)), g(t(2)), ... converging to x such that d(w, g(t(j)))
<< 1/4 for each positive integer j. For each positive integer j there is only
one integer g(j) sueh that h(p(s(j))) = ¢(t(j)). Since h moves no point
more than 1/4, d(w, p(x(j))),<1/2. Beeause S(z,1/2) has a éompa,ct
elosure, some subsequence p(s(m(l) ) , p[s(m(Z))) ) .. COLverges to a 'point
z of X. Since & is continuous, & (z) = . Therefore, L takes X onto X.
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Suppose that F' is a closed subset of X and y is in cl{h(F)). There is
a sequence z(1),®(2), .. in F such that h(z(1)), h(z(2)),.. econverges

to y and d(h(m(j)),y) < 1/4 for each positive integer j. Sinee h moves
no point more than 1/4, and S(y,1/2) has a compact closure, some sub-
sequence z(m (1)), #(m(2)), ... converges to a point z of F. Since h is

continuous, h(z)=y and g is in A(F). Therefore, h is a closed

function.

Next, we must see that h is one-to-one. Suppose x and y are two
points of X. There is a positive integer k such that 27 < d(z,y). Then
a{hxl(@), ha(y)) = 8(k) by property 8. But for each positive integer j, fi+s
moves no point as much as 2771 5(k) and so dh(x), hk(-r})<(5(7:}/2
and cl(h(y), hk(g/)) < §(k)/2 and it cannot be that h{x) = R(y).

Finally, we have that h is one-to-one, onto, continuous, closed and
takes M onto N and the theorem is proved.

THEOREM 4. The 1-dimensional universal curve in E3 is countable dense
homogeneous.

Proof. R. D. Anderson showed ([2], p. 15) that this curve is strongly
locally homogeneous.

THEOREM 5. The following statements are equivalent for a1-dimensional
locally connected metric continuum M: 1. M is a simple closed or auniversal
curve. 2. M is homogeneous. 3. M is countable dense homogeneous.

Proof. It was shown by Anderson [1], [2] that statement 1
is equivalent to statement 2. Theorem 1 shows that statement 3
implies statement 2. Theorems 3 and 4 show that statement 1 implies
gtatement 3. :

4. Open problems. The problems listed below are not yet solved,
as far as I know. They indicate that there is still some very basic
work to Dbe done in the study of countable dense homogeneous
spaces.

Is every countable dense homogeneous continuum necessarily loeally
connected? (This question was asked by Ben Fitzpatriek.)

Is every countable dense homogeneous continuum necessarily # - homo-
geneous for every positive integer n? (See [4] for a definition of n<homo-
geneous.)

Is the property of being countable dense homogeneous preserved
in products? If so, this would provide one with examples of n - dimensional
non-manifolds which are countable dense homogeneous continua for
n = 1. It might be easier to resolve the question for particular products,
such as the product of a finite number of simple closed curves and universal
curves,
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Remarks on a paper by Bernstein

by
H. Gonshor (New Brunswick, N. J.)

A. Bernstein [1] introduced the concept of D-compactness. We note
here how the concept can be expressed in a convenient equivalent form
so that the analogue of the Tychonoff theorem becomes immediate.
In addition, other kinds of compactness suggest themselves.

Let D be a non-prineipal ultrafilter on the set I of positive integers,
and let AT be the Stone-Cech compactification of I regarded as a discrete
space. Then I v {D}CgI. Then definition 3.1 on page 187 in [1] says
that # is a D-limit of (m> precisely when the mapping I v {D} =X such
that f(i) = ; and f(D) = » is continuous. Thus definition 3.2 on page 188
in [1] is equivalent of the following:

X is D-compact if and only if every map I-+X can be extended to
a continuous map I v {D}—~>X.

In general let A CB be two topological spaces. Call a space X,
(4, B)-compact if every continuous map from A into X can be extended
to B. By considering projections, it is immediate that any product of
(4, B)-compact spaces is (4, B)-compact. (A, B)-compactness is most
interesting when A is completely regular and B is a subspace of the
Stone—Cech compactification of A. In this case all compact spaces are
(4, B)-compact.

Definition 3.3 on page 188 in [1] says X is ultracompact if and only
if X is D-compact for every D. By an exercise 6H in [2], .95, if a map
from T into X can be extended to a continuous map Iw{D}-+B for
every D, then it can be extended to pI. The converse is obvious. Thus
ultracompactness can be expressed in the following form: X is ultra-
compact it and only if every map I-+X can be extended to a continuous
map I —>X. This finally suggests the problem of studying (4, BA)-com-
pactness where A is some well-known completely regular space other
than 1.
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