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Concerning first countable spaces*

by
G. M. Reed (Aubum, Ala.)

By a-development for a topological space § (all spaces are to be T)
is meant a sequence G, ., .. of open covers of § such that for each
point p of § and each open set D containing p, there is a positive integer n
such that each element of @, containing p is eontained in D. The statement
that the development @ = (6, Gy, ...) for the space § satisfies Axiom C
ab the point p of § means that if D is an open set containing p then there
exists a positive integer n such that each element of G, interseeting an
element of @, which contains p is contained in D. A regular developable
space is a Moore space. A Moore space S is metrizable if and only if it
has a development which satisfies*:Axiom C at each point of § [14]. -
There has been considerable work done in [18], [6], [7], [15], and [17]
concerning Axiom C and the existence of dense metrizable subspaces in
Moore spaces. -

In part T the anthor establishes necessary and sufficient conditions
under which first eountable spaces have dense developable and dense
metrizable subspaces. The statement that the subset 3 of the first
countable space § is developable (C-developable) in § means there is
a sequence G, &, ... of open covers of § such that (1) for each point z
of M and open set D containing 2 there is a positive integer n such that
each element of G, containing 2 (each element of @, intersecting an ele-
ment of @, containing ) is contained in D and (2) for each point p of S
there exists a non-increasing sequence g;(p), g(p), ... of open sets in §
forming a local base at p such that for each positive integer 4, gi(p) is an
element of Gy.

A firgt countable stratifiable space (a Nagata space [4]) is a ¢-space
(a regular space with a o-locally finite network) [107. A first countable

* The work on this paper was done under the direetion of Ben Fitzpatrick, Jr.
at Auburn University. The author would like to acknowledge the many helpful sug-
gestions of the referee. Also, the author has recently learned that the fact that each
Nagata space has a dense metrizable subspace has been independently discovered by
U. J. Christian at the University of Houston.
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o-space is a first countable semi-stratifiable space (equivalently a semi-
metric space) [5]. The Ifollowing theorems are established: (i) Rach
semi-metrie space has a dense developable subspace. (ii) Each first count-
able o-space § has a dense subset which is developable in § (hence
a Moore space). (iii) Each Nagata space S has a dense subset which is
C-developable in § (hence metrizable).

In part II a question raised by Heath in [9] is answered. In [8] Heath
gave an example of a paracompact semi-metric space which is not a Na-
gata space. In [9] he asked for a necessary and sufficient condition for
a semi-metric space to be a Nagata space. Liutzer in [12] gave an answer
to this question with the concept of %-semi-stratifiable spaces. He showed
that a first countable semi-stratifiable space is stratifiable if and only
if it is k-semi-stratifiable. However, each k-semi-stratifiable space is
& semi-stratifiable space. Borges in [2] defined wa-spaces which have
proved extremely useful ([2], [3], and [11]) in exploring the relationships
between M -spaces, semi-stratifiable spaces, and Moore spaces. The
author defines a more general class of spaces called wd-spaces and proves
that a paracompact semi-metric space is a Nagata space if and only if it
is & wd-space. ‘

I. Notation. (i) The letters 4, j, m, n will be used exlusively to
denote variables with integer values. (ii) st(x, &), where z is a point
and @ is & collection of point sets, will denote {g in G| in g}*. (iii) If M is
a subset of the space S, CL(M) will denote the closure of A/ in S.

DEFINITIONS. (i) A collection U of subsets of the space S is discrete
provided that for each point p in S there exists an open set containing p
which intersects at most one element of U. (ii) A subset K of the space
8 is diserete provided that no point of § is a limit point of K. (iii) A sub-
set K (subspace K) of the space § is o-diserefe provided that K is the
union of countably many point sets each of which has no limit point
in § (in K).

Remark 1.1. Consider the space X such that the points of X are
the points of the real line and define a basis B for X such that (1) if # is
irrational then {z} is in B and (2) if » is rational and ¢ is a positive integer
then the segment (with respect to the topology of the real line)
(#—1[i, z+1/i) is in B. X is a regular first countable space such that
I={r in X| r is irrational} is a dense metrizable subspace of X but no
dense subset of X is developable in X. In [17] the author gave an example
of a Moore space § which has a dense metrizable subset but for which
there exists no development for § satisfying Axiom C at each point of
a dense subset. If follows that this space S has a dense metrizable subset
which is developable in § but there exists no dense subset of § which is
C-developable in 8.
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Leyma 1.2. If K is a discrete subset of the first couniable space S then
K is developable in 8.

Proof. For each point p of §, let 0:(p), go(p), ... be a non-increasing
sequence of open sets in § which forms a local base at p and which is
such that g,(p) contains no point of K other than (possibly) p. It is easy
to verify that G, @,, ..., where for each i, Gi= {g(p)| p in 8}, is a sequence
of open covers of 8 with the desired properties.

Leava 1.3, If K is a subset of ihe regular first countadle space S and
there exisis a discrete collection U of open sets in § such that U covers K
and each element of U contains only one point of K, then K is ¢ -develop-
able in 8.

Proof. For each points p of 8, let 0(p), g2(p), -.. e a non-increasing
sequence of open sets in § which forms a local base at p. Consider the
following defining process: (1) For each point P in S, let gp= gi(p) for
some 7 > 1 such that: if p is in K, CL(gi(p)] is contained in an element
of U5 if p is in §—K and p is in CL(g}) for some z in K, g(p) is contained
in an element of U and g¢(p) n K = @; if 2 is not in CL(g:) for some x
in K, g«(p) ~ {gz| ® in K}* = @. (2) For each point p in 8, let gp = gi(p)
for some 4 >2 such that: if p is in &, CL{gi(p)) Cgb;if pis in S—K and
p is in CL(gz) for some z in K, g(p) C g& and 94p) C gp; it p is not in
CL(g3) for some  in K, gi(p) C gp and gi(p) ~ {g3l  in K} = @. Continue
this process such that if n > 2 and p is a point of 8, then g, = gi(p) for
some ¢ > n such that: if p is in K, CL{g(p)) C g5™"; if p is in §—K and
9 is in CL(g%) for some z in K, gi(p) C g5~ " and g:p) C gy % if p i8 not
in CL(g3) for some = in K, gip)Cg;™" and gi(p) » {¢%] © in K} = 0.

For each 4, let @Gi= {g;] » in 8}. From the construction it follows
that for each point p in 8, g3, g5, ... forms a non-increasing local base at p.

-Now suppose that p is a point of X and D is an open set in & containing p.

There exists an n such that g.(p) C D. Consider Gy.,. If p is in g2 for
some z in 8, then  is p. And if g3*" ~ g3 # O for some « in 8, then it
follows that g™ Cg%. Thus the sequence of open covers @, G, ... has

the desired properties.

Levwa 14, If K = LojKi s a subset of the first countable space S
i=1

and for each i, K is developable in 8 (C- developable in 8), then K is develop-
able in 8 (C-developable in S).

Proof. For each 4, let Gf, G, ... be the sequence of open covers
of § required for K; to be developable in § (C-developable in §). For
each n, let @, be an open cover of § which refines G where each of i and
J I8 <n. It follows that G, G,, ... has the required properties for K to
be developable in § (¢ -developable in ).

2%
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THEOREM 1.5. In a first countable space S the following are equivalent:

(i) 8§ has a dense o-discrete subspace.

(ii) 8§ has a dense developable subspace.

Proof. Suppose (i) is true. It follows from Lemma 1.2 and Lemma 1.4
that each o-discrete first countable space is developable.

Suppose (ii) is true. It follows from Theorem 18 (Chapter I) of [13],
that each developable space has a dense o-discrete subset.

THEOREM 1.6. In a first countable space S the following are equivalent:

(1) 8 has a dense o-discrete subset.

(ii) S has a dense subset which is developable in 8.

Proof. Suppose (i) is true. Then (ii) follows from Lemma 1.2 and
Lemma 1.4.

Suppose (ii) is true. Let ¢, G,, ... be a sequence of open covers of §
as required for the subset K to be developable in §. By an argument
similar to the one.given for Theorem 18 (Chapter I) of [13], it follows
that for each %, there exists a subset K; of K such that K; is discrete
in S and each point of K is contained in an element of G; which inter-

sécts K;. Thus K'= GK; has the desired properties.

i=1

Remark 1.7. A space § is screenable provided that for each open
cover @ of § there is an open cover H = | J H; of § which refines @ such
i=1

that for each 4, H; is a collection of mutually exclusive open sets. A space
§ has property J provided that if D is an open set in S then there exists
a sequence d;, d,, ... of open sets in § such that DC C»L(fjldi) and for
each {1, CL(d;) C D. In [17] the author proved that in a Moore. space § there
exists a development for § which satisfies Axiom C at each point of a dense
subset if and only if § has property J and a dense screenable subspace.
Theorem 1.8 is a generalization of this result.

TErOREM 1.8. In a regular first countable space S the following are
equivalent:

(i} 8 has property J and a dense meirizable subspace.

(ii) 8 has property J and a dense o-discrete, screenable subspace.

(i) 8 has a dense subset which is C -developable in 8.

Proof. Suppose that (i) is true. Let M Dbe a dense metrizable sub-
space of 8. Then M is screenable and has a dense o-discrete subset.
Thus (ii) is true.

Suppose that (ii) is true. Let K be 2 o-discrete, screenable sub-

space of 8. It follows that K = U K where for each i, K; is discrete

1=1
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in K and there is a collection T; of mutually exclusive open sets {with
respect to K) covering K; such that each element of U; contains only
one point of &;. Since K is dense in §, there exists such a collection U; of
open sets in S. For each point p of K, let g,(p), g{P), ... be 2 non-in-
creasing sequence of open sets in § which forms a loeal base at p such
that g,(p) i3 contained in the element of U; eontaining p. Note that for
each n, Hy, = {g2(p)] p in Ki} is & collection of mutually exclusive open
sets. Now for each %, there exists a sequence d7, dz, ... of open sets in §

such that H; C CL(|J d7) and for each j, CL(d}) C Hj. For each # and
i=1

each j, let ¥7 = {df ~ h| b in H,}. It follows that 7% is a discrete collection

of open sets in 8. Let T"= ] U V7 and let X; be & set eohta,ining one

n=]1j=1
point from each element of 1. K; is contained in CL(X;) and by Lemma 1.3

and Lemma 1.4, X; is C-developable in §. Thus X = B X; is dense

g=1

in 8 and by Lemma 1.4 is C-developable in 8. Thus (iii) is true.

Suppose that (iii) is true. Let K be a dense subset of § which is
C-developable in 8. Tt follows that K, regarded as spaces, is metrizable.
8§ also has property J. For suppose that D is an open set in §. Then K ~ D
is a dense subset of D. Denote by @, G, ... the sequence of open covers
of § required for K to be C-developable in 8. For each i, let K; denote
the set of all p in K sueh that each element of &; intersecting an element
of G; containing p is contained in D. And for each i, let di= {g in 64
g~ K; 5 0}, It follows that the sequence di,d,,... has the desired,
properties. This completes the proof.

THEOREM 1.9 (Heath [9]). The space 8 is a semi-metric space if and
only if for each point x of 8 there exists a non-inereasing sequence g,(x),
9:(T), ... of open sefs in S such that (1) ¢(x), go(x), ... i85 a local base at x
and (2) if y is a point of 8 and #,, &., ... is @ point sequence in S such that
for each n, y is in gu(xs), then &y, a,, ... converges to y.

TuroreM 1.10. If 8 is a semi-meiric space, then S has a dense develop-
able subspace.

Proof. By Theorem 1.5, it is sufficient to show that 8 has a dense
o-discrete subspace.

For each point p of S, let ¢,(p), gx(»), ... be a sequenee of open sets
in § as in Theorem 1.9. For each 4, let G; = {g;(p)| » in S}. Denote by
Q a well-ordering of the elements of §. For each j, let K; be the subset
of § such that: (1) The first element of K; is the first element of § with
respect to Q. (2) If I is an initial segment of K, then the first element p
of K;—1I is the first element of § with respeet to 2 such that g{p) n I =@
and p is not in gy(q) for g in I. (3) If K; is a subset of S having
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properties (1) and (2) then either Kj is K; or Kj is an initial segment
of K,'. o
It follows that K = | J K; is dense in S. For suppose that p is a point

i=1

of § and D is an open set containing p. There exists an » such that if
i = n, gi(p) is contained in D. Thus suppose that for i = n, gi(p) " K = @.
Then for each ¢ > n, p is in gi(¢;) for some ¢; in K;. If this were not true,
p would be in K; for some j. But by Theorem 1.9, the sequence ¢, gnt1, -..
converges to » and o is a limit point of K. This is a contradiction. Thus D
containg a point of K. i1

Now, let X; = K, and for each 4> 1, let X; = _Ki—(OL(jU1 X;) N Ky).

Sinee K is dense in § it follows that X = | | X; is dense in S. Consider X;

=1

for each i. By the definition of K;, no point of X; is a limit point of X;.
o0
And by the definition of X4, no point of [|J X; is a limit point of X;.

J=1i+1

i—-1
Thus if X has a limit point ¢ in X, ¢ must be in | JX;. But for each

j=1
i-1
point p in Xy, there exists an n such that p is not in g.(g) for ¢ in | JX;.
7=1
-1
If this were not true, the sequence ¢, g, ..., where for each n, g, is in | JX;
=1
and p is in ga(gs), would converge to p and hence p would be a limit point
i1 i—1
of \J X;. Thus for each n, let X} = {p in X| p is not in ga(g) for gin | X;}.
=1 j=1
Note for each #, X7 has no limit point in X.
i=1n=1

Thus X = lj GX? is a o-discrete subspace of S which is dense in §.

This completes the proof.

TrEEOREM 1.11. If 8 is a first countable o-space then S has a dense
subsel which s developable in 8.

Proof. Let ¥ = | J ¥: be a network for 8 such that for each 4, N; is
i=1

locally finite. For each i, let K; be a point set containing one point from
each element of Ni. It follows that for each ¢, K; is discrete in § and

K=¢U XK; is dense in 8. Thus by Lemmsa 1.2 and Lemma 14, K i
=1

a dense subset of § which is developable in S.

- TEEOREM 1.12. If 8 is a Nagata space then 8 has a dense subset which
is C-developable in 8 and which, regarded as space, is metrizable.

Proof. Heath has shown in [10] that each Nagata space is a ¢-space.
oo

Thus™as in the proof of Theorem 1.11, let K = | K: be a dense subset
i=1
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of 8 such that for each i, K; is discrete in §. Since each Nagata space
is paracompact [4] (hence eollectionwise normal), for each i, there exists
a diserete collection T7; of open sets in § covering K; such that each ele-
ment of U; contains only one point of K;. Thus by Lemmsa 1.3 and
Lemma 1.4, K is a dense subset of § which is C-developable in 8. And
since K (regarded as space) is a Moore space with a development which
satisfies Axiom C at each point of K, then K is metrizable [14].

H. TeeorEM 2.1 (Heath [9]). The space 8 is a Nagata space if and
only if for each point p of 8 there exists a sequence g,(p), go(p), ... of open
sets in 8 such that (1) g:(p), ga(p), ... is @ non-inereasing local base at p
and (2) if © is a point of 8 and R is an open set containing x then there exists
an n such that if ga(2) ™ ga(q) # @ for some point ¢ of 8 then g is in R.

DEFINITION 2.2 (Borges [2]). The space § is & wA-space it and only
if there is a sequence G, G,, ... of open covers of S such that if 2 is a point
of § and for each 4, p; is in st(«, G4), then the sequence p,, p,, ... has
a cluster point.

DEFINITION 2.3 (Hodel [11]). The space S has a G%-diagondl if and
only if there is & sequence G, G, ... of open covers of § such that for
any two distinet points 2 and y of §, there is an » such that y is not in
CL(st(z, Gn)).

THEOREM 2.4 (Hodel [11]). The following are equivalent:

(i) 8§ is a Moore space.

(i) 8 is a regular wA-space with a G5-diagonal.

DeFINITION 2.5. The space 8 is a wd-space if and only if for each
point p of § there is a sequence ¢(p), ga(p), ... of open sets in § each
term of which contains p such that if # is a point of § and for each 4, p, is
in st(z, G4) where G4 = {gi(p)| p in 8}, and gi(p:) ~ gi(x) + I, then the
sequence p;, P,, ... has a cluster point.

TreEoREM 2.6 (Compare with Theorem 2.1). If 8§ is a wd-space with
a Qf-diagonal then for each point p in S there exists a mon-increasing se-
quence g,(p), gx(p), ... of open sets in 8 such that (1) g.(p), g.(p), ... 15 a local

base at p and (2) if x is a point of 8 and R is an open set containing x then

there exists an n such that if q is in st(z, Gu), where Gn = {ga(p)] p in S},
and gu(q) ~ gala) + O, then g is in R.

Proof. For each point p in 8, let r(p), r(p), ... be a sequence of
open sets as in the definition of a wé-space. Let H;, H,, ... be a sequence
of open covers of § as in the definition of a G5 - diagonal. For each point p
in 8, let gy(p), go(p), ... be a sequence of open sets in § each term of which
contains p such that for each i, (1) g«(p) C ri(p), (2) gi(p) is contained in
an element of Hy, and (3) gip) D gars(p)-
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Now suppose that there exists a point # of § contained in the open
set R such that for each 4, ¢; is in st(z, Gi), where Gy = {gi(p)| p in 8},
gilg:) ~ gi(x) # O and ¢; is not in R. The sequence ¢, g», ... has a cluster
point y since S is a wd-space. y eannot be «, thus since § has a G5 - diagonal
there exists an # such that y is not in CL(st(z, Gn)). Thus there exists
an open set  in S such that % contains y and does not intersect st(z, Gy).
But st(z, G;) D st(z, Giya), for each 4. Which means that % does not
contain g; for i > n. Therefore y is not a cluster point of ¢, g,, ... and
this is a contradiction. It follows that part (2) in the statement of the
theorem is satisfied.

For each point p in 8, the sequence g,(p), gs(p), ... is & non-increasing
sequence of open sets. It also forms 2 loeal base at p. For suppose p is
contained in the open set R. From the above there exists an n such that
it  is in st(p, Gn) and gu(z) ~ gu(p) 5 O, then z is in B. If o is in gu(p)
then « is in st(p, @) and gu(z) ~ gu(p) # O. Thus gu(p) C B. This com-
pletes the proof.

COROLLARY 2.7. If 8 is a wd-space with a G - diagonal then S is a semi-
metric space.

Proof. Use Theorem 2.6 to satisfy Theorem 1.9.

TaeorREM 2.8. The following are equivalent:

(i) 8 is a Nagata space.

(i) 8 is a paracompact wo-space with a G3-diagonal.

Proof. Suppose that (ii) is true. For each point p of §, let g, (p),
g:(p), ... be a non-increasing sequence of open sets as in Theorem 2.6.
For each i, let G = {gi(p)] p in 8}. Since § is paracompact, for each i,
there exists an open cover H; of § such that if p is a point of § then
st{p, H;) is contained in an element of G;. For each point p of §, let
gip), g:(p), ... be a sequence of open sets in S each term of which con-
tains p such that for each 4, (1) ¢i(p) C ¢:{(p), (2) gi(p) is contained in
some element of H;, and (3) ¢gi+a(p) C gi(p). Now suppose that  is a point
of § and R is an open set containing x. There exists an n such that if p is
in st(x, Ga) and gu(p) N gal{x) 7= O, then p is in R. But if gj(p) ~ gulz) # @,
then p i3 in st(z, Gn) and ga(p) ~ gn(z) = @. Thus if gu(p) ~ gula) # O
for some point p in 8, then p is in R. Thus Theorem 2.1 is satisfied and
8 is a Nagata space.

Suppose that (i) is true. Then § is stratifiable and therefore para-
compact [4]. § also has a G§-diagonal since Hodel proved in [11] that
each regular semi-stratifiable spave has a Gf-diagonal. To see that § is
% wd-space, for each point p of § let gy(p), go(p), -.. be a sequence of open
sets as in Theorem 2.1. Without loss of generality, require that g;4a(p)
C gi(p) for each i. It then follows that if  is a point of § and R is an open
set containing z, then there exists an m such that if #.> m and ga(a) »
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~ galg) # O for some point ¢ in § then ¢ is in R. Thus suppose = is a point
of § and there exists a point sequence p,, p,, ... in 8 such that for each i,
pi is in st(z, G4), where Gi= {y:{p) p in S}, and gilps) ~ gi{r) = O. Then
x is a cluster point of p;, P, ... For if R is an open set containing ., there
exists an m such that if # > m then p, is in R. Thus § is a wi-space.

COROLLARY 2.9. The semi-melric space S is a Nagata space if and only
if it is a paracompact wo-space. '

Remark 2.10. A w-space is a wd-space. Thus it follows from 2]
and Theorem 2.8 that the class of wd-spaces contains the class of Moore
spaces, M-spaces, and first countable stratifiable spaces.

QuesTroN 2.11. Is a regular wo-space with a G-diagonal a o-space?
Or even must such a space S have a dense subset which is developable in 87
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