

152

seulement pour h>0 n'affaiblit l'hypothèse que d'un point de vue étroitement formal.

Notons encore que le théorème en § 2, que nous avons donné sous la forme de condition suffisante, est tout de suite ramené à la forme de condition nécessaire au moyen de la décomposition:

$$\frac{F(x+kh)-F(x-h)}{(k+1)h} = \frac{F(x+kh)-F(x)}{(k+1)h} + \frac{F(x)-F(x-h)}{(k+1)h} \ .$$

Ça suffit pour en déduire que l'existence de la dérivée k-pseudo-symétrique pour une valeur fixée de k>0 entraı̂ne son existence pour toute valeur positive de k.

Bibliographie

- A. Khintchine, Recherches sur la structure des fonctions mesurables, Fund. Math.,
 (1927), pp. 217-219.
- [2] U. Oliveri, Sulla derivata di Schwarz generalizzata, Rendiconti Circ. Mat. Palermo, s. II, t. XVII, f. II, (1968), pp. 217-225. (La démonstration est insatisfaisante).
- [3] G. C. Young, On the derivates of a function, Proc. London Math. Soc., (2) 15 (1916), pp. 360-384.
- [4] A. Denjoy, Mémoire sur les nombres dérivés des fonctions continues, Journal de Math., (7) 1 (1915), pp. 174-195.
- [5] S. Saks, Sur les nombres dérivés des fonctions, Fund. Math., 5 (1924), pp. 98-104.

Reçu par la Rédaction le 11. 12. 1970

Concerning product of paracompact spaces

by

R. Telgársky (Bratislava)

This paper is a continuation of [9]. It has 3 sections. Section 1 deals with absolute paracompactness (see [9], Section 3) for which a product theorem is proved (Th. 1.1). Section 2, based on an analysis of a construction of E. Michael ([6], Examples 1.4 and 1.5), treats of the property C'' (see [4], p. 527, Th. 5) and of some singular spaces. Section 3 contains some positive facts about the Hurewicz property (see [5], p. 209), e.g. that it is σ -additive (Th. 3.3), perfect (Cor. 3.11) and productive if at least one of the two factors is C-scattered (Th. 3.4 and 3.5).

The topological terminology is that of [1]. N denotes the set of all positive integers.

1. A Cartesian product of an absolutely paracompact space (see [9], Section 3) by a discrete space is absolutely paracompact. This assertion can be generalized as follows:

THEOREM 1.1. If X is a scattered paracompact space and Y is an absolutely paracompact space, then the product space $X \times Y$ is absolutely paracompact.

Proof. Let Z be a paracompact space such that $X \times Y$ is a closed subspace of Z. Let $\mathcal B$ be an outer base for $X \times Y$ in Z. We shall prove by transfinite induction over a such that $X^{(a)} = 0$ that $\mathcal B$ contains a locally finite covering of $X \times Y$ in Z.

If $X^{(0)} = 0$, then X = 0, and so the theorem is trivially true.

If $X^{(a+1)}=0$, then $X^{(a)}$ is a closed discrete set in X. Clearly, $X^{(a)}\times Y$ is closed in Z and absolutely paracompact as a free union of absolutely paracompact spaces. So \mathcal{B} contains a locally finite covering \mathcal{A}_1 of $X^{(a)}\times Y$ in Z. Since $(X\times Y)-\bigcup \mathcal{A}_1$ is closed in Z, it is paracompact. Now it is sufficient to prove that $(X\times Y)-\bigcup \mathcal{A}_1$ has a relatively open cover by sets whose closures are absolutely paracompact. If $\langle x,y\rangle\in(X\times Y)-\bigcup \mathcal{A}_1$, then $x\notin X^{(a)}$. Since X is regular, there is an open nbhd U_x of x in X such that $\overline{U_x} \wedge X^{(a)} = 0$. So $\overline{U_x^{(a)}} = 0$ for some $\beta < a$. Hence $\overline{U_x} \times Y$ is absolutely paracompact by the inductive assumption. Now, $(U_x\times Y)-\bigcup \mathcal{A}_1$ is an open nbhd of $\langle x,y\rangle$ in $(X\times Y)-\bigcup \mathcal{A}_1$ whose closure is absolutely

paracompact, because each closed subset of an absolutely paracompact space is absolutely paracompact. So \mathcal{B} contains a locally finite covering \mathcal{A}_2 of $(X \times Y) - \bigcup \mathcal{A}_1$ in Z. Clearly, $\mathcal{A}_1 \cup \mathcal{A}_2$ is locally finite in Z and covers $X \times Y$.

If $X^{(\lambda)}=0$ for the limit λ , then $\{X-X^{(\alpha)}: \alpha<\lambda\}$ is an open cover of X. Since X is paracompact and scattered (see [7], p. 569, Cor. 3, dispersed = scattered), we can take a discrete refinement $\mathcal A$ of the covering $\{X-X^{(\alpha)}: \alpha<\lambda\}$ of X. For each $A\in\mathcal A$ there is an $\alpha<\lambda$ such that $A\subseteq X-X^{(\alpha)}$ and hence $A^{(\alpha)}=0$. So $A\times Y$ is absolutely paracompact by the inductive assumption for each $A\in\mathcal A$. $X\times Y$ is covered by the discrete family $\{A\times Y: A\in\mathcal A\}$ of absolutely paracompact sets, and so $X\times Y$ is absolutely paracompact as well.

The proof is complete.

154

Remark 1.2. I do not know whether "C-scattered" can be taken instead of "scattered" in Theorem 1.1 (cf. [9], Problem 3.3).

For comparing the absolute paracompactness and the total hypocompactness ([8], p. 625) we give the following

EXAMPLE 1.3. Let $X = \{0\} \cup \{1/m+1/n: m \in N \& n \in N\}$, equipped with the relative topology, and Y be the Cantor set. Then X is totally hypocompact, Y is compact, $X \times Y$ is absolutely paracompact, but $X \times Y$ is not totally hypocompact.

Indeed, X is totally hypocompact, because the complement of any nbhd of 0 is a discrete closed-open set and therefore each open basis contains a disjoint covering of X. $X \times Y$ is absolutely paracompact, because it is paracompact and C-scattered (see [9], Cor. 1.4 and Th. 3.1). Finally, $X \times Y$ is not totally hypocompact, because it is not locally compact (see [8], Th. 3).

2. E. Michael [6] considered regular spaces X having the following property: there is a countable set $X_1 \subseteq X$ such that for each open set $U \supseteq X_1$ in X the set X - U is countable. In the terminology of [4] these spaces are called "concentrated about a countable subset" (see p. 526, Def. 2). It is known that each space X concentrated about a countable subset has the property C": if $\{A_n: n \in N\}$ is a sequence of open covers of X, then there is a selector $\{A_n: n \in N\}$ from $\{A_n: n \in N\}$ such that $\{A_n: n \in N\}$ covers X (see [4], p. 527, Th. 5). We shall prove that the Lindelöf space X^n considered in Lemma 5.1 of [6] has C", although it is not concentrated about a countable subset. What follows now is a refinement of the construction in the proof of Lemma 5.1 of [6].

DEFINITION 2.1. A regular space X is said to be chain-concentrated about a countable set $A \subseteq X$, if there is an $n \in N$ and $\{X_k : 0 \le k \le n\}$ such that $X = X_0 \supseteq X_1 \supseteq X_2 \supseteq ... \supseteq X_n = A$ and X_k is concentrated about X_{k+1} for each $0 \le k \le n-1$.

THEOREM 2.2. If X is chain-concentrated about a countable subset A, then X has the property C''.

Proof. If X is chain-concentrated about a countable subset A, then there is an $n \in N$ and $\{X_k \colon 0 \leqslant k \leqslant n\}$ such that $X = X_0 \supseteq X_1 \supseteq \dots$ $\dots \supseteq X_n = A$ and X_k is concentrated about X_{k+1} for each $0 \leqslant k \leqslant n-1$. Let $\{\mathcal{A}_i \colon i \in N\}$ be a sequence of open covers of X. Let $N = \bigcup \{M_k \colon 0 \leqslant k \leqslant n\}$ be a decomposition of N such that M_k is infinite for each $0 \leqslant k \leqslant n$. Since $X_n = A$ is countable, we can choose $\{A_i \colon i \in M_n\}$ such that $A_i \in \mathcal{A}_i$ for each $i \in M_n$ and $\bigcup \{A_i \colon i \in M_n\} \supseteq X_n$. Hence $X_{n-1} - \bigcup \{A_i \colon i \in M_n\}$ is countable, because X_{n-1} is concentrated about X_n . Step by step we shall come to a covering $\{A_i \colon i \in M_k \& 0 \leqslant k \leqslant n\}$ of X which has the desired properties. The proof is complete.

LEMMA 2.3. If $n \in \mathbb{N}$, $X = \bigcup \{Y_i : i \in \mathbb{N}\}$ and Y_i is chain-concentrated about a countable set $A_i \subseteq Y_i$ with the length of the chain $\leq n$ for each $i \in \mathbb{N}$, then X is chain-concentrated about $A = \bigcup \{A_i : i \in \mathbb{N}\}$ with the length of the chain $\leq n$.

Proof. Let $\{X_{i,k}\colon 0\leqslant k\leqslant n\}$ be a chain in Y_i such that $Y_i=X_{i,0}\supseteq X_{i,1}\supseteq\ldots\supseteq X_{i,n}=A_i$ and $X_{i,k}$ is concentrated about $X_{i,k+1}$ for $0\leqslant k\leqslant n-1$ and $i\in N$. It is easy to check that $X_k=\bigcup\{X_{i,k}\colon i\in N\}$, where $0\leqslant k\leqslant n$, form the desired chain in X. The proof is complete.

THEOREM 2.4. If A is a countable subset of X and $n \in \mathbb{N}$ such that X^m is concentrated about $X^m - (X - A)^m$, for each $1 \leq m \leq n$, then X^n is chain-concentrated about A^n .

Proof. We prove by induction that X^m is chain-concentrated about A^m for all $1 \le m \le n$. This is clear for m=1, because X-(X-A)=A, and so X is concentrated about A and the length of the chain is ≤ 1 . Assume that for some m < n X^m is concentrated about A^m and the length of the chain is $\le m$. Let us remark (or, see [6], Lemma 1.4) that $X^{m+1}-(X-A)^{m+1}=\{x\in X^{m+1}\colon x_i\in A \text{ for some } i,\ 1\le i\le m+1\}=\bigcup\{Y_{i,a}\colon 1\le i\le m+1\ \&\ a\in A\}$, where $Y_{i,a}=\{x\in X^{m+1}\colon x_i=a\}$. Clearly, $Y_{i,a}$ is chain-concentrated about $Z_{i,a}=\{x\in A^{m+1}\colon x_i=a\}$ and the length of the chain is $\le m$, because $Y_{i,a}$ is homeomorphic to X^m . Hence, by Lemma 2.3, $X^{m+1}-(X-A)^{m+1}$ is chain-concentrated about $X^{m+1}=\bigcup\{Z_{i,a}\colon 1\le i\le m+1\ \&\ a\in A\}$ and the length of the chain is $\le m$. Since, by the assumption, X^{m+1} is concentrated about $X^{m+1}-(X-A)^{m+1}$, X^{m+1} is chain-concentrated about X^{m+1} and the length of the chain is $x\in M$. The proof is complete.

And now follows the refinement of Lemma 5.1 of [6], as a corollary to Theorems 2.2 and 2.4:

COROLLARY 2.5. If A is a countable subset of X and $n \in N$ such that for each $m, 1 \leq m \leq n, X^m$ is concentrated about $X^m - (X - A)^m$, then X^n has the property C''.

Hence, the Examples 1.4 and 1.5 constructed by E. Michael [6] are, from the point of view of covering properties, much stronger, as is asserted in [6].

Remark 2.6. The concept of a space concentrated about a countable subset can easily be generalized, in another way, as follows: we say that a regular space X fulfils (X) if there is a σ -compact subset X of X such that X-U is σ -compact whenever X is an open nbhd of X in X. It can be proved that if X fulfils (X), then X is strongly Hurewicz (see [5], p. 210).

Remark 2.7. A relation of the property C'' to the Lindelöf property and to other properties gives the following sequence of implications (for regular spaces): a countable space \Rightarrow a space concentrated about a countable subset \Rightarrow a space chain-concentrated about a countable subset \Rightarrow c'' \Rightarrow strongly Hurewicz \Rightarrow Hurewicz \Rightarrow Lindelöf \Rightarrow hypocompact \Rightarrow hypo-lindelöf \Rightarrow paracompact.

3. Hurewicz spaces (see [5], p. 209) are very special cases of Lindelöf spaces. Each σ -compact regular space is a Hurewicz space and any closed subset of a Hurewicz space is a Hurewicz space. Although the product of two Hurewicz spaces need not be normal (see [5], p. 216, Example), there are some positive facts about Hurewicz spaces and we shall prove here some of them in a general setting, without the assumption of metrizability.

THEOREM 3.1. If there is a continuous map from a Hurewicz space onto a regular space X, then X is a Hurewicz space.

The proof is easy from the definition of the Hurewicz space, and so it is left as an excercise.

THEOREM 3.2. If a Hurewicz space X is complete in the sense of Čech, then X is σ -compact and C-scattered.

Proof. Since X is Hurewicz, X is paracompact. Hence, by Theorem 3 of Z. Frolik [2], there is a perfect map f from X onto a complete metric space Y. Since f is continuous, Y is also a Hurewicz space by Theorem 3.1. Now, by Satz 20 of W. Hurewicz [3] ($E^* =$ Hurewicz property), Y is σ -compact. Since Y is a σ -compact complete metric space, by Theorem 1.7 in [9] Y is C-scattered. Since f is perfect, X is σ -compact (σ -compactness is a perfect property) and X is also C-scattered by Theorem 1.3 in [9]. The proof is complete.

Theorem 3.3. If a regular space X is a union of a countable family of Hurewicz spaces, then X is a Hurewicz space; i.e. the Hurewicz property is σ -additive.

Proof. Let $X = \bigcup \{X_n : n \in N\}$, where each X_n is a Hurewicz space. Let $\{\mathcal{A}_k : k \in N\}$ be a sequence of open covers of X. For each $n \in N$, $\{\{A \cap X_n : A \in N\}\}$

 $A \in \mathcal{A}_k$: $k \ge n$ is a sequence of open covers of X_n , and so there is a sequence $\{\mathcal{B}_{n,k} \colon k \ge n\}$ such that $\mathcal{B}_{n,k} \subseteq \mathcal{A}_k$, $\mathcal{B}_{n,k}$ is finite and $\{A \cap X_n \colon A \in \mathcal{B}_{n,k} \& k \ge n\}$ covers X_n . Let us put $\mathcal{B}_k = \bigcup \{\mathcal{B}_{n,k} \colon n \le k\}$. Then each \mathcal{B}_k is finite, $\mathcal{B}_k \subseteq \mathcal{A}_k$ and $\bigcup \{\mathcal{B}_k \colon k \in N\}$ covers X, because it covers each X_k . So X is a Hurewicz space. The proof is complete.

. Theorem 3.4. If X is a Lindelöf C-scattered space, then X is a Hurewicz space.

This theorem follows from a more general product

THEOREM 3.5. If X is a Lindelöf C-scattered space and Y is a Hurewicz space, then $X \times Y$ is a Hurewicz space.

First we prove

Lemma 3.6. If X is a compact space and Y is a Hurewicz space, then $X \times Y$ is a Hurewicz space.

Proof. Let $\{\mathcal{A}_n \colon n \in N\}$ be a sequence of open covers of $X \times Y$. For each $n \in N$ and $y \in Y$ we choose a finite subfamily $\mathcal{A}_{n,y}$ of \mathcal{A}_n such that $X \times \{y\} \subseteq \bigcup \mathcal{A}_{n,y}$. Let $U_{n,y}$ be an open nbhd of y in Y such that $X \times U_{n,y} \subseteq \bigcup \mathcal{A}_{n,y}$. Then $\mathcal{U}_n = \{U_{n,y} \colon y \in Y\}$ is an open cover of Y, for each $y \in Y$. Since Y is a Hurewicz space, each $y \in Y$ contains a finite subfamily $y \in Y$ such that $y \in Y$ covers $y \in Y$. Define $y \in Y$ and each $y \in Y$ is finite, because each $y \in Y$ and each $y \in Y$ is finite. $y \in Y$ and if $y \in Y$ such that $y \in Y$ such that $y \in Y$ and if $y \in Y$ such there is an $y \in Y$ and $y \in Y$ such that $y \in Y$ and so from $y \in Y$ such that $y \in Y$ such that $y \in Y$ and $y \in Y$ and so from $y \in Y$ such that $y \in Y$ is a Hurewicz space. The proof is complete.

LEMMA 3.7. If a regular space X has a Hurewicz subspace X_0 such that, for each open set U in X, X-U is Hurewicz whenever $U\supseteq X_0$, then X is a Hurewicz space.

Proof. Let $\{\mathcal{A}_n\colon n\in N\}$ be a sequence of open covers of X. Then $\{\{A\cap X_0\colon A\in\mathcal{A}_n\}\colon n\in N\}$ is a sequence of open covers of X_0 , and so there is a sequence $\{\mathcal{B}_n\colon n\in N\}$ such that each \mathcal{B}_n is finite, $\mathcal{B}_n\subseteq\mathcal{A}_n$ and $\bigcup\{\mathcal{B}_n\colon n\in N\}$ covers X_0 . Let us put $X_1=X-\bigcup\{B\in\mathcal{B}_n\colon n\in N\}$. Then, similarly as for X_0 , we can choose $\{C_n\colon n\in N\}$ such that each C_n is finite, $C_n\subseteq\mathcal{A}_n$ and $\bigcup\{C_n\colon n\in N\}$ covers X_1 , because X_1 is a Hurewicz space. Let us put $\mathfrak{D}_n=\mathcal{B}_n\cup C_n$. Then $\{\mathfrak{D}_n\colon n\in N\}$ is the desired sequence showing that X is a Hurewicz space. The proof is complete.

Proof of Theorem 3.5. We prove by transfinite induction over a such that $X^{(a)} = 0$ that $X \times Y$ is a Hurewicz space.

If $X^{(0)} = 0$, then X = 0, and so the theorem is trivially true.

If $X^{(a+1)} = 0$, then $X^{(a)}$ is a locally compact closed Lindelöf subset of X. Hence X has a countable closed covering $\{F_n: n \in N\}$ such that

each $F_n^{(a)}$ is compact (or void). According to Theorem 3.3 it is sufficient to prove that each $F_n \times Y$ is Hurewicz. So, without loss of generality, we can assume that $X^{(a)}$ is compact. Let U be an open set in $X \times Y$ such that $U \supseteq X^{(a)} \times Y$. For each $y \in Y$ there is an open set V_y in X containing $X^{(a)}$ and an open set W_y in Y containing y such that $X^{(a)} \times \{y\} \subseteq V_y \times W_y \subseteq U$. By Lemma 3.6 $X^{(a)} \times Y$ is Hurewicz and therefore Lindelöf. So there is a countable subset A of Y such that $\{V_y \times W_y \colon y \in A\}$ covers $X^{(a)} \times Y$. But $(X - V_y)^{(a)} = 0$, and so $(X - V_y) \times \overline{W}_y$ is Hurewicz by the inductive assumption. Let $(x, y) \in (X \times Y) - U$. Then $(x, y) \in (X \times Y) - U$ $\{V_z \times W_z \colon z \in A\}$. However, $\{W_z \colon z \in A\}$ covers Y, and so there is a $z \in A$ such that $y \in W_z$. It follows that $x \notin V_z$; so $x \in X - V_z$ and hence $(x, y) \in (X - V_z) \times W_z \subseteq (X - V_z) \times \overline{W}_z$. So, since $(X \times Y) - U$ is a closed subset of $|\cdot| \{(X - V_z) \times \overline{W}_z \colon z \in A\}$, $(X \times Y) - U$ is a Hurewicz

If $X^{(\lambda)} = 0$ for the limit λ , then for each $x \in X$ there is an $\alpha < \lambda$ such that $x \in X^{(\alpha)} - X^{(\alpha+1)}$; hence there is an open nbhd U_x of x in X such that $\overline{U}_x \cap X^{(\alpha+1)} = 0$. So $\overline{U}_x^{(\alpha+1)} = 0$ and therefore $\overline{U}_x \times Y$ is Hurewicz by the inductive assumption. Since $\{U_x : x \in X\}$ covers X and X is Lindelöf, then there is a countable subset A of X such that $\{U_x : x \in A\}$ covers X. Hence $X \times Y = \bigcup \{\overline{U}_x \times Y : x \in A\}$ and therefore $X \times Y$ is Hurewicz by Theorem 3.3.

space by Theorem 3.3. Hence $X \times Y$ is a Hurewicz space by Lemma 3.7.

The proof is complete.

From Theorem 3.3 and Lemma 3.6 we have the following

Corollary 3.8. If X is a σ -compact regular space and Y is a Hurewicz space, then $X \times Y$ is a Hurewicz space.

Remark 3.9. Similarly, as in the proof of Theorem 3.5, one can prove that if X is a Lindelöf C-scattered space and Y is a Lindelöf space, then $X \times Y$ is a Lindelöf space.

Theorem 3.10. If there is a perfect map f from a regular space X onto a Hurewicz space Y, then X is a Hurewicz space.

Proof. First let us remark that X is homeomorphic to $f = \{\langle x, f(x) \rangle : x \in X\}$. Now it is sufficient to prove that f is a closed subset of $\beta X \times Y$, according to Lemma 3.6. Let $\langle x, y \rangle \in (\beta X \times Y) - f$. Then (a) $x \in \beta X - X$, or (b) $x \in X$ and $f(x) \neq y$. If (a) holds, then there is an open set U in βX such that $U \supseteq f^{-1}(y)$ and $x \notin \overline{U}$ (the closure by means of βX). Let us put V = Y - f(X - U). Then V is an open V is an open V and

$$f^{-1}(V) = f^{-1}(X) - f^{-1}f(X - \overline{U}) = X - f^{-1}f(X - \overline{U}) \subseteq X - (X - \overline{U})$$
$$= X \cap \overline{U} \subseteq \overline{U} \subseteq \overline{U}.$$

Hence $x \notin f^{-1}(V)$ and so there is an open nbhd W of x in βX such that $W \cap f^{-1}(V) = 0$. But $W \cap f^{-1}(V) = 0$ implies $(W \times V) \cap f = 0$. So $W \times V$

is an open nbhd of $\langle x,y\rangle$ in $\beta X\times Y$ disjoint with f. If (b) holds, then $f^{-1}f(x)\cap f^{-1}(y)=0$. Since $f^{-1}f(x)$ and $f^{-1}(y)$ are compact, there are two open disjoint sets U and V in βX such that $f^{-1}f(x)\subseteq U$ and $f^{-1}(y)\subseteq V$. Let us put W=Y-f(X-V). Then W is an open nbhd of Y in Y and

$$f^{-1}(W) = X - f^{-1}f(X - V) \subseteq X - (X - V) = X \cap V \subseteq V.$$

Clearly, $\langle x,y\rangle \in U\times W$. But $U\cap f^{-1}(W)\subseteq U\cap V=0$, and so $(U\times W)\cap f=0$. From the results in (a) and (b) we conclude that f is a closed subset of $\beta X\times Y$; so X, being homeomorphic to f, is a Hurewicz space. The proof is complete.

From Theorem 3.1 and Theorem 3.10 we have

COROLLARY 3.11. If f is a perfect map from a regular space X onto a regular space Y, then X is a Hurewicz space iff Y is a Hurewicz space; i.e., the Hurewicz property is perfect.

References

[1] R. Engelking, Outline of General Topology, Amsterdam-Warszawa 1968.

[2] Z. Frolík, On the topological product of paracompact spaces, Bull. Acad. Polon. Sci., Sér. sci. math., astr. et phys., 8 (1968), pp. 747-750.

 W. Hurewicz, Eine Verallgemeinerung des Borelschen Theorems, Math. Zeitschr. 24 (1926), pp. 401-421.

[4] K. Kuratowski, Topology, Vol. I, New York-London-Warszawa 1966.

[5] A. Lelek, Some cover properties of spaces, Fund. Math. 64 (1969), pp. 209-218.

[6] E. Michael, Paracompactness and the Lindelof property in finite and countable Cartesian products, Compositio Math. 23 (1971), pp. 199-214.

[7] R. Telgársky, Total paracompactness and paracompact dispersed spaces, Bull. Acad. Polon. Sci., Sér. sci. math., astr. et phys., 16 (1968), pp. 567-572.

[8] — Star-finite coverings and local compactness, Bull. Acad. Polon. Sci., Sér. sci. math., astr. et phys., 16 (1968), pp. 625-628.

[9] — C-scattered and paracompact spaces, Fund. Math. 73 (1971), pp. 59-74.

INSTITUTE OF MATHEMATICS SLOVAK ACADEMY OF SCIENCES

Reçu par la Rédaction le 20. 1. 1971