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seulement pour %> 0 n’affaiblit 1'hypothése que dun point de vue
étroitement formal.

Notons encore que le théoréme en § 2, que nous avons donné sous
la forme de condition suffisante, est tout de suite ramené & la forme de
condition mnécessaire au moyen de la décomposition:

Fla+kh)—F(z—h) F(x+Lkh)—F(x) F(m)—lﬂ(m;h)
(E+1)h a (E+1)h ‘ (E+1)h

Ca suffit pour en déduire que l'existence de la dérivée %-pseudo-
symétrigue pour une valeur fixée de & > 0 entraine son existence pour
toute valemr positive de k.

Bibliographie

[11 A.Khintehine, Recherches sur la structure des fonctions mesurables, Tund. Math.,
9 (1927), pp. 217-219.

[2]1 T. Oliveri, Sulla derivata di Schwarz generalizzata, Rendiconti Cire. Mat. Palermo,
s. II, t. XVII, £. 11, (1968), pp. 217-225. (La démonstration est insatisfaisante).

[3] &.C. Young, On the derivates of a function, Proc. London Math. Soc., (2) 15 (1916),
pp. 360-384.

[4] A. Denjoy, Mémoire sur les mombres dérvivés des fonctions continues, Journal de
\mh, (7) 1 (1915), pp. 174-195.

[5]1 8. Saks, Surles nombres dérivés des fonctions, Fund. Math., 5 (1924 pp. 98-104.

Regu par la Rédaction le 11. 12. 1970

Concerning product of paracompact spaces
by
R. Telgdrsky (Bratislava)

This paper is a continuation of [9]. It has 3 sections. Section 1 deals
with absolute paracompactness (see [9], Section 3) for which a product
theorem is proved (Th. 1.1). Section 2, based on an analysis of a con-
struction of E. Michael ([6], Examples 1.4 and 1.5), treats of the
property ' (see [4], p. 527, Th. 5) and of some singular spaces. Section 3
confaing some positive facts about the Hurewicz property (see [5], p. 209),
e.g. that it is o-additive (Th. 3.3), perfect (Cor. 3.11) and productive
if at least one of the two factors is C-scattered (Th. 3.4 and 3.5).

The topological terminology is that of [1]. N denotes the set of all
positive integers.

1. A Cartesian product of an absolutely paracompact space (see [9],
Section 3) by a discrete space is absolutely paracompaet. This assertion
can be generalized as follows:

TEHEOREM 1.1. If X is a scattered paracompact space and Y is an ab-
solutely paracompact space, then the product space X XY is absolutely
paracompact.

Proof. Let Z be a paracompact space such that X x T is a closed
subspace of Z. Let B be an outer base for X XY in Z. We shall prove
by transfinite induction over « such that X =0 that $ contains
a loeally finite covering of X x Y in Z.

It X = 0, then X = 0, and so the theorem is trivially true.

It X9 — 0, then X is a closed discrete set in X. Clearly, X x T
is closed in Z and absolutely paracompact as a free union of absolutely
paracompact spaces. So B contains a locally finite covering +; of X%y
in Z. Since (X x ¥Y)— [_J#, is closed in Z, it is paracompact. Now it is
sufficient to prove that (X x¥)— {+, has a relatively open cover by
sets whose closures are absolutely paracompact. If <z, y> ¢ (X X ¥)— Uy,
then z ¢ X, Since X is regular, there is an open nbhd U, of  in X such
that Tz~ X9 =0, So TP =0 for some f < a. Hence Urx Y is ab-
solutely paracompact by the inductive assumption. Now, (UzX ¥)— U4,
is an open nbhd of ¢z, y> in (X xY¥)— | J# whose closure is absolutely
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paracompact, because each closed subset of an absoiutelylpa.meomp:a,ct
space is absolutely paracompact. So B contains a locally.f{mte. covering
4, of (X% Y)~— {4 in Z. Clearly, 4 v #, is locally finite in Z and
covers X x Y. :
If TP =0 for the limit 2, then {X —X“: a < 1} is an open cover
- of X. Sinee X is paracompact and scattered (see [7], p. 569, Cor. 3, dis-
persed = seattered), we can take a discrete refinement # of the covering
{XY—X a< 7} of X. For each 4 et there is an a < A such that
ACX X" and hence A= 0. So. 4 xY is absolutely paracompact
by—‘rhe inductive assumption for each A4 e X XY is covered Ly the
diserete family {4 X ¥: A esA} of absolutely paracompact sets, and so
X %Y is absolutely paracompact as well.
The proof is complete.
Remark 1.2. I do not know whether “C-scattered” can be taken
instead of “seattered” in Theorem 1.1 (cf. [9], Problem 3.3).

For comparing the absolute paracompactness and the total hypo-
compactness ([8], p. 625) we give the following

Exampie 138. Let X = {0} v {I/m+1/n: m e« N& n ¢ N}, equipped
with the relative topology, and ¥ be the Cantor set. Then X is totally
hypoecompact, ¥ is compact, XxY is absolutely paracompact, but
X x ¥ is not totally hypocompact.

Indeed, X is totally hypocompact, because the complement of any
nbhd of 0 is a discrete closed-open set and therefore each open basis
contains a disjoint covering of X. XX Y is absolutely paracompact,
because it is paracompact and C-seattered (see [9], Cor. 1.4 and Th. 3.1).
Finally, X% Y is not totally hypocompact, because it is mnot locally
compact (see [8], Th. 3). :

2. E. Michael [6] considered regular spaces X having the following
property: there is a countable set X; C X such that for each open set
U2 X, in X the set X—U is countable. In the terminology of [4] these
spaces are called “concentrated about a countable subset” (see p. 526,
Def. 2). Tt is known that each space X concentrated about a countable
subset has the property C"’: if {:,: n ¢ N} is a sequence of open covers
of X, then there is a selector {An: 7 e N} from {#z: n € N} such that
{An: n € N} covers X (see [4], p. 527, Th. 5). We shall prove that the
Lindelsf space X" considered in Lemma 5.1 of [61 has ¢, although it
iIs not concentrated about a countable subset. What follows mnow is
a refinement of the construction in the proof of Lemma 5.1 of [6].

DEFINTTION 2.1. A regular space X is said to be chain- concenirated

about a countable set A C X, if there is an n ¢ ¥ and {Xx: 0 < k< m}such

Sthat Y= XD X, 2X,D..0X,= 4 and X% is concentrated about X1
for each 0 <k < n—1.
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THEOREM 2.2. If X is chain-concentrated about a countable subset A,
then X has the property C”.

Proof. If X is chain-concentrated about g countable subset A4,
then there is an # e N and {X;: 0 <k < n} such that X = X,D Lo..
.2 Xy = 4 and X; is concentrated about X r+1 for each 0 <k <n—1.
Let {#;: 1< N} be a sequence of open covers of X, Let N = UM,
0 <k <n} be a decomposition of ¥ such that M}y is infinite for each
0<k<n. Since X, = 4 is countable, we can choose {44 1€ My} such
that 4; e /& for each ¢ ¢ M, and { /{d;: 7 « Mn} D Xy. Hence X,_, —UJ{4ds
ie My} is countable, becaunse X,_, is concentrated about X,. Step by
step we shall come to a covering {d:;: ie Mp& 0 < < n} of X which
has the desired properties. The proof is complete.

Leyva 23. If ne N, X = | J{Yi: i e N} and X is chain-concentrated
about & countable set A; C Xy with the length of the chain <n for each i e N,
then X s chain-concentrated about A — {4z ie N} with the length of
the chain < n.

Proof. Let {X;: 0 <k < n} be a chain in Y such that ¥y = X,
DX412 .. 2 Xsn=4; and X;; is concentrated about Xiper for 0 <<k
<n-~1 and 7 e N. It is easy to check that X, — (U{X:,x i e N), where
0 <k <mn, form the desired chain in X. The proof is complete.

THEOREM 2.4. If A is a countable subset of X and n ¢ N such that X™ is
concentrated abowt X™—(X —A)™, for each 1 < m < n, then X" is chain-
concentrated about A”.

Proof. We prove by induction that X™ is chain-coneentrated about
A™ for all 1 < m < n. This is clear for m = 1, because X—(X-4) =4,
and so X is concentrated about 4 and the length of the chain is < 1.
Assume that for some m < n X™ is concentrated about A™ and the length
of the chain is <m. Let us remark (or, see [6], Lemma 1.4) that X"~
—(X—A)"" = {e e X™": ze A for some i, 1 <i<m-tl}= T
l<i<m+1l &acd}, where ¥;,o= {z e X" 2= a}. Clearly, Yi, is
chain-concentrated about Z;,= {z ¢ A™™: 2;=a} and the length of
the chain is <tm, because ¥, is homeomorphic to X™ Hence, by
Lemma 2.3, X""'_(X—4)™" i§ chain-concentrated about A™
= U{Zsa: 1<i<m+1l&acA} and the length of the chain is <m.
Since, by the assumption, X™ is concentrated about X™ ™ — (X — 4)™+,
X" is chain-concentrated about 4™ and the length of the chain
is <m-+1. The proof is complete.

And now follows the refinement of Lemma 5.1 of [6], as a corollary
to Theorems 2.2 and 2.4:

COROLLARY 2.5. If A is a countable subset of X and n e N such that
Jor each m, 1 < m < n, X™ is concentrated about X™ — (X —A)™, then X" has
the property €.
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Hence, the Examples 1.4 and 1.5 constructed by . Michael [GJ are,
from the point of view of covering properfies, much stronger, as is as-
serted in [6].

Remark 2.6. The concept of a space concentrated about a count-
able sabset can easily be generalized, in another way, as follows: we say
that a regular space X fulfils (%) if there is a o-compact subset 4 of X
such that X —U is o-compact whenever U is an open nbhd of 4 in X
"It can be proved that if X fulfils (%), then X is strongly Hurewicz (see [5],
p. 210).

Remark 2.7. A relation of the property €'’ to the Lindeldf property
and to other properties gives the following sequence of implications (for
regular spaces): a countable space = & space concentrated about a count-
able subset = a space chain-concentrated about a countable sub-
set = ¢ = strongly Hurewicz = Hurewicz = Lindel6f = hypocompact =

= hypo-lindelsf = paracompact. '

3. Hurewicz spaces (see [3], p. 209) are very special cases of Lindelst
spaces. Each ¢-compact regular space is a Hurewicz space and any closed
subset of a Hurewicz space is a Hurewicz space. Although the product
of two Hurewicz spaeces need not be normal (see [5], p. 216, Example),
there are some positive facts about Hurewicz spaces and we shall prove
here some of them in a general setting, without the assumption of metriz-
ability.

TueorREM 3.1. If there is a continuous map from o Hurewice space
onto a regular space X, then X is a Hurewicz space.

The proof is easy from the definition of the Hurewicz space, and
30 it is left as an excercise.

TurorEM 3.2. If a Hurewicz space X is complete in the sense of Cech,
then X is o-compact and C-scailered.

Proof. Since X is Hurewicz, X is paracompact. Hence, by Theorem 3
of Z. Frolik [2], there is a perfect map f from X onto a complete metric
space Y. Since f is continuous, Y is also & Hurewicz space by Theorem 3.1.
Now, by Satz 20 of W. Hurewiez [3] (E* = Hurewicz property), ¥ is
o-compact. Since Y is a ¢-compact complete metric space, by Theorem 1.7
in [9] Y is C'-scattered. Since f is perfect, X is o-compact (o -compactness
is a perfect property) and X is also (-scattered by Theorem 1.3 in [9].
The proof is complete.

TuEOoREM 3.3. If o reqular space X is a union of @ countable family
of Hurewiez spaces, then X is a Hurewicy space; i.e. the Hurewicz property
is o-additive. '

Proof. Let X = {_{{Xys: # ¢ N}, where each X, is 3 Hurewicz space.

Let {t: & « N} bea sequence of open covers of X. For each 7 e N, {{4 n Xp:
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A ey} k= n} s a sequence of open covers of Xy, and so there is a se-
quence {B,: k> n} such that B,k C gy Bz is finite and {4 X,
A eBur &k =n} covers X,. Let us put By — U{Bnz: 7 <k}. Then
each By is finite, By C A and (J{Bx: k € N} covers X, because it covers
each Xz. So X is a Hurewicz space. The proof is complete.

ToEOREM 3.4, If X is a Lindelof C-scattered space, then X is a Hu-
rewicz space.

This theorem follows from a more general product

THEOREM 3.53. If X is a Lindelof C-scattered space and Y is a Hu-
rewice space, then X XY is a Hurewics space.

First we prove :

Leavaa 3.6. If X is a compact space and Y is o Hurewics space, then
XY is a Hurewicz space.

Proof. Let {#.: n ¢ N} be a sequence of open covers of X x Y. For
each n e N and y ¢ ¥ we choose a finite subfamily £, , of 4, such that
X x{y} C Usny. Let Uy,y be an open nbhd of ¥ in Y such that X x U, ,
C U#n,y. Then Uy = {Uy,y: y € T} is an open cover of Y, for each n ¢ N.
Since ¥ is a Hurewicz space, each AU, contains a finite subfamily U,
such that { J{Ua: n e N} covers Y. Define B, = {4 € #,: 4 « i,y & U,y
€Uy}, Hach B, is finite, because each <4, , and each Uy is finite. | {B,:
ne N} covers X X ¥, because {X X Uy i Uy eVUp & e N} covers XxY
and if <z, y> e X x Y, then there is an 7 ¢ ¥ and z ¢ ¥ such that Yely,:
€Uyp, and so from X x U,,, C (-, . it follows that ey y> e A, for some
4 e sty,., hence (z, y> ¢ |_By. It follows that X x Y is a Hurewicz space.
The proof is complete. i

Levya 3.7. If a regular space X has a Hurewics subspace X, such
that, for each open set U in X, X —U is Hurewicz whenever UDX,, then
X is o Hurewicz space.

Proof. Let {+t,: n e N} be a sequence of open covers of X. Then
{d nXy: A esty): neN) is a sequence of open covers of X, and so
there is a sequence {B,: n ¢ N} sueh that each $, is finite, B, C 4, and
U{Ba: m e N} covers X,. Let us put Xy = X —{ J{BeBp: ne N}. Then,
similarly as for X,; we can choose.{C,: 7 e N} such that each €, is finite,
Cu C oty and {J{Cs: 7 e N} covers X,, because X, is a Hurewicz space.
Let us put Dy = B, v Cy. Then {Dy: n € N} is the desired sequence showing
that X is a Hurewicz space. The proof is complete.

Proof of Theorem 3.5. We prove by transfinite induetion over a
such that X — 0 that X x ¥ is a Hurewicz space.

It X% =0, then X = 0, and so the theorem is trivially true.

If X9 =0, then X“ is a locally compact closed Lindelof subset
of X. Hence X has a countable closed covering {F,: n e N} such that
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each FY is compact (or void). According to Theorem 3.3 it is sufficient
to prove that each F,x ¥ is Hurewicz. So, without loss of generality,
we can assume that X is compact. Let U be an open set in X X ¥ such
that U D X% Y. For each y ¢ Y there is an open set ¥V, in X contain-
ing X and an open set W, in ¥ containing y such that X x {y}
CVyxW,yC U. By Lemma 3.6 X x Y is Hurewicz and therefore Linde-
16f. So there is a countable subset A of ¥ such that {Vyx W, yed}
covers X x Y. But (X —V,)? =0, and so (X—V,)xW, is Hurewicz
by the inductive assumption. Let (z,y>e (X x¥)—U. Then <(z,y)
e(AxX)—{{V-xW.: ze A}. However, {W,: ze A} covers ¥, and so
there is a 2 e 4 such that y ¢ W,. It follows that x ¢ V,; so 2 e X -V and
hence <z, y> e (X—V)X W, C(X-V)xW,. So, since (Xx¥)—U is
a closed subset of { J{{(X—V,)xW.: ze 4}, (XxY)—U is a Hurewicz
space by Theorem 3.3. Hence X x ¥ is a Hurewicz space by Lemma 3.7,

It X% = 0 for the limit A, then for each x ¢ X there is an a < 1 such
that 2 e X‘“’—X‘“m; hence there is an open nbhd U, of & in X such
that Tz~ X" =0. 80 U™ =0 and therefore U,x Y is Hurewicz
by the induective assumption. Since {U,: x ¢ X} covers X and X is Linde-
161, then there is a countable subset A of X such that {Us: x € A} covers X.
Hence X'x Y = { J{U:x¥: xe A} and therefore X x Y is Hurewiez by
Theorem 3.3.

The proof is complete.

From Theorem 3.3 and Lemma 3.6 we have the following

CoBOLLARY 3.8. If X is a o-compact regular space and Y is a Hurewicz
space, then X XY is a Hurewicz space. .
Remark 3.9. Similarly, as in the proof of Theorem 3.5, one can

prove that if X is a Lindelof C-scattered space and Y is a Lindelst space,
then X x ¥ is a Lindelof space.

THEOREM 3.10. If there is a perfect map f from a regular space X onto

a Hurewicz space Y, then X is a Hurewicz space.

Proof. First let us remark that X is homeomorphic to f = {<x, f(x)>:
x e X}. Now it is sufficient to prove that f is a closed subset of BX XY
according to Lemma 3.6. Let (x, y) ¢ (XX Y)—f. Then (a) © ¢ pX— X’
or (b) x ¢ X and f(x) # y. If (a) holds, then there is an open set U in ﬁl:
such that UDf (y) and z¢ U (the closure by means of BX). Let us
put V= ¥ —f(X—T). Then T is an open nbhd of y in ¥ and

O =D~ fX~0) = X~ (X -1)C X—(X-—7)
=X~UCUCT.

Hence x ¢ f YT) and so there is an open nbhd W of

Wof )= 0. But Waf(I)=0 implies ( o e sk that

WxT)~nf=0. 80 WxT
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is an open nbhd of {z,¥y> in X « ¥ disjoint with f. If (b) holds, then
f7f(@) ~ f(y) = 0. Since f'f(x) and f7(y) are compact, there are two
open disjoint sets U and V' in fX such that f7'f(z)C U and f '(y) CT.
Let us put We=Y—f(X —V). Then W is an open nbhd of y in ¥ and

FUW) =X —f fX-T)CX—(X-F)= I ~TCT.

Clearly, <z, y>e UXW. But U AFHW)CTU AV =0, and so (UxW)n~
~f=10. From the results in (a) and (b) we conclude that f is a closed
subset of AX X ¥; so X, being homeomorphic to f, is a Hurewicz space.
The proof is complete.

From Theorem 3.1 and Theorem 3.10 we have

COROLLARY 3.11. If f is a perfect map from a regular space X onto
a regular space Y, then X is a Hurewicz space iff ¥ is o Hurewicz space;
i.¢., the Hurewicz property is perfect.
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