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On convex metric spaces VI

by
W. Nitka (Wroctaw)

§ 1. Introduction. The present paper is a continuation of some earlier
studies of the following two problems:

I. Is every n-dimensional G-space a manifold?

II. Is every n-dimensional compact SC-WR-space a cell?

The first problem has been raised by H. Buseman ([4], p. 403). The
second, communicated to us [7] by K. Borsuk, is a modification of an
earlier one, raised by R. H. Bing [1].

Both problems, I and II, were solved affirmatively for n < 3: the
first in [4] for #» < 2 and in [5] for » = 3, the second in [7] for n < 2 and
in [10] for » = 3. )

In general, however, only some partial solutions are known (see § 3,
[4] and [8]).

In [8] problem II has been solved positively by assuming that
the space has & so-called CT-preperty. The aim of the present paper,
announced earlier in [9], is to investigate that property in relation to
the two problems I and IIL

We show that the CT-property assumed locally at a point yields
the positive solution of problems I and II (§ 4, Corollaries I and II).

Under the OT-property assumed locally at each point we obtain
some strong local properties for G-spaces and SC-WR-spaces (§ 5, Corol- -
laries T and II).

§ 6 is a kind of introduction to § 7, although Theorem 3 can perhaps
be of some interest for itself.

In § 7 it is shown that G-spaces and SC-WR-spaces possess stronger
local properties than those of § 5 and finally in § 8 we state an equivalent
form of the local OT-property in terms of elementary geometry (Corol-
laries T and II).

The author wishes to express his thanks to Dr. R. Duda for his very
valuable help in the preparation of the paper.

§ 2. Definitions and notation. The notions and notation not defined

in the paper are derived from [7] and [8]. Let us recall some of them.
10 — Fundamenta Mathematicae, T. LXXIV
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Let (X, o) be a metric space with a metric ¢. The set B(p, )
= {z: (p,x) < &} is called a closed metric ball, B(p, &) = {z: 0(p,2) < &}
is a metric ball; zzy means that z lies between » and y, Le. that g(z, 2)+
+olz,y) = o(z,y). A triple {a,b, ¢} is linear if one of.pomts a,b,c lies
between the other two. A segment with end points , ¥ is an arc joining z
to ¥, isometric to a BEuclidean segment; if unique, it is denoted by zy.
A metric space (X, g) is convex, and then g is conves, if every pair z, y
can be joined by a segment. Segment ¥z is a prolongation of zy in 4 C X
(through y) if y, # € A and xyz. A prolongation is proper if y # 2. A segment
with no proper prolongation in 4 is called mazimal in 4. A g-cone
C,(4,7) over A C X with vertex v ¢ X is the union of all segments vg,
where a e A. A subset B,(4, ¢) of all points a ¢ A such that va is maximal
in 4 is a base of C,(4, ). :

We adopt the weakest form of local convexity [3]; namely, a metric
o is said to be locally SC (strongly convexr) at a point p ¢ X if there exists
a neighbourhood U of p such that for each pair of points z,y ¢ U there
exists a unique segment Zy (not mecessarily in U).

A metric ¢ has the CT'-property (convew iriangle property) if a o-cone
C(y, v) is convex for every x,¥, v ¢ X; a metric ¢ has the OT-property
locally at a point p if there exists a neighbourhood U of p such that CT
holds for every x,y,ve U.

A metric o is WER (without ramifications) if pgr, pgs and p # ¢ implies
prs or psr. This property will be localized in a standard way.

A metric p has the local prolongation property at p ([4], D. 33) if there
exists a neighbourhood U of p such that for every #, y ¢ U the segment zy
has a prolongation in X.

If & property holds locally at every point p e X , then we say that X
has that property locally. .

A metric space is a G-space in the sense of H. Buseman [4] if it is
finitely compact, convex, WR and has the local prolongation property.

§ 3. Some characterizations. Following R. H. Bing and K. Borsuk [23,
we say that a space X is locally homogeneous it for every two points
1, 5 € X there exists a homeomorphism % ma.pping a neighbourhood U
of r, into X and satistying the requirement % () = zx,.

It is known ([2], p. 106) that an n-dimensional complete, connected,
locally eontractible space is a manifold if and only if it is locally homo-
geneous and contains topologically a Ruclidean n-ball.

It is also proved ([4], D. 49) that any G-space is locally homogeneous
and Ioeaﬁ.ly SC (ibid. p. 39), whenece it is locally contractible.

Putting together those results we conclude that

3.1.Z lAn n-dimensional G-space is a manifold if and only 4f it contains
an n-cell. :
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Similar results were obtained in [8] for SC-WR-compact spaces.
In particular,
3.2. An n-dimensional SC-WE compact space is a cell if and only
if it contains a conver n-cell.

§ 4. Local CT-property at a point. Each 2- dimensional compact SC-WR -
space has the CT-property and so it is a 2-cell [8]. In a 2-dimensional
G-space the CT-property holds locally [4], p. 81 and [8], 11.8, and so
such' & space is a 2-manifold. A common generalization of these two
results will follow from

TEHEOREM 1. Let (X y 0> be a melric space of finite dimension. If B(p, )
is a compact metric ball in which a metric g is SC-WR-CT, then for every
0 < e<<r metric ball B(p,e) contains a convexr cell § such that dim@
= dim B(p, 7).

The proof will follow from the six lemmas below:

41. If A is closed and C,(A,v)C B(p,r), then C,(4,v) is closed.
If, moreover, A is convez, then Co(A,v) is convex.

For the proof see [8], 4.3 and 10.3.

Recall that the Beone M denotes the space obtained from the Car-
tesian product M x [0, 1] by the identification of the set M x1 to one point.

4.2. If B,(4,v) is closed, Co(Ad,v)CB(p,r) and v ¢ By(4, v) then
Cy(4, v) is homeomorphic to the Beone B,(A,v).

The proof runs as in [8], 6.1. .

The following two lemmas will be used in the inductive construction
of a convex .cell @.

4.3. If C,(ab,v)C B(p,r) and a triple {a, b, v} is not linear, then
C,(ab, v) is o comvex disk.

The proof follows from [8], 6.4 and from 4.1 and 4.2 above.

4.4. If Qi is a convex k-cell, k=2, v ¢Qx, Co(Qx,v)C B(p,r) and
o(v, Q) < o(v, BAQw), then B,(Qr,v)= Qr and Co(@r,v) 18 a  conver
(k+1)-cell.

Proof. It follows from 4.1 that the g-cone C = C,(Qx, ) is closed
and convex. Since the set € is contained in B(p, r), we infer that {(C, g>
is a compact SC-WR-CT-space. Thus there exists a point a e IntQ
such that 5@ ~ BdQ = 0. Applying 14.2 from [8] to the space 0, we ggt
the equality B,(Qx,v) = @x. Now, according to 4.2, the p-cone C is
a (k+1)-cell. ) )

The following lemma results directly from the triangle inequality:

45. If 0<dn<r, ACB(p,7), and o(v,A)<mn, then C,(4,?)
C B(p, 4n).

The last lemma asserts a kind of homogeneity of B(p,7)
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4.6. If O0<4dn<r, geB(p,n), 0<% <u, then dimB(q, 7')
= dim B(p, 7).

Although B(p,r) is not an SC-WR-space, the ¢-homotopy H, ,

defined in [8], § 5 is & homeomorphism for any & and ¢ such that %t —1 0;
hence B(p, n) contains a homeomorphic copy of B(p,r). F_or the same
reason the g-homotopy H, defined in the g-cone C’Q(B (®,m),4q) is
a homeomorphism and by a suitable choice of k and ¢ we obtain a homeo-
morphie copy of B(p,r) in B(q, n’).

Proof of Theorem 1. We may suppose that 0 < de<yp. If
dim B(p, ) = n> 0, then, in view of 4.6, it suffices to show that B(p, e
contains a convex cell @ satisfying the following condition:

(C) i ae<Int, then there exists a g, 0 < pu < o(a, Bd@), such that

Ba, p) CQ.

We proceed by induction. Put 7= ¢/4"*"" and take a point g # p
such that @, = pq C B(p, n). If Q, does not satisfy (C), we find a poing
aeInt@;, 0 < u < min(y, o(a, BdQ,)), and a point v B(a, #N\@:. Then
the triple {p, ¢, v} is not linear, and by 4.3 the g-cone @, = C,(pg, v)
is a convex disk. According to 4.5 we have 2. C B(p, 4n). Now suppose
that @m is a convex m-cell contained in B(p, 4" y), 2 < m < . It On
satisties (C), we take Q = Q,, and the proof is finished; otherwise ‘we find
a point a eIntQm, a number x with 0< y < min (7, ¢(a, BdQu)), and
a point reB(a, u\@m. Then, by 4.5, Co(@m,v) C B(p, 4m-9) C B(p, ¢).
From 4.4 we infer that Q.. = Co(@m, v) is a convex (m +1)-cell contained
in B(p,4™.n). ‘

In this way we must come at last to g convex cell @ C B(p, &)
satisfying (C).

From Theorem 1, 3.1 and 3.2 we infer two important corollaries:

CoroLLARY L. Every - dimensional G-space which has the OT- property

locally at a point is a manifold.

This has been suggested by K. Borsuk and A. Lelek.

CorOLLARY IT. Erery u-dimensional 8¢ -WER-compact space which has
the CT-property locally at a point is a cell.

This is a generalization of the Main Theorem in [8].
) § 5. Ilfterior points. Every point of a 2-dimensional G-space is an
interior point of a sufficiently small disk ([4], p. 51). The same holds for
every interior point of a. 2-dimensional SC-WR-cell. In fact, in both

f;a,se.s a sufficiently small disk may even have the form of g 2 -simplex,
Le. of a p-cone over a segment. In both cases the interior of a disk is
also convex. .

A generalization of thege results will follow from
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TEEOREM 2. Let (X, 0> be a metric space of finite dimension and let
B(p,r) be a cloie(l metric ball in w_hﬁz’ch a metric ¢ is compact, SC-WR-(T.
If for any x e B(p, ) a segment P has a prolongation (through p), then,
for every 0 < e<r, the metric ball B(p, &) contains a conver cell Q such
that dim@Q = dim B(p,r) and p e IntQ. :

The proof will be modelled on those of § 4.

It Cp(4, u) and Gy(4,v) are contained in B(p,r) and if wo ~ 4 = 0,
we pub . '

Co(4,u, )= Co(4, u) v Co(4,2).

We have

5.1. If A is closed, then Cy(A, w,v) is closed. If, moreover, A is convex,
then Op(A, u,v) is conves.

Proof. By 41 both o-cones of the union C,(4,u,v) are closed;
hence Uy (4, u,v) is closed. Moreover, if 4 is convex, both p-cones are
convex. So in order to prove the convexity of C,(4, %, 0) it suffices to
suppose that a e 0y(4, u),b € 0;(4, v), and to prove that ab C O,_,(A_,_u, ).
Let a,, b, ¢ A and let a eua;, b e vb,. Consider a g-cone €, = O, (uw, by).
We have ub C €, and, denoting by ¢ 8 point from up ~ 4, we have cb, C 0;.
By the convexity of A we have cb, C A. Denote by b, & point common
to ¢b, and b, the existence of b, being obvious (comp. [8], § 11), and

consider the g-cone Cp = 0,(ub, a;). We have
Oy = Oy(tuby, @) w Oo(baby @) = O(a10y, ) v Cp(arby; ) C Co(4, u, ) .

Evidently, a, b e ¢, whence abC C,, and this ends the proof. ‘
By a dBecone M we denote the space obfained from the Ca.rtesx‘a‘n
product M X [—1,1] by the identification of the set M ‘><1 to one point
and M x —1 to another one. _
5.2. If By(A,u)= By(4,v)= A4, A is compact .tmd CONVEs, uv;
NA#0 and u,nd A, then C(4,u,v) is homeomorphic to the t-ZBoom .
Proof. By 4.2 C,(4,u) and C,(4,v) are homeomorph.;catoAthi
Beone A4; hence it suffices to show that the common pari? o thg(b,své
and C,(4, v) is equal to A. Let a ¢ u% ~n A. Evidently, 4 being eAa. y
wa nva = a and v ~n A = a. We shall _SEOW that for any by, by € .v:;e
have ub, ~ b, C A. Consequently, ub, ~ vb, consist of ab mo% one Tp())& '
For supposing the contrary, we would have a point ¢ e (u (11 n o \;oul di
whence b, 5 ¢ # b,. By the CT-property, the' segments b, & an tc:: N
have a common point z, and by the convexity of 4 the poin uid o
belong to A; this is a contradiction, because the segment b, WO
the base A in two different points b, and 2. . i .
5.3, If p e Tntab, @b ~ v — p, u#Dp # v and Oyab, u,9) CB(,7),
then Cy(ab, u, v) is a convex disk and p is ils interior point.
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__Proof. In view of 5.2 it suffices to show that B,(ab, u) = B,(ab, v)
= ab. Observe that neither the triple {,b, u} nor the triple {a, b, v}
is linear, for otherwise p would be a ramification point. For the same
reason the triples {u, v, a} and {u, v, b} are not linear either. It is known
(comp. [7], 5.6) that B,(ab,v) = a;b, C ab. If we had ¢, # a, then vaa,,
aa;p and a, #p. We would then get a contradiction, because in the
convex disk Cy(uv, a) a, is an interior point (comp. [8], 6.2) and Oy (up, a)
is star-like ([8], 9.1), i.e. every segment passing through an interior point
meets a boundary of Cp(ut,a) in one point at most. In an analogous
way we show that b, = b and that B,(ab, u) = ab.

54. If Qx is @ convexr k-cell, where k> 2, p e IntQy, p € wv, u,v ¢ Qr,
elu, p) < olu, BAQ), olv, p) < o(v, BadQr), then Qryi= OQ(Q’M Uy ) 08
a conver (k-+1)-cell and p e IntQp1.

Proof. By 4.1, Co(@, #) is & compact SC-WR-CT-space. Applying
14.2 from [8], we have B,(Qr,u)= Qi. Analogously, B,(Qx, v) = Q.
From 5.1 and 5.2 we infer that C,(Qw, u,v) is a convex (k-+1)-cell
Evidently, p is an interior point of this cell. ’

Proof of Theorem 2. Now the p_roof is similar to that of Theorem 1.
Suppose that 0 < 4 << r and let dimB(p, r) = x. Applying 4.6, we have

to show that B(p, ) contains a convex cell Q satisfying the following
condition:

{C"})  peIntQ and there exists a g, 0 < u< o(p,BAQY), such that
B(p, n)CQ.

Put 4 = s/4""" and choose @, — ab such that p « Intab and ab C B(p, n).
The existence of ab is ensured by 4.6 and by the assumed prolongation
of segments through p. If Q, does not satisfy (C'), we can find 0 < p
< min(y 3_9(177 Bdg,)) and a point v e B(p, u)\@:» Then prolong the
segment vp through p and find a point % in B(p, u) such that p e uv and
U # » # v. Evidently, ab ~up = p, for étherwise p would be a ramifi-
ca,tlox% point. By 4.5 and 5.3 the set Qs = C,(ab, %, v) is a convex disk
contained in B(p, 4y) and p is an interior point of @,. Suppose that Qn, is
% convex ?71,-(3311 contained in B(p, 4™ '.9), 2 < m < 7, and that P e Int Q.
It (_Qm sa,tu?ﬁes (C), put @ = Qn, and the proof is finished. If Q,, does not
satisfy (C'), we can find a number p, 0 < 4 < min(», ¢(a, BdQm)), and
a point » such ‘tha;t ve€B(p, u)\@Qm. Then we prolong the segment 7p
through p and find a point « in B(p, p) such that p eup and u = pFE0.
By 4.5 Cy(Qm,u,v)CB(p,4™.y) CB(p,e), whence by 4.4, B,(Qm,?)
= Qm. Consequently, u ¢ . Applying 5.4, we see that Omi1= Co(Qum, u, )
15 & convex (m-+1)-cell and p €IntQpy. In this way we must come ab
last to a convex cell @ CB(p,e) satisfying (Q).

From this theorem and from 3.1 and 3.2 we now infer two corollaries.
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CorOLLARY L. Huery point of an n-dimensional @-space with the local
OT-property is an inderior point of a sufficiently small convexr n-cell.

CorOLLARY II. Hvery n-dimensional compact SC-WR-space with the
local OT-property is a cell and each interior point of it is an interior point
of a sufficiently small convex - cell.

Remarks.

1. In both cases sufficiently small cells are SC-WR-eells and so,
by [8], 9.1, their interiors are convex open eells.

9. In both cases suficiently small cells satisfy condition (C) from § 4
and so their interiors are open subsets of X.

By a slight modification of the proof of Theorem 2 one can show that

3. Every interior point of an =-dimensional SC-WR-CT-cell @ is
an interior point of a convex hull of an (n-1)-tuple contained in Q.

The same result follows also directly from Theorem 4 below.

§ 6. Straight CT-spaces. A G-space is called a siraight space ([4], § 8)
if every pair of its points determines a unique straight line, i.e. a set
isometric to a Euclidean line.

A straight space X is Desarguesian ([4], § 13 and § 14) if X can be
mapped topologically on an open convex subseb C of the n-dimensional
affine space A” in such a way that each straight line in X goes into the
intersection of ¢ with a line in A"

Taking any Euclidean metrization of A" in which the affine lines
are Buclidean straight lines and calling a homeéomorphism which preserves
the metric betweenness & linear homeomorphism, one can say that
a straight space is Desarguesian if it can be imbedded in E" by a linear
homeomorphism.

As is known ([4], p. 68), a 2-dimensional straight space is Desar-
guesian if and only if it satisfies the Desargues property. A higher-di-
mensional straight space is Desarguesian if and only if any three points
of it lie in a plane, i.e. in a 2-dimensional subset of X which, with the
metric of X, is a G-space ([4], p. 76).

The following theorem explains the role of the CT-property taken
globally: ’ -

THEOREM 3. For n > 3, any n-dimensional straight space (X, p) 8
Desarguesian if and only if it has the OT-property. B

Take three non-linear points a, b, ¢ ¢ X. By 4.3 a g-cone D = Cyplab, ¢)
is a convex disk. Let v e IntD, and let, for any z # 2, Es deno_te a T3y
through 2 with the origin v, i.e. v, % ¢ By and there exists an isometric
mapping i of R, onto non-negative reals B* with i(v) = 0.

Put

P=|JRy,, where zeBdD.
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In a sequence of lemmas we shall show that P is a 2-dimengiona]
G-space.

6.1. If z,ye X, 2e Ry ~ Ry and 2 # v, then By = R,.

The proof is obvious.

6.2. DCP.

Indeed, PO BAD and v ¢ P. If 2z e IntD and 2 # v, then the Segment
vz has a prolongation in the SC-WR-disk D to a point % ¢ BAD (see [8],
74). By 61 R,= R,. Consequently, z ¢ R, C P. )

6.3. P is closed in X, whence P is a finitely compact space.

The proof follows from the lemma on the convergence of geodesics

‘in a G-space ([4], p. 40) and from the compactness of Bd.D.

6.4. dimP = 2.

As & matter of fact, P is homeomorphic to the cone over BdD,ie. to
the set BdD X R+ with BdD x 0 identified with a point.

6.5. P is conver.

Let p, g € P. We have to show that pg C P. Tf either one of the points
P, ¢ is equal to v, or p, gD, or the triple {p, ¢, v} is linear — the proof
is trivial. So it remains to consider the case where PeRs,qeRy, 2,y e BAD
and neither the triple {x, y, v} nor the triple {p, ¢, v} is linear. Now we
have three possibilities to consider: 1° vep and vyg, 2° vpz and vyg,
3° riep and vgy. 1° A p-cone Co (PG, v) is an SC-WR-disk, so for any t e Pq
the segments »t and Zy have a common point z (comp. [8], § 11). The
point z belongs to Zy, so z¢ D and 2 # 0. By 6.2 there exists a point
2’ « BAD such that z e Ry; evidently, R, CP. Bub z ¢ R, ~ By, whence,
by 6.1, we have ¢t ¢ P. 2° We have vaz and vyq. Since neither {v, », y}
nor {v, , ¢} is linear, we infer from 1° that @ C P and v ¢ 7g. Consequently,
& convex disk (o(xq, v) is contained in P, and so by pgC C,(@q, v) we

see that pg is in P. 3° In view of the Symmetry of the assumption, the
proof is analogous to that of 2°.

6.6. P has the local prolongation property.

‘We have to show that to every point p ¢ P there corresponds a positive
number g, such that for any two distinet points %,y € P with o(p, z) < gp
and o(p, y) < g, there exists a point 2 ¢ P such that =y a,nd’ ayz. If
P «IntD, the proof follows from [8], 7.4 and o, > o(p, BdD), so we may
suppose that p ¢ IntD; in Darticulax, p 9. Take gz point m’eIntD not
hne‘a,r with P and v and find a point Y € D such that o €Ty, ¥ % v. Now.
taking a:_pomt z_eRp such that p e%z and » 7P, we see ’tha,t a triplé
{z, ¥, 3} Is not hnfsar, whence Co(77, 2) is a convex disk. By 6.5 such
@ disk is eontained in P and it ig obvious that p is its interior point (comp.
[8], 6.4). By an application of [8], 7.4 the proof is completed.

icm®

On conver metric spaces VI 14

6.7. P is a straight space.

The proof follows from 6.5,

6.6 and from the assumption that X is
a straight space. )

§ 7. Local linear homeomorphism. Although the interior of an SC-WR-
cell is not finitely compact, it has some Properties of a straight space.
In particular, it is convex (cf. [8], § 9) and has a local prolongation
property ([8], 7.2). Moreover, any segment joining two interior points
has a unique prolongation on both sides to the segment whose end - points
lie on the boundary of a cell. So, in view of a result of H. Buseman ([41,
(13.1) and (14.1)), it is natural that the following theorem holds:

THEOREM 4. If <@, o) is an 8C-WR-CT n-cell and n = 3, then IntQ
is o Desarguesian space, i.e. there exists a linear homeomorphism of IntQ
into B".

It is not surprising that the construction of such a specialized homeo-
morphism will be quite long (eomp. [4], p. 65). Neither can we hope that
there exists a remetrization preserving linearity and such that the inferior
of an SC-WR-CT-cell becomes & straight space (if it were 50, Theorem 3
could be applied). Fortunately, H. Buseman’s proof of theorems (13.1)
and (14.1) (cf. [4], p. 68-80) works almost literally in our case, and so
we confine ourselves to pointing out some slight modifications in it.

Following H. Buseman, decompose the proof into two parts:

Part one. 2-dimensional case. For any two points a,b in the
interior D of an SO-WR-disk Q let g(a,b) denote the segment with
end-points on the boundary of @ which contains @ and b. The existence
of g(a,b) follows from [8], 7.4. Considering g(x,b) as a geodesic and
thus modifying the meaning of a geodesic in relation to Buseman’s book [4],
we assume the Desargues Property in the form written in [4], p. 67-68.
Now we have

71. If D s interior of an SC-WR-disk in which the Desarques
Property holds, then there ewists a linear homeomorphism of D into an affine
plane A2, ‘

By [8], 9.1, D is convex and by [8], 12.1 and 11.8 D possesses Paseh’s
Property. The econvergence of geodesics in the modified sense is obvious
(comp. [8], 2.5). Now the rest of the proof is the same as in [4], p. 68-75.

Part two. Higher-dimensional case. Let <Q,¢> be an
SC-WR-CT #-cell, where n > 3. We call a subset L of @ flat if L is
& convex cell and the boundary of I is a subset of the boundary .of ¢.
If L has dimension 7, we call it briefly r-flat. We admit also a trivial
flat consisting of ome or zero points.

We begin with
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7.2. Any three non-linear points éf IntQ lie in o 2-flat.

Proof. Take three non-linear points a, b, ¢ ¢ IntQ. By 4.3 the p-cone
D= C,{ab, ¢) is a convex disk. Let » e IntD and, for any x # v, let the
set R, denote a maximal prolongation in @ of a segment vz. Put

P= | JRy;, where xeBdD.

One can easily see that P is a disk and that the boundary of P lies
in BdQ. Finally, the convexity of P follows from the argument analogous
to that in the proof of 6.5.

7.8. If p is an interior point of a flat L and » e L, then the mazimal
prolongations of px in Q and in L are equal.

The proof follows from the fact the maximal prolongation of a seg-
ment pZ in an SC-WR-cell with o in the interior of such a cell meets
the boundary once only ([8], 9.1 and 7.4).

7.4. The intersection of two flats is a flat.

Proof. The intersection B of two flats I’ and L" is evidently compact
and convex. So, except for a trivial case where B contains one point
at most, it is a cell. I remains to show that BdBC BdQ. As follows
from [8], 9.1 and 7.4, for any 2 <« BAB and any p e Int B the segment px
is not prolongable in B. Now if x ¢ BAB\Bd(), then the segment p& would
be prolongable in @ (up to the boundary of @), and so by 7.3 it would

be prolongable in L’ and in L”, whence it would be prolongable also
in B: a contradietion.

7.5, Any r+1 points of IntQ which do not lie on any v -flat Ly, where
7' <r, lie on at most one r-flat L,. ‘

The proof goes exactly as in [4], (14.2) with only a slight modification
at the end. Namely, under Buseman’s notation, we obtain the following
formulation: Unless L’ = L”, one of these flats, say L, contains a point p
not contained in the other, I/. Now, no segment ps with x ¢ IntB can
interseet Int B twice, because otherwise, by 7.3, #p CB C L'. So IntB is
a base of the g-come ¥V = (,(IntQ, p). This base contains an r-di-
mensional cell and so, by 4.2, ¥ contains an (r+1)-dimensional cell.
On the other hand, ¥ CL": a contradiction.

Xow the proof of Theorem 4 follows as in [4], p. 76-80.

Theorem 4 together with Corollaries T and IT from § 5 implies the
following two corollaries:

. CoROLLARY I. Every point of an n-dimensional G-space, where n > 3,
w.rth the local CT-property is an interior Dpoint of & comvex n-cell which is
linearly homeomorphic to a Buclidean n-cell.

CDR(?LLARY II. Buvery n-dimensional SC-WE compact space, where
n > 3, with the local CT-property is a cell and each of its interior points
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is an interior point of a conver n-cell which is linearly homeomorphic to
a Buclidean n-cell.

§ 8. Locally Desarguesian spaces. An #-dimensional sepafable metric
space (X, ¢ is called locally Desarguesian if each point p ¢ X has a con-
vex neighbourhood U which can be transformed by a linear homeo-
morphism onto an open subset of E".

It is obvious that

8.1. Bwery locally Desarguesian space is a topological manifold (without
boundary).

8.2. Every locally Desarguesian space has the local CT-property.

By § 5 Remark 2 and 8.2, Corollary T from § 7 can be expressed in
the following form

CorROLLARY L. Buery n-dimensional @-space, where n = 3, is locally
Desarquesian if and only if it has the local OT-property.

In a compact SC-WR-space the end-point of a maximal segment
is called a fromtier point and the set of all frontier points of X is denoted
comp. [7 . 185).
o FI(tz;s’ igel(l kﬂ£W1[1 171151) F(X, o) is contained in the set L(X, ) of all
homotopically labile points (comp. [8], 7.1). Recently B. Krakus [6] h@s
shown that in an n-dimensional compact SC-WR-space F(X, o) is
a closed (n—1)-dimensional set such that F(X, ¢) = L.(X , 0) ar}d 8 (X , 0)
= X\L(X, o) is convex. It follows that the set S(X,p)isan az-dmens19@1
open and convex subset of X. Moreover, §(X, o) has the local prolongation
perty.
PI'OIH 3.7X is an SC-WR-cell, then 8(X, ¢)= IntX ([8], 7.2).
Whence and from Corollaries II of § 4 and of § 7 we infer that
COROLLARY IT. A subset 8(X, o) of & compact n-dimensional 8C-WR-
space is locally Desarguesion if and only if it has the local CT -property.
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An algebraic equivalent of a multiple choice axiom

by
M. K. Armbrust (Kéln)

Adopting the notation of Bleicher [1], let F'S, be the following
statement: ,

For every set G of non-empty sets there exists a function f defined
on G such that, for each T € G, f(T') is a non-empty finite subset of T.

It has been shown (op. cit.) that FS, can be derived in a suitable
set theory without the axiom of choice (e.g., the system S of Mostow-
ski [4]) from the assumption that there exists a field ¥ such that, for
every vector space V over F, each subspace of V is a direet summand of V.

Now a vector space over the rationals is the same thing as a torsion-
free divisible abelian group. So, clearly, if we assume the apparently
stronger condition that, for every abelian group 4, each torsion-free divis-
ible subgroup of A is a direct summand of 4, then FS, can be effectively
proved. It turns out, in faet, that this condition is equivalent to 7'S;.

TrrorEM. TS, effectively implies that, for every abelian group A, each
torsion-free divisible subgroup of A is a direct summand of A.

Proof. Let D be a torsion-free divisible subgroup of 4. We wil
construct & homomorphism h: A D such that h(d)= d for each d eD.
To this end, let f be a multiple choice function for the set of all non-empty
subsets of 4, and let g be a multiple choice function for the set of all
non-empty sets of homomorphisms from subgroups of 4 into D. The
following recursion defines a chain of homomorphisms %, from subgroups B.
of 4 into D such that D C B, and hi(d) = d for each d e D:

hy = idp .
If ¢ is a limit ordinal,
o = | By
p<a

Tf = f41: Let H Dbe the set of all homomorphic extensions of Ay to
the subgroup generated by Bs and the elements in f(A\Bs). The proof
that H is non-empty is completely constructive since F(A\Bp) is finite,
even if D were not torsion-free. Let g(H) = {h1, ..., hn}. Then we define

Iza=%(hi+...+hh)-
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