g-continuous extensions of maps on X

by
L. Rudolf (Wroctaw)

In [5] was given a characterization of continuous maps f: X —+¥ of
a Hausdorff space X into an H-closed Hausdorff space Y possessing
a continuous extension zf: 7X —Y on the Katétov H-closed extension tX
of the space X, and it was shown there that not every continuous map
has such an extension. However, under certain assumptions on the space ¥,
even each continuous map f: X -Y has a unique 6-continuous extension
7f: ©X »Y. Since 0-continuity (a notion due to Fomin [3]) seems to be
3 reasonable generalization of continuity in the theory of H-closed |
spaces, the question was raised in [5] which continuous maps f: X Y
of a Hausdorff space X into an H-closed space ¥ possess a 6-continuous
extension f*: vX —»¥ and when f* is unique. In this paper some results
in this direction are given. Also the case of non-unique extensions is
discussed.

1. Preliminaries. The Katétov H-closed extension of a Hausdorff
space X was defined originally in [4] as the set vX consisting of the points
of X and all open ultrafilters without adherence points in X with topology
generated by open subsets of X and sets of the form U= {§}v T,
where £ is a point of vX —X and U ¢ & Observe that

ClLxUs=ClxU v {ferX—X: Ueé}.
A map f: XY is called 0-continuous [3] if for each x e X and for
each open neighbourhood U, of y = f(z) there exists an open neighbour-

hood U, of x# such that f(ClU,) C OlU,. Clearly, a continuous map is
6-continuous. These notions coincide if ¥ is regular.

2. The form of the continuous extension zf. The proper maps, i.e. maps
f: X 5T of a Hausdorff space X into an H-closed space Y having a con-
tinuous (consequently, unique) extension 7f: vX »¥, were characterized
in [5], theorem 4.4, by the condition

(1)  for each y ¢ ¥ and each open neighbourhood Ty of y, there exists
an open neighbourhood V, of 4 such that

Intf(C1V,) C Olf (Ty) .
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The existence of a continuous extension <f of a proper map f wag
proved in [5] by a categorial argument, but no formula describing the
form of tf was given. To write this formula, suppose that for £ ¢ +x — X,
the symbol U(&) denotes the family of all open subsets U of ¥ containing
f(U") for some T’ eé.

2.1. The map tf: ©X »Y defined by the formula of (z) = f(@) for we X
and f (&) = (V{CLU: T e W(&)} for & exX—X is the (umique) continuous
extension of a proper map f: X Y.

Proof. First let us prove that the above definition of zf is’correct,
ie. ({OIU: U eW(£)} is a one-point set for each £ezX— X, Since
Us(£) is a centred family of open sets (UDf(U’) and VD F(V') imply
UnVOf(U ~V')+0) in the H-closed space Y, there exists a point

yeN{CIU: UeW(&)} This point is uniquely determined Dby & and,
moreover, we have

(2) f{U)e& for each U,.

To prove (2) observe that
(3) ClUy nf(U)£ @ for each U, and U e £,

for it C1U, A f(U) = @, then F(U)C Y —ClUy; thus ¥ —ClT, « W(£) and,
by the definition of y, we get y e C{Y -C1U,) C Y—Uy a contradiction.
Now, if f7Y(T,) ¢ & for some U, (contrary to (2)), then there exists, by
& known property of ultrafilters, & Ue& such that FHO) AU =0.
But f being a proper map, there exists a V, with Intf’l(ClVy) C CIf ™ Ty).
Then the open set U’ = [ — FHC1Y,) is dense in. T and therefore U’ ¢ &,
since open ultrafilters contain all dense and open subsets of each, element.
By the definition of U”, we have U’ n fHC1V,) = @, whence CIV, ~
nf(T) =9, contrary to (3). Thug (2) is proved, which means thas
U et for each U, whenever y ¢ {C1U: U € U:(8)}. Since Y is a Haus-
dorff space and & does not contain disjoint open sets, there is one
such y only. Therefore we are allowed to define f(£) to be the only point
in the set ) {CI1T: U «Us(£)}

It is easy to see that 7f is continuous: taking for 2 ¢ X and for an
arbitrary U,‘:’(z) the set U, = f~(Uyy) as an open (also in 7.X) neighbour-
hood of z, it follows that F(Us) = f(Uy) = Usw; and taking as U, for
feX—X an arbitrary neighbourhood of y — 7f(£), we have fYU,) <&

by (2), so that Us= {8} w5 Y(1,) is an open neighbourhood of £ in z.X
for which

O =10~ Z) (U (X —00) = (740,  apie) = 1,

)} =N{CUf(U): Ued,

or each U ¢ &, whence

‘ Remark. It is broved, in faet, that W} = {=f (&
since from (2) it follows “that FHUUN AT 20 ¢
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Uy~ f(U) # @ for each U, and U e £ This means in particular that f has
the property () {CLf(U): U <&} # O for each &evX —X. Thig property
of a map f is equivalent to (1), as shown by Blaszezyk and Mioduszew-
gki [2], theorem 27,

3. Necessary conditions for the existence of 6-continuous extensions. The
equivalence of the following conditions, although almost obvious, is
proved for use in various situations later on.

3.1. For a continuous map f: X =Y and arbitrary points & erX —X
and y e Y the following conditions are equivalent:

“(a) for each Uy there ewists a U <& such that f(U) CClU,,

(b) Intf HClU.) € & for each Uy,

(¢) e M{CLU: U e U(&)}.

Proof. (a)=-(b). Observe that if (a) holds, then for each U, and
each U’ ¢ & formula (3) holds, ie. ClU, nf(U') = @.

To prove this, take for U,, according to (a), a set U e & such that
fU)CClUy. Then

Uy ~f(U) 2 CLUy A f(U N U)=f(U AT,

the equality being a consequence of the choice of U. Since U n T ¢ ¢,
the set f(U ~ U’) is non-empty and (3) follows. B

To prove (b), suppose on the contrary that Intf (ClU,)¢ & for
some Uy. Then Intf (ClU,)~ U= @ for some U ef, apd l]”.: [*_
—f7C1U,) is an element of & such that U’ ~ f(C1U,) = ©. This implies
ClU, ~ f(U') = @ for some U, and U’ €&, which contradiets (3).

(b) =(e). Suppose, contrary to (¢), that y ¢ C1U for some U ¢ WU(£).
Then UDf(U') for some U'eé and, since ye_lU, = Y—-CIU, we hgve
AUy~ f(U) C(Y—TU) ~ f(U')=@. Thus Intf (ClU,) ~ U’ = @, which
implies Intf Y (CLU,) ¢ £, a contradiction of (b). '

(e)=(a). Suppose, contrary to (a) that t}lere exists & Uy such that
(U)¢ OlU, for each Ueé Then (X—f (ClU)) ~U#@ for each
Ueg, whence X—f '(ClU,)=fY¥—ClU,) ek Bub ‘Fhetn Y-QU,
€W (&) and, by (c), y e CL(Y —~ClU,) C YUy, a contradiction. ’

The conditions just examined determine the form of §-continuous
extensions of f as follows: ‘ )

3.2. If f* is o (not necessarily wunique) 0—conlt-z.41,ﬂous extension of
1 XY on vX, and y = f*(&), then each of the conditicns (a), (D) and (c)
holds. _ )

Proof. It suffices to prove that, in fact, (a) hoids. To do this take
an arbitrary neighbourhood U, of the point y = f7(£). BEY the 61'7001;‘
tinuity of f*, there exists an open neighbourhood U:= {s}*UCIUU, EX ;
such that f*(C1U;) C C1U,. For this U thus f(T) C f(C1U) = f{(ClUe »
cau,.
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Remark. The condition (¢) states, in fact, that if f is extendeq
§-continuously to f*, the point f*(§) must be chosen among pointg
of the set [){ClU: U e WU(£)} as in the case of continuous extension
(however, in this case there is one such point only). Evidently, it is natural
to ask for conditions on the map f which ensure that there is only one
point in () {C1T: U ¢ W(£)}. By condition (b) this becomes an easy exer-
cise: we must guarantee that for each &ezX —X there exists exactly
one point y for which the family &, = {Intf (Cl1U,): U, running over
all open neighbourhoods of 4} is contained in &£ The existence of such
& point y is & consequence, in virtue of (b)<==(c), of the H - closedness of Y.
3.3. An wltrafilier & exX —X contains exactly one Fy iff for arbitrary
different puints y' and y" there exist Uy and Uy such that

(4) Intf {CLUy ~ ClU ) =0 .
Proof. (=). Suppose, on the contrary, that there exist y and Y
such that Intf (ClU, ~ClU,) #@ for each U, and U,. Then &

= {Intf (CIU, ~ C1Uy): ye Uy and y'e Uy} is a centred family of
open subsets of X, since

Intf(C1T, n C1Ty) ~ Intf {(C1V, ~ CLV,)
DIntf T CUTy A Vo) A CUTy ~ V) £ 0.
The family § has no adherence points in X:
MUCIT: UeFYCO{f (LU, A ClUY): y e U, and y’ e Uy}

=N {CT, ~ QTy: y e U, and o' e Uy}) = O
sinee
THATy ATy ye Uy and y' e Uyl =g}~ {y'} = B .
‘ Thus there exists an ultrafilter & without adherence points in X,
i.e. a point of 7. — X, containing & and, in consequence, both
contrary to the assumption.
(<= ). Since

v, and Jp,

Intf {CIT,) ~ Int “HOIT,) = Intf(C1U, ~ ClU,) = @
for some U, and U, whenever ¥y,

and Intf {(CIT,). In consequence,
family 5, and such

no filter contains both Intf (ClT,)

( each £ ¢ X — X contains at most one
a family indeed exists.

Remarks. Call 5 map f: XY a Uy
condition (4). Recall that a Urysohn space (
Hausdorff) is a space in which each two
separated by closed neighbourhoods,
and Uy. Thus each map into a Try

sohn map if it satisties the
called sometimes completely
different points y and y' can be
ie. ClU, ~ OlU, = G for some U,
sobn space is a Urysohn map. The

icm

0-continuous extensions of maps on X

115

TUrysobn maps ‘are of interest they possess a unique 6-continuous ex-
tension on =X, as theorem 3.5 brings out.

Call & map f: X X r.o.-proper (r.0. standing for “regularly open”)
it it has property (1) with respect to r.o. subsets of Y.

3.4. A map f: XY into an H-dlosed space is o Urysohn map iff
it is r.0.-proper.

Proof (=). Let Uy be an r.o. neighbourhood of y. Since f is a Urysohn

- map, then for each y' e Y —U, there exist an open neighbourhood T,

of y* and an open neighbourhood U,(y’) of y such that

(5) Intf (CLUL(y') ~ ClT,) = @ .

The family {Uy:y ¢ YU} is an open covering of ¥ —TU,, being
H-closed as a regularly closed subset of the H-closed space Y. Hence
there exists a finite family {U,,, ..., Uy} such that
(6) Y—-U,CCU, v ... v ClT,,.

Take Vy = Uy(y1) » ... » Uy(ys) — an open neighbourhood of y. Then

OV~ Ty) Cf“l(ClVy ~A(OlTy v ... v ClU,,,,))

= fH{CIV, A QlT,) v ...'w FHCLV, A C1Ty,)
CH(CLTy (32) ~ CLU ) © oo v f{CLT(yn) ~ CLT,)

the first inclusion being a consequence of (6), and the second one a conse-
quence of the definition of V. But f {(ClU,(yx) ~ C1Ty,) is, by (5),
a nowhere-dense closed subset of X for each k=1,..,n, whence
Intf ClVy,—U,) = @, or equivalently Intf *(ClV)C Clf (U,), which
means that f is r.o.-proper.

(<). Let y and g’ be different points of ¥. Then there exists an r.o.
neighbourhood T, of y such that y’ ¢ C1U, since Y is a Hausdorff space.
The map f being r.o.-proper, take for this Uy a ¥V, such that

] Intf (CLV,) C CIf (Ty) .

The set Uy = ¥ — ClU, is an open neighbdurhood of y and ClUy = ¥ —-Uy
since Uy is an r.o. subset of ¥, so that

Intf (OLV, ~ ClTUy) = Tutf (C1Vy) ~ Intf (¥ —Ty)
= Intf YOIV y—Us) = @

the last equality being a consequence of (7). Thus f is & Urysohn map.
Corollaries. A Urysohn map f: X »Y into an H-closed space Y
can be extended to zf: vX ~¥ by the formula

(f ()} = N {O1T: U e W(E)}
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frecall that by (c) of 3.1 and 3.3 this is the only possible 6 -contintoug
extension. — this enables us to use the symbol zf for it). This extension
happens, in fact, to be 6-continuous, which may be calculated by using
the technique of the proof of 3.4, but may be obtained also by the following
categorial considerations.

For a Hausdorff space ¥ let uY denote the set ¥ endowed with the
Hausdorff topology generated by r.o. subsets of Y. Let u: Y —=uY be
the corresponding contraction, i.e. the identity on the underlying set ¥,
The map p~*: p¥ -¥ will be called an ezpansion. If ¥ is I -closed, then
#Y is also H-closed, even a minimal Hausdorft space [4]. The map p—! is
6-continuous. By 3.4, each Urysohn map fi XY into an H-closed
space ¥ is a composition XL ¥~ pYEY of a continuous proper map
XLys #Y into 2 minimal space pY and a 6-continuous expansion
#Y=2Y. Note that the converse is also true: a composition X ¥ 7T
of a proper map X —Y into a minimal space ¥ and a 6-continuous ex-
pansion ¥ ¥’ (¥’ is then H-closed as 2 f-continnous image of the
H-closed space ¥) is a Urysohn map, since, by 34, X >Y is a Urysohn
map and expansions between H -closed topologies preserve regularly
closed sets [5]. ‘

3.5. Bach Urysohn map f: X Y into an H-closed space Y possesses
a urigue 0-continuous extension f: 1 X 7.

Proof. Take the decomposition X-, Y—’LMYEY of f. By theorem 4.4
of [5] there exists a continuons (consequently unique) extengion T(u o f):
X —uY of the proper map XL Y4 uY. The composition =X “—”EQ/JY": Y
of ‘the continuous (g of) and 6-continuous 47t 18 a 6-continuous ex-
tension of f, as may be seen in the following diagram:

x- = X
7 \<o]‘

Voo
Y wY

P
(observe that p-1. T(pef)ory = BT o o f = f),
The extension of f is unique, for if f* is any 6-continuous extengion

of f, then pof*cor=puof, since f* is an extension of f. This means
that gof* is an extension of y o 7.

Huo f)

[P

Tz
=
s //

7
7k

seft=1luoy)
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Since the extension of y o f is unique, thus 4 o f* — T(x ~f). Finally,
ff=p"rot(uof), and so the uniqueness of f* is proved. '
Remark. By compact-like Spaces we mean spaces for which p ¥
are compact (then T are necessarily 7 -closed). These are exactly the
Urysohn H-closed spaces. Thus each map into a compact-like space
possesses a unique ¢-continuous extension to X (e 5], p. 24).

4, Extending non-Urysohn maps. A map f+ X Y into an H-closed
space Y has a - continuous extension fr2X 57 iff the map uf: X Y »pT
into the minimal space u4Y has such an extension. The case of compact -
like Y (i.e. compact u¥) heing trivial, in the sequel ¥ is always assumed
to be a minimal and non-compact space.

ExAwPLE. Let ¥ be a subset of the plane consisting of the points
(-1,0), A, 0), (:tl/'n: l/m)y (0, l/m), where Ny M= 1, 2, ... Let the
topology on Y be gemerated by plane sets of the form

Uk = {(~1,0)} v {{(—1/n, Im): m=1,2,.. and m > I},
Ui = {1,0)} v {Afn,1fm): n=1,2,.. and m > k},

where k=1, 2, ... and the usual open neighbourhoods of points distinet
from (-1, 0) and (1, 0). The space Y is a minimal Hausdorff space and
is non-eompact, which is easy to check (it may be found in this or other
forms in the literature). .

Since Urysohn maps into minimal Spaces coincide with proper ones
(a consequence of 3.4), the problem reduces to the following: which
non-proper maps f: X »Y of a Hausdortt space X into a minimal and
non-compact space ¥ possess a 6-continuons extension ¥ X =Y and
when is f* unique?

ExAMPLE. Let ¥ De the subspace of T eonsisting of points (0, 1/m)
where m = 1, 2, ... The embedding 4: ¥ C Y is not proper at the points
(—1,0) and (1,0) sinece Inti {(ClU%)= Ints~(C1UF) = N—{(0, 1), ...
s (0,1/k)} % O for each k= 1,2, ...; meanwhile Cli™(Uy) = CLi™Y(UF)
=0 for each k=1, 2, ... .

Set Dy(Vy, Uy) = Intf {ClV,—U,). Observe that

(®) DAYy, Uy) A .. ~ DYVE, Uy) D DAVY A ... ~VE,T,) for each open
neighbourhood Vy, ..., Vs and T, of y

and

(9) it U,C Ty, then Dy(Vy,Uy) C DAV,,U,) for each open neighbour-

hood ¥, Uy, and Uy of 4.

A point y e Y is said to be f-non-proper if there exists an open
neighbourhood ¥, such that

(10)  Dy(V,,U,) £ G for each open neighbourhood V.

9 — Fundamenta Mathematicae, T, LXXIV
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In other woids, f-non-proper points are the points at which f is not
proper (such a point is 2 non-regular point of ¥, i.e. there exists a U,

such that ClVy ¢ Ty for each V).
Neighbourhoods Uy for which (10) holds are called f-non-proper.

1.1. The f-non-proper neighbourhoods of an f-non-proper point form
e neighbourhood basis.
Proof. Observe that the intersection Uy ~ Uy of an f-non-proper

icm

neighbourhood Uy and. an arbitrary open neighbourhood Uy is f-non-

proper since Dy(Vy, Uy 0 U,) contains by (9) the set Df(Vu,Uy.) ‘which
is by (10) non-empty for each V. Thus the sets Uy ~ Uy form a neighbour-
hood basis of ¥.

4.2, A point y € Y is f-non-proper iff there ewisis another point y' e ¥
such that

(11) for each U, and Uy .

Tntf H(ClU, ~ CLUy) # @

Proof. Since Y has a basis consisting of r.o. sets, this is a “locali-
zation” of theorem 3.4, and it was in fact proved there.

This means that each f-non-proper point y has “neighbours” y’ which
are also f-non-proper. Points y and y’ for which (11) holds are said to
be f-tangent.

Exampie. The points (—1,0) and (1, 0) are i-tangent,

The family F(Uy,f)= {Ds(Vy, Us): Vy running over all open neigh-
bourhoods of y} will be called the f-defect of Uy (more precisely,
of the pair (y,Us)). The notion of the f-defect is interesting for the
f-non-proper points and their f-non-proper neighbourhoods only, since
in this ease all members of F(Uy,f) are non-empty. In the sequel only

this non-trivial case is discussed.

4.3. F(Uy,f) is a cenired family of open sets of X which has no ad-
herence points in X.

Proof. Since, by (8), F(Uy,f) is submultiplicative, it is, all the
more, & centred family.

To prove that (U, f) has void adherence, observe that

N {OImtf (LY~ T): y e V}C O {FHCOIV,): 4 € Vb = (1)

(the inclusion follows from ClIntf-*(ClV,—U,)C f {(ClV,) and the
equality from {y} =\ {C1V,: y eV}
Simultaneously

(12)

(13)  M{CIIntf(CLVy—T.): y eV} CF 00, —T,) CF (T —T,) .

. Supposglthat zeX is an adherence point of F(U,,f). Then (12)
implies r ¢~ (y) and (13) implies 2 e (¥ — U,). Thus f () ~ f (T —T)
= 0 — a contradiction.
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The family 5 (y,f) = \U{F (U, f): U, running over all f-non-proper
open neighbourhoods of y} will be called the f-defect of ¥.

Remark. J” (¥,f) is a centred family whenever the family of
f-non-proper neighbourhoods is subadditive, i.e. for each Uy and T}
there exists a U, such that U} u Uy C T,. !

The proof of this, in view of the submultiplieativity of F(Uy, f),
reduces to the proof of the inequality

(14) DV, Uy) ~ . A Dy(V5,U3) # @ for arbitrary
DI(V;) U;) € ](U;uf)y ey -Df(V?:n U,;) Ey(té,f) .

To prove this, take an f-non-proper U,D Uju ...u U’,ﬁ, Which,
exists by hypothesis. Then, by (9)

(15) D{Vy,Uy) CDy(Vy,Us) for each i=1,..., k.
Let Vy = Vi~ ... A Vi Then, by (8)
DAVy, Uy) C DA(Vy, Uy)

’

(16) for each i=1,..,%.

Now, (14) follows immediately from (15) and (16), so the centration
of F(y,f) is proved.

In what follows it will be assumed that the f-defects of f-non- proper
points are centred, to avoid technical difficulties.

Finally, note that §(y, f) has no adherence points in X, since F(y, f)
contains Phe families & (Uy,f), having, in view of 4.3, void adherence.

Let 5(y,f) denote the open filter generated by F(y,f), ie. F(y, f)
={U: U open in X and UD DyV,,U,) for some DAV, U) e F(y, )}

f-tangent points y and g’ are said to be f-symmetric if Fly, )
= ‘T('y17 f )

ExamprE. From 4.2 it follows that a non-proper map f: X —7¥ has
at least two f-non-proper points which are f-tangent. Bach point y e ¥
except (—1,0) and (1,0) is regular in the space T; thus y is regular for
each map f: X Y. It follows, that for each non-proper map f: X »¥ of
an arbitrary Hausdorff space X into Y, the points (—1,0) and (1, 0)
are just the only f-non-proper points. Since these points are topologically
equivalent, there is & ((—1,0),f) = ((1,0),f)- Minimal spaces, which
can be constructed from copies of Y in a simple way without destroying
the equivalence of the points (—1, 0) and (1, 0) possess similar properties;
the one-point minimal and non-compact extension of the infinite disjoint
sum @ {¥;: t e T} of copies of Y (this extension is constructedjay adding
to @Y, a point p with topology generated by open sets of @ ¥: and sets
of the form Us= {p} v {¥i: te T—A}, A running over the family of
finite subsets of T), has the following property: & ((—1, 0), f) = F{(1, 0);, f)
for each f: X @Y, v {p} whenever f is not proper at points (—1, 0)
g%
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and (1, 0) of ¥; (the points (—1, 0) and (1, 0) are, as in ¥, the only
non-regular points of @ Y;w {p}) and, moreover, (—1,0); is f-tangent
to (1, 0); only.

However, f-tangent points are not necessarily f-symmetric. Let Y
be the “right halt” of ¥, i.e. the subspace of ¥ consisting of points with
non-negative first coordinates. Let Y, be the “left odd quarter”, i.e. the
gubspace of Y consisting of points with nom-positive first coordinates
and odd second ones and let ¥, be the “left even quarter”. Stick ¥, to ¥
along ¥’ ~ ¥, i.e. along the set of points of ¥ of the form (0, 1/2n—1);
in other words, consider the pushout diagram

then stick ¥, to ZC Y along ¥’ ~ Y¥,C Z, ie. along the set of points
of T of the form (0, 1/2n), that is, take the pushout diagram

T’ﬁ r2 d

| 2
{
| |
) v
Z W

It is easy to check that W is a Hausdorff, minimal and non- compact
space. There are three non-regular points in W — the point (1,0) of
Y'CW, the point (~1,0), of ¥,CW and (—1,0), of ¥,C W. The
point (1, 0) cannot be separated by disjoint closed neighbourhoods from
(-1, 0); and (—1, 0), (W is therefore not compact), since the sets C1Uy,q
meet all exeept & finite number of the points of the set N — {(0,1/n):
n=1,2,..} C'W; meanwhile, the sets ClU_,,q, and ClU(-1,0), meet NV at
an infinite number of points (all except a finite number of the points
(0,1/2n—1) and (0, 1/2n), respectively).

With respeet to the embedding j: N C W the point (1, 0) is j-tangent
to both (—1,0), and (—1,0), but it is not J-symmetrical. However,
(1, 0) becomes even symmetrical to (—1,0); with respect to the map
Jit N —~W defined by j(n)= (0,1/2n—1) and similarly to (1, 0), with
respect to jy: N >W given by jy(n) = (0, 1/2n).

The f-symmetry relation induces a decomposition of the set of all
3.‘ -non-proper points of ¥ into disjoint classes the members of which are
In a sense equivalent with respect to the possibility of extending the
map f onte tX, as the following considerations show. Any f-non-proper
point y € ¥ has an associated subset Tp,; of rX —X, consisting of ultra-
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filters and containing F(y, f) (the set Ty, depends only on the f-sym-
metry class of y, abbreviated to [y], since & W, f)= fﬂy', f) for f-sym-
metrical points 4 and y’). Moreover, looking for a 6-continnous exten;ion
f* of f, each point of the class [y] is a possible value of f* ab points from T,
by 3,}. To get & 6 -continuous extension in such a way let us assume
that & (y, f) and F(y', f) are uniformly separated whenever ¥ is not f-sym-
metric with y’, which means that

(17) EBach f-non-proper y ¢ Y has a neighbourhood U, such that for
each y' ¢ [y] there exists a U, such that

Intf H(ClU, ~ C1U,) = @,

A map f: X—7Y which has property (17) is called pseudo - proper.
Each proper map is pseudo-proper since in this case there are no f-non-
proper points. Each pseudo-proper map with a finite number of f-non-
proper points may be understood as proper with respect to the symmetry
classes, which means that for each distinet class [y] and [y'] there exist
open sets U and U’ such that [y]C U and [y"]C U’ and Intf *(CIU ~
~ClU') = @ (in other words, the composition of f and the quotient map
q: X-»XJ; ; induced by the decomposition of X eonsisting of symmetry
classes and f-proper points is an r.o.-proper map.

BExamprr. Bach map f: X Y has at most one symmetry class,
and thus it is pseudo-proper. The space P = ®7Y¢v {p} has a similar
property — the symmetry classes of an arbitrary map f: X —P consist
of pairs 8;= {(—1,0),(1,0)} where (—1,0) and also (1,0) are
f-non-proper points. Since distinet classes S; and Sy ean be separated
in P by disjoint closed neighbourhoods, namely the closed and open
sets ¥; and Yy, a map f has property (17). Thus each map f: X —P is
pseudo - proper, although there may exist an infinite number of f-sym-
metry classes.

Observe that pseudo-proper maps have the following property:

44, Ty Ty = O for each pair of distinet points y and y' which
are not f-tangent.

Proof. The points y and y* being not f-tangent, neighbourhoods Uy
and U, can be chosen, according to (17), such that

(18) Intf ™ {(C1U,) ~ Intf (C1Ty) =0 .
Moreover, Uy and U, may be assumed to be f-non-proper, since by 4.1
the f-non-proper neighbourhoods form a basis of the neighbourhoods
of an f-non-proper point.

Sinee Intf Y(ClU,) contains the set Dy(Uy, Uy) = Intf (C1Uy—Ty),
which is an element of F(y,f), we conclude that Intf (ClU4) € F(y, ).
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Fach ultrafilter £ of Ty containg, by definition, the filter J-‘:—(y, f). Thus
Intf {(C1T,) € & for each & e Tryy and Intf {(CLUy) € & for each & ¢ Ty,
Hence, in view of (18), no ultrafilter can be an element of both Ty,
and T[,,'], which implies T[y] A Ty = 9.

Each pseudo-proper map has a f-continuous extension on zX.
To simplify the proof, consider some properties of extensions of a map
f: XY to f*: 1X >Y defined by the formula:

fHa) = flz)
748 e N{CIT: T e W(&)}

for 2 e X,

19
an for £ erX ~X .

Recall that by 3.2 each §-continuous extension of f must be defined
as in (19). By 1.1 the intersection () {C1U: Ue A(&)} is & one-point set
equal to [ {CLf{T): U €&} whenever the last intersection is non-empty.
Call an ultrafilter & of tX —X f-proper if (N {CLf(U): U e&} 0.

4.5. Bach extension defined by (19) is continuous and 0-continuous (1)
at each point of X and each f-proper point of 7X—~X.

Proof. Let xe¢X. Take an arbitrary open neighbourhood Uyy of
the point f(x). Then U= F YUys) is an open (in 7X) neighbourhood
of # with f*(U,) = f(Uz) = Uy from which the continuity of f* at =
follows. To prove the 6-continuity of f* at this point, observe that
ClLxlU,=ClxU, v {fetX—X: Uzeé&}. Thus f*ClLxUsz) = f(ClxUs) v
U {f*(&): Usek) But f(ClxUs) = f{Clxf (Usn)) C ClUyy by the con-
tinuity of f. Consider a filter &, for which Uy e & The set Uy = f (Uyw)
being an element of &, Uy is an element of W(&). Thus f*(&) e ClUj
by (19). We conclude that f*(ClU,)C ClUjy4, which means the 6-con-
tinuity at x e X.

For a proper point £e7X—~X let U, be an open neighbourhood
of y = f*(&). Then, by 1.1, there is f~(U,) ¢ & Thus Us = {&} v f~(Uy)
is an open (in z.X') neighbowrhood of & for which f*(U) = {y} v Uy = Uy,
whence the continuity of f* at £ follows. To prove 0-continuity at &
observe that f*(ClU:) C ClU, for the same reasons as in the analogous
case for points of X.

) To make the situation clear, characterize the remaining points of X
ie. the f-non-proper ultrafilters of X — X. - ’

4.6 An wlirafilter & exX—X is f-non-proper iff there ewist a point
Yye Y and an open meighbourhood Uy, of y such that T (Uy, f)C & These
are the only poinis of ©X at which f* is not continuous. ’ '

1 23 . . .

Let {(X) —% )mbaep which h.c?ntmuaus at a point need not be 6-continuous at that point.
euera’c;d br 'Ga BPSA::IIWhmh hffs a non-regular point z. Let G be the topology on X

fx: (X, B)~(X aé’) is :::t-.pmnt sets, except {z}, of X. The set-theoretical identity
a regular spa,ce.’ inuous but not 6-continuous at =, although (X,T’) is
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Proof. (=). Let & be an f-non-proper ultrafilter. Take an arbitrar;}
point ¥ e {C1U: U e U:(é)} (such a point exists, as was shown in the
proof of 2.1). The set (" {CIf(U): U €&} being empty for the f-non-
proper £, there exists an element U « ¢ for which y ¢ Clf(U). Thus there
exists an open neighbourhood U, for which Uy ~ f(U) = @. This implies
§7Y(U,) ¢ & and, in consequence, X—CQlf (Uy) = Intf (T —T,) €& On
the other hand Intf Y(CLV,) € & for each neighbourhood ¥y by 2.1 (b). Thus

Tntf (¥ —Uy) ~ Intf(CLV,) = Intf {(C1V,—Ts)

is an element of & for each Vy, which means F(Uy, f)CE&.

(«). To prove the converse implieation, observe that from F(Uy, f)
C £ it follows, in particular, that Intf Y(ClVy) € & for each V,, whence,

by 2.1 (a), each ClV, contains some f(U), U being an element of & Thus

there is no point g’ in [} {CLf(T): U e £} — in the opposite case y' € C1Vy
for each Vy and, in consequence, y =¥’, which is a contradietion to
y ¢ N{CIf(U): U eé}

Finally, observe that f* is not continuous at f-non-proper ultra-
filters of 7X —X. Since an f-non-proper ultrafilter & contains the filter
F(U,,f) for some neighbourhood Uy of y=f*¢&), in partieular U
— Intf {(O1U,—U,) e &. Thus Us= {§} v U is an open neighbourhood
of £ and for each basic open neighbourhood U;= {£}w U’ we have
FUYSFH (UL~ Us) = {y} w (U ~ U) ¢ Uy, the last inequality being
a consequence of f(U)C Y —TUy and U'~ U # @. Thus f*(U:) ¢ U, for
each basic Ui, which contradiets the continuity of f* at &.

Now pass to the proof of the announced theorem:

4.7. Bach pseudo-proper map f: X Y possesses a 0-continuous
extension f*: X »Y.

Proof. To define the map f* on the points of zX — X, take the de-
composition of the remainder into disjoint subsets Ty, [¥] running over
the f-symmetry classes (these sets are disjoint by 4.4) and T = {(vX —X)—
— Ty By 4.6, the elements of T are exactly the f-proper ultrafilters.
Thus we define

(20) for §¢ 7.

FX&) = NA{Cf(0): Te&}
Now, extend f* to the whole X by the formula
(1)  f*(Ty) =¥, y being an arbitrary but fixed representative of [y].

BEach ultrafilter & e Ty contains F(y,f) and thus all sets Intf"l((ﬂ[:,,),
and this is by 2.1. equivalent to ¥ e {O10: U eW(£)}. But y =f-({-‘)
by (21), and thus from (20) and (21) we conclude that f* is an extension
of the form (19). It follows from 4.5 that f* is 0-continuous (and even
continuons) at X v T. To end the proof, cheek 6-continuity at £ e Th»
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"The point y being f-non-proper, we may restrict the considerations to
the basis of open neighbourhoods of y, consisting of- f-non-proper
neighbourhoods. Let Uy be an arbitrary neighbourhood from this basis,
It remains to find a neighbourhood U: of & such that

(22) F4(01T:) C QLT .

Take a neighbourhood T/, according to (17); consequently, each
¥’ ¢ [y] has a neighbourhoed U, with
(23) Intf Y(C1T, ~ ClU,) = O .

It may be assumed that Uy C 7,.
Now, as &e Ty, there exists a ¥V, for which F(V.,f) Cé&; thus
U = Intf (ClU,—V,) is an element of &

Take Uz = {} v U. Then ClU: = ClxU v ClU; ~ (X — X). We show -

that an ultrafilter of ClU; ~ (zX —X) cannot be carried to ¥ —ClU,
under f*, i.e.

(24) *C1U: ~» (zX X)) CC1T, .

To prove this, take an arbitrary point y' e (¥ —ClU,)—[y]. Then
there exists a Uy, with

(25)

Intf {C1U, ~ ClU,) = @

for an f-proper ' it is the neﬁghbourhood U, chosen for the neighbour-
hood Y—C1U, of y’, which satisfies

Intf{(ClUy) ~ Clf (¥ —C1T,) = X —Intf (C1T,);

f01: an f-nou-proper point ¥’ of ¥—ClU,, not f-tangent to y, it is ‘the
neighbourhood U, from (23) (recall that U, C lNTy).

Now, suppose, on the contrary, that there exists an ultrafilter & of
ClU: ~ (zX — X), i.e. an ultrafilter containing U and such that

(26) @ =7¢Y-ClT,.
Then, since f* satisfies (19), we have
(27) Intf {C1T;) e £

Suppose that 7 € (Y—CLU,)—[y]. Then (25) together wi i
. Fel . 2 gether with (27) impl;
that & contains disjoint sets —a contradiction. )

Thus ¥ ¢ (Y —CIU,)—{y], or equivalently
yeClUy w[y].

for each U3.

(28)

From (26) and (27) it follows that 7 €[y). Since 7 = f*(F) « [y], it follows

from (21) of the definition of f* that 7
. i = y. But
7€ Y—ClU, — a contradiction, Y=y. Butb on account of (26),
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Thus (24) is proved.

Now, to prove (22), observe that for the chosen I[J:= {u
o IntfH(ClT,—V,) we have :

FH(CLU:) = (X ~ OlT:) v f*((+X — X) OlLTy) .
But

X~ Ol = F(OL(T: ~ X)) = f(C1T) = f(ClIntf (LU, — V) C CIT,,

which implies together with (24) that f*(C1T;) C C1U; and (22) is proved.
This ends the proof of the 0-continuity of f*.

Remark. It is proved, in fact, that each map f* of the form (19),
sending Ty, into a fixed point of [y] is & 6-continuous extension of the
pseudo-proper map f. Thus a pseudo-proper map f: X -~¥ has a unique
extension zf: ©X - Y iff each f-symmetry class is a one-point set. However,
a pseudo - proper map having one-point f-symmetry classes only is proper,
which may easily be deduced from the definition (condition (17) implies
that f is a Urysohn map, and thus, in this case, a proper map).

It has been proved, as an example, that each map f: X ¥ of a Haus-
dorff space X into the minimal space Y is pseudo-proper. A non-proper
map f: X —Y has one f-symmetry class 8, consisting of points (—1, 0)
and (1, 0) and thus there are two extensions of f, one of them sending
the set Tg into (—1, 0), the second one into (1,0) (these are the only
extensions of f). As a corollary it follows that a map f: X - Y has a unique
6-continuous extension on X iff it is proper (and then zf is continuous).
The space P hag the same property.

A minimal space Y is called 0-extensor if each map f: X ¥ of
a Hausdorff space X into Y has a 0-continuous extension XY
on 7X. A proper 0-extensor is a 0-extensor for which f* is unique only
for proper f. ,

The Tychonoff product of §-extensors (proper - extensors) is & f-ex-
tensor (proper 6-extensor). For the proof some categorial considerations
are necessary.

Let 6.6 denotes the category of minimal Hausdorff spaces and all
their 6-continuous maps. The product, in the categorial sense, (see [6])
of a family {X;: ¢ ¢ T} of spaces from f.4 is a space ® X from OA, together
with a family of 0-continuous maps m: ® X;—>X: (called projections)
which hag the following property:

(®) for each Y from 046 and each family of 0-continuous maps
pe: Y—>X, there exists a unique §-continuous map p: Y »®X; such

that
(29)

Mo P = Ps for each te T,
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ie. the following diagram

pg—— )
y 7
i // T
v

is commutative.
646 is a category with products, i.e.

4.8. For each family {Xi: t e T} of spaces from 0 there ewists a product
@ Xi—it is simply the Tychonoff product of the spaces X;.

Proof. It is well known that the Tychonoff product of minimal
spaces is & minimal space. The projections =;: ® Xy +X;, being continu-
ous, are morphisms from 6. ‘

To prove (®), let ps: ¥ ->X; be 6-continuous maps. There exists
& unique map Sp: SY >S®X; of the underlying sets SY and S® X, of
the spaces Y and ® X; for which diagram (29) commutes. To prove that
p: Y>®X; is 0-continuous, take an arbitrary y ¢ ¥ and an arbitrary
open basic neighbourhood U = 7' (U1) n ... ~ @i, (U,) of p(y), Uy being
an arbitrary open subset of Xy, for k = 1, ..,n

From ¢ o p = py it follows that puy) = 7s(p(y)) € 2 T); thus pely)

emy{U)= Uy for k=1, ..,n. The maps p: being 0-continuous there
exist neighbourhoods UL of y such that

(30) u(ClU) COW;:  for k=1,..,n.

Take Uy= Uy~ ..~ U" and ealculate that p(0LU,) C C1U, which
means that p is 0-continuous.

Calculate:

BL) (e 2 p)(C1V4) = ma(p(CLT,) ) = py(C1T,) C po(CLTY) C CIT,

for k=1,..,n
{the second equality is a consequence of

- 7t o P = P¢, the first inclusion
follows from the definition of U, and the second from (80)).
Thus

(32) PCIT,) Cai (L0 for each k=1, ..., n,

and sinee

~i 1y - -
@ (ClVy) ~ o A 2, (CLT,) = Al (V) A oo m;l(Vn))

icm®

Pt

0 -continuous extensions of maps on =X 12

for each open subsets ¥V C Xy, it follows from (32) that
Pp(CLU,) C mz {CLTL) A ... A =L HCLT,)
= Ol(n, (Uy) A .o © 73, (Un)) = CIT;
thus p is 0-continuous and the theorem is proved.

Remark. The theorem remains valid when A is replaced by an
arbitrary subeategory B’ of the category G of all topological spaces and
all their continunous maps whenever T is closed under the formation of
the Tychonoff product (in this case 6T’ denotes the category consisting
of spaces from .G’ and all their 6-continuous maps)— this assumption
is true for B = J, and this is the only step of the proof which makes
use of the form of G,

Now, by an easy categorial argument, we prove that

4.9. The product of 0-exlensors is a 0-exiensor.

Proof. Take an arbitrary map f: X >®X; into the product of
f-extensors X;. The map f; = m; o f: X -X; can be extended to a 0-con-
tinuous ff: X X, for each i

X

X > 7 X

/
! s
i 1* // /
a4

e /!
(*) ) ®XF /ft*

T l /
\74
Xy

The maps f induce, in view of 4.8, a §-continuous X »Q?X;,
such that m; o f* = fi*. Observe that f* is an extension of f: = o fretx
=f} otx = m o f for each ¢, and thus f*ezx=f.

4.10. The product of proper 8-exiensors is & proper G-ewtens_on

Proof. Let f: X ->®X; be an arbitrary 1on - proper map, X b(?mg
proper 6-extensors. Then, in view of 3.4, there exist different points
x={x;} and 2’ = {x;} of ®X; such that

(33)  Intf C1U) ~ Intf(CLUx) # O  for each open neighbourhood
Uy and Uy.

In particular, C1U, ~ ClU # @ for each Uy and Uy axr(lldbthzls()::;
some f the points #; = (%) and & = =i(2’) cgnnot be seI’)amt(;d b;; osed
digjoint neighbourhoods in Xj (for otherwise m.and ' cou . }[)he
rated by eclosed disjoint mneighbourhoods — in consequence


Artur


128 L. Rudolf

tormula 7 {(C1U) = Clmi (U) applied to disjoint closed neighbourhoods
ClU; and ClUy of @ and xf, which in this case exist sinee wx; # 2} for
some t). .

Let U and U’ be arbitrary open neighbourhoodé of 7 and 2. Then‘

Int(x o f)"HC1T ~ CIU') = Intf '(m ' (C1U ~ CIT"))
=TIntf > (Cla (T) ~ Cla Y(TU")) # O

the inequality being a consequence of (33) applied to mneighbourhoods
= (U) and nz_l( Uy of z and z'. Thus = f is not ?J proper map, since it
was shown to be non-Urysohn at points a7 and ;.

Now, mjof being a non-proper map into the proper 0* : extensor Xj,
there exist two different 0-continuous extensions f; and f; of f on X,
For ¢ = 1 let f] denote an arbitrary 6-confinuous extension of f. Then
the maps f* and f** of the diagram () induced by {f;k, ﬁ"} and {f7, il
are different extensions of f. The map f being, by assumption, an arbitrary
non-proper map- f: X »¥ X;, this proves that ® X; is a proper 0-ex-
tensor.

1.11. An H-closed subspace of a 0-extensor (proper 0-extensor) is
a B-extensor (proper 0-extensor).

Proof. Let 4 be an H-closed subspace of a f-extensor Y and leb
f: X — 4 be an arbitrary map. Then there exists a 8- continuous extension
F: 7X Y of the eomposite map i o f:

>4
X 17X
? L
i f F
¥ ¥
A cC ¥

i

Prove that F(:X)C 4. Suppose, on the contrary, that there exists
& point £ evX for which F(£)¢d (£ is a point of the remainder, since
F(X)=f(X)C A4). Since F is a -continuous extension of tof on X,
we conclude from 3.2 that Intf(C1U,) € £ for each neighbourhood of
¥ = F(£). But 4 being an H- closed subspace of ¥, there exist a neighbour-
hood U, such that CIU,~ 4 is nowhere-dense in 4 (see [5]); thus &
contains Intf (ClU,) = @ — a contradiction,

Since F(zX)C A4, this implies the existence of a 0-continuous ex-

tension of f on 7X for an arbitrary map f, and so A is proved to be
a §-extensor.

To prove that AC Y is 3

proper 0-extensor whenever Y is sueh,
observe that the map i »

fis not Proper, whenever f is not; thus there
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exist two different extensions F and I of ¢ o f on vX since Y is a proper
p-extensor. The non-proper f having at least two extensions, 4 is proved
to be a proper 6-extensor.

Remark. Since it is not known whether there exists a universal
minimal space playing the same role as the Tychonoff cube in the theory
of completely regular spaces and their ecompact extensions, it- cannot
pe deduced from 4.9 and 4.11 that each minimal space is a §-extensor.
On the other hand, it is not known whether there exist minimal spaces
which are not 0-extensors. By 4.9_and 4.11 such a space eannot be found
in the product ® Y; of copies of ¥, which is a 6-extensor, even a proper
g-extensor, ag shown before. Also W and P, the former considered min-
imal spaces, can be proved to be proper §-extensors.

5, A categorial description of cX. In [1] an extension of a semi-regular
space X to a minimal space cX was constructed (only semi-regular spaces
possess minimal extensions) and it was proved there that oX = urX.

" The extension ¢X turned out not to be maximal in the usual sense, i.e. the

diagram

°x
Xo——s X

(o)
o X

where o'X is an arbitrary minimal extension of X, cannot be con‘lplet_ed
by a continuous map X —o’X, in general. In [5], th. 6.1, the maxmahty
of 0X with respect to 0-continunous maps was proved; more precisely,
the diagram
°x
X—>0oX
/
S
s
d

’d
:Y

(6o)

where f i3 a proper map into a minimal Hausdorff space ¥ can beeeom:
pleted by a 6-continuous map f*. In particular, X proves to pe ?J -ma
ximal extension of X to a minimal space in the sense f’f diagram (a),
where oX —>o¢'X is assumed to be 6—continuousvon1y, smef denge eilx:w
beddings ave proper maps. However, the completing ap f c_)f ( ;)thﬁ
not been proved to be unique and the question was ra.lsefl in [5] whe
this is true. In the following theorem a positive answer 1s glven.
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5.1. There exisis a unique map f* completing diagram (6c).
Proof. Since oX = wrX, the map uf* of f* from diagram (0c) is
a 0-continuous extension of f on vX, as may be seen in the following
diagram ‘
X

-

~

>
Y

By 3.2 and 3.1 (c) there is only one 6-continuous extension of f
on X, the set { ) {C1U: U e W(£)} being a one-point set for each & et X —X
for the proper map f. Thus f* is unique, x4 being the identity on the under-
lying sets StX = SoX.

Thus ¢X ean be characterized by the following property: for each
proper f: XY there exists a unique f-continuous map of completing
diagram (80), since it has been proved in [5] that the maximality of ¢X
with respect to 6-continuous maps, described by (0s) even without
uniqueness, characterizes ¢.X .

6. Weakly 6-continuous extensions of maps on 7X. The question arises
whether each map f: X »¥ of a Hausdorff space X into H - closed space T
has an extension on 7X which is “continuous-like” in a sense less re-
strietive than 6-continuity. A natural generalization of both continuity
and 8-continuity is weak 6-continuity (a notion due to Fomin [3]) also
defined as follows:

A map f: XY is called weakly 0-continuous if for each » ¢ X and

for each open neighbourhood U, of y = f(x) there exists an open neighbour-
hood U: of « such that f(T,) C O1U,.

6.1. Hach map f: XY of a Hausdorff space X into an H-closed
space Y possesses a weakly 0-continuous extension f*: 21X =Y on tX. The
extension 18 unique iff f is a Urysohn map. ’

Proof. It is easy to verify that each extension of the form (19) is
weakly 0-continuous. By 4.5 it suffices to prove that f* is weakly
6-continuous at points of v X — X. To prove this, let U, be an arbitrary
ne.ighlljourhood of y = f*(&), £ being an arbitrary point of vX —X. Then
Intf~(C1U,) is an element of ¢ and for U, = {&} v Intf~Y(CLT,) We

have fY(U2) = f(Iutf™(C1U,)) w {*(&)} C C1U,, which means that f* i
weakly 6-continuous at &,
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A map f has a unique weakly 6§-continuous extension iff all sets
N {C1T: U e W(£)} are one-point sets. By 3.3 this is the case iff f is
a Urysohn map.
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