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The space of rationals is not absolutely paracompact
by
R. Telgirsky (Wroctaw) and H. Kok (Amsterdam)

A Hausdorff space X is said to be paracompact (metacompact) if
every open covering of X has a locally finite (point-finite) open refi-
nement.

A Hausdorff space X is said to be totally paracompact (totally meta-
compact) if every open base of X contains a locally finite (point-finite)
covering of X.

A family & of open sets in X is said to be an outer base of YC X
if, for each y « ¥ and each open set & in X, such that y € G there exists
a Be% such that ye BC G.

We call a subset ¥ of X totally paracompact with respect to X it every
outer base of ¥ in X contains a locally finite (with respect to X) cover-
ing of Y.

It is easy to prove that if ¥ is totally paracompact with respect
to XD Y, then Y is a totally paracompact subspace of X. A paracompact
space X is said to be absolutely paracompact if, for every paracompact
space Y such that X is embedded into ¥ as a closed subspace, X is totally
paracompact with respeet to Y.

For results on totally paracompact spaces we refer to [2] and [5].

In this paper we will prove that a space of B. Michael [3] is not
totally metacompact and that the space of the rationals is not absolutely
paracompact. It is known that the space of the rationals is totally para-
compact, and that the space of the irrationals is paracompact but not
totally paracompact (cf. [27).

Let o denote the Baire space of sequences of non-negative integers.
It is well known that o is homeomorphic to the space of all irrational
numbers (cf. [4], p. 143).

Let

D= {few® Hn: VE=u: f(k)= 0}.

Then D is dense in »® and D is homeomorphic to the space of rationals.
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Tet @ be the set of all finite sequences of non-negative integers.
For ¢ = {p(i)}i—oc ® and k ¢ o we define

Hp) =n+1,
By = {fe®| Vm<i(p): f(m)=g(m)},
D,=Dn~B, and tpk—{y)( NWiied,

where (i) = @(4), for i=0,1,...,% and p(n+1) =k

For ¢ and v in & we define

p<y it Up)<l(yp) and VE< U(p): (k)= (k).

Now let § be the space consisting of the same elements as o° and having
the following (finer) topology: a subset of 8 is open iff it is of the form
TV, where U is open in o” and V C o™\D.

It is known that the space § is paracompact (cf. [1], p. 216).

It is easy to see that the relative topology of D is the same both
in ©” and in S.

The family

Bo={By| p P},

is an outer base for D in S, because it is an open base for the topology in @®
Now, for every k>0 and ¢ ¢ P, we put

BE=Bmu (B;\D) and B={BYk>0 and ¢cd}.

Clearly, every BF is an open set in S. Moreover, % is an outer base of D
in 8. For, if f ¢ D v B, then there is a y ¢ & such that v > ¢, p(k) = f(k)
for every k< 1I(y) and f(l(y)) = 0.

Hence f < By C By for each k>0 and BXC B,

Now we prove the following .

Lewva, If £C B is a covering of D in 8, then & is not point-finite,
i.6. there exists a point fe8 such that f belongs to infinitely many sets
from .

Proof. We will define by induction an infinite sequence of sets
from s having a non-void intersection.
Let

ny = inf {I(g)] Hk: B"ﬂe}
We choose a Bg‘;eu—t such thab I(g,) = n,. Then obviously
Dz~ U By ] Up) < U(pe)) = O

It Dai, ~ By # O for some Bj e % with 1(g) = I(g,), then Dy, ~ By # 0,
because Dggx, » (Bii\D) = @. But then g0 = quo and hence %, = 0. This

©

icm
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is & contradiction. We have thus shown that
Dim U {B et] Up) <Ug)t=0.
Observe that
Ug) >1Up) and BoC By, if  Best and BEn o = 0.
Now assume that ns and Bf;f € <t have been defined in such a way that
Upd =me  and  Dim o U {Bgedt] Up) <lUg}= O

Now, observe that
#0 and BEe

Since Dgx; is covered by +#, there is a BY ¢ 4 such that Dy
Now, let

Up) > Ug:) and BEC Bgy,  if of~ B2

wBE£0O,

nis1 = inf{l(g)| k: Bje 4 and Dyg ~ BY = 0},
and choose a Biﬁ:}e:% sueh that U(gu,) = 7, and B;fj;iC Bom. It
——
follows from the last inclusion that grikees > @sks, and so we have
DﬁﬂkmCD ke

According to the minimality property of 5y and the last inclusion,
we have

Do U {Bg e 4] Up) <Uguz)} =0
Since we must prove

Diem ~ U {Bs e 4] Ugp) <U
it is sufficient to show that

Dy ~ U B e #] Lp) = Uprn)} =0 .
Suppose, to the contrary, that there exists a Bf,f’ € & such that

le) =Upis1) and

Then Dgyien N B # 0, because Dimm n (B\D)=@. But then

e
@*+1 ki1 = @0, because (@) = (@), Hence kgyy =
dietion. '

From our construction we see that

o)} =9

-Dwﬁ—ka. n B{; #d.

0. This is a confra-

<P <Pp<
Now let fe8 be defined by

F(n) = paln);


GUEST


78 R. Telgarsky and H. Kok
then
fe[\ By
tew

So + is not point-finite, and the proof of the Lemma is complete.

As consequences of this Lemma we have the following two theorems:

THEOREM 1. The space S is not totally metacompact.

In fact, $' = B U {{#}] z<S\D} is an open base of § and B’ contains
no point-finite covering of §, because, by the Lemma, $ contains no
point-finite covering of D.

THEOREM 2. The space D (which is homeomorphic to the space of the
rationals) 18 not absolutely paracompact.

This is clear, bhecanse D is a closed subspace of the paracompact
space § and B is a “wrong” outer base of D in 8.

Remarks. (1) § is a paracompact space with the property that 8
(the set of all limit points of 8) is totally paracompact, but S itself is
not totally paracompact.

(2) Every C-scattered paracompact space iy absolutely paracompact
[6]. Every paracompact locally compact space and every F, n G5-absolute
metrizable space is C-scattered paracompact [6]. Hence, there are many
absolutely paracompact spaces. v

(8) Since there is a homeomorphism % from »” onto the space of
all irrationals in the unit interval I (ef. [4], p. 143), 2 (8) is a closed sub-
space of the space Iypy (cf. [1], p. 216). Since Inp\h(S) is a discrete
open set, Ixp is not totally metacompact.

E. Michael (ef. [3] or [1], p. 218) proved that o x Iyp) is not normal.
Here, as we have seen above, neither »” (¢f. [2]) nor Iyp is totally
metacompact.
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A metrization theorem for developable spaces*
by
James R. Boone (College Station, Tex.)

1. Preliminaries. The usual approach to the problem of metrizability
of developable spaces has been through the use of the rich global properties
en]oved by the developable spaces, and the additional assumption of
normality. In [2] the application of a significant local property, the first
countability of a developable space, was made in giving another (non-
normal) dimension fo this problem. The additional global property used
in this application was sequential mesocompactness. A family of sub-
sets {Fo: a € A} of a space X is said to be cs-finite if for each convergent
sequence, {P:} in X, Fa ~ {Py: i e N} + @ for at most finitely many a < 4.
Accordingly, a Hausdorff space X is called sequentially mesocompact
provided: every open covering of X has a cs-finite open refinement.

In this paper, the use of both the local and global properties of
developable spaces is made to yield a metrization theorem, Theorem 2.1,
for developable spaces which improves both of the following theorems.

THEOREM 1.1 {{1], Theorem 10). A developable space is metrizable if
and only if it is collectionwise normal.

THEOREM 1.2 ([2], Theorem 4.2). A developable space is metrizable .
if and only if it is sequeniially mesocompact.

A non-normal simultaneous generalization of sequentially meso-
compact spaces and collectionwise normal spaces is introduced.

DrermvirioN. A Hausdorff space X is said to have property (o) if
for each discrete collection of closed sets {F.: ae.4} in X, there exists
& cs-finite collection of open sets {G.: a € A} such that F,C G, for each
aed and Gy~ Fp= @, if a .

Let {Fa: a e A} be any discrete collection of closed sets in a space X.
Suppose X is sequentially mesocompact; and consider the open covering

={X— UF, acd} of X. Let 8= {Gs: f «B} be a cs-finite open

rFa

* This work was supported by the Texas Christian University Reseaa‘ch Foun-
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GUEST




