Generalization of the notion of the Banach indicatrix
by
Tibor Sal4t (Bratislava)

In the theory of continuous real functions of bounded variation the
notion of the Banach indicatrix is well known (cf. [1], pp. 374-375; [2],
pp. 246-248). This notion can be generalized in the following natural way.
Let X, Y be two sets and f a function from X to ¥. For y ¢« ¥ we set
My = {zeX; f(r)=1y}. If My is a finite set, then we denote by z;(y)
the number of elements of My. If M, is an infinite set, then we pub
77(y) = +oco. So the function zr is defined for all y € ¥, its values lying
in the set Z= {0,1,2, ..., +oo}. We shall consider the set Z as a sub-
space of the topological space

ET:EIU{-OO}U{"I—OO}a E1=(_°°7 ~+00),
in which the basis for topology is generated by all open intervals I C E,
and all the intervals of the form (- oo, a), (b, +o0), a,beE;. The
function 7; will be called the generalized Banach indicatrix of the
function f.

In what follows some fundamental questions connected with the
generalized Banach indicatrices will be studied.

If X = <a,b>, f: X—F, and f is continuous, then the function zr is
Lebesgue-measurable on K, (cf. [2], pp. 246-248). The detailed analysis
of the proof of theorem 3 on pp. 246-248 in [2] shows that 1y is a function
of the second Baire class. In counection with this result the question of
the measurability of the generalized Banach indicatrix arises.

Tt is easy to construct an example of the function f: E,—FE, with
Lebesgue-nonmeasurable 7.

Exavrie 1. Let X = E, and let 4 CJE, be a nonmeasurable set
(in the sense of Lebesgue). We put f(x) =« for z e A and fl#) =10 for
2 e B,—A. Then the set {y e By; w(y) = 1} = A—{0} is a nonmeasurable
set and so 7; is also nonmeasurable.

In the previous example the function f was nonmessurable. Even
in the case of the measurability of f the measurability of 7 is not guar-
anteed, as the following theorem shows. '
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TaroREM 1. There exists a function f: <0, 1>—B, such that f is continu-
ous almost everywhere, the set Dy of the discontinuity points of the function f
is a non-dense set in (0, 1> and vy is Lebesgue-nonmeasurable.

Proof. Let € C<0,1) be the Cantor set, let g denote Cantor’s well-
known function, which maps the interval <0, 1) onto <0, 1>. It is known
that g is a non-decreasing function, continuous on <0, 1) and constant
on the component intervals of the set ¢’ = (0,1>—C; further the values
of ¢ on these intervals are rational (cf. [2], pp. 232-233). Let M be a non-
measurable subset of the interval <0, 1> consisting of irrational numbers.
Then there exists a P C ¢ such that g(P) = M. We put f(z) = g(z) for
zeP v 0 and f(z)= 0 for ¢ C—P. Then f is a function from <0, 1)
into E, and obviously {y € Ey; 77(y) = 1} = M v {1}; thereforé =y is non-
meagurable. It is easy to see that Dy C C; thus Dy is & non-dense null set.

Conversely to the previous result, there are non-measurable functions
whose generalized Banach indicatrices are measurable. This follows from
the following example. »

Exawrir 2. Let A C<0,1) be a non-measurable set. Let f denote
the indicator function of A. Then we have 7/(y) = 0 for all ¥ % 0,1, and
50 7y is & measurable function. )

The measurability of 17 can be guaranteed for all the real functions f
with the Darboux property defined on the topological space X fulfilling
some conditions. This will be proved in what follows. Let us remark that
the function f which maps a topological space X into a topological space
Y is said to have the Darboux property if for each connected set A C X
the set f(4) is connected in Y.

The following theorem generalizes the above-mentioned classical
result on the measurability of 7; to the case of a continuous function f-

TeEoREM 2. Let X be a locally connected Hausdorff tepological space
with a countable basis. Let f: X — K, have the Darboux property. Then the
funetion tr is a function of the second Baire class.

Proof. The proof will be realized in three steps.

1. At first the existence of a countable basis consisting of connected
open sets will be proved.

Let 8 = {Ga}s be & countable basis of the space X. Let y ¢ G,. Follow-

ing the assumptions of the theorem there exists a connected open set V(y)
such that y e V(y)C H,. Then we have

) Ga= U V(.

y€Gn
Since X is a space with a countable basis, there exists in view of (1) on
account of the well-kmown theorem of Lindelsf (cf. [7], p. 131) a count-

able system W, C {V(y)}, y € G4, such that G, C U 7.
VeWn
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Im Generalization of the notion of the Banach indicatriz 31

Let' Wn = {Vui}r. Then the system {Vaur}sx is a countable basis of
the space X consisting of connected sets.

2. Let m be a natural number, let By, denote the set of all such y € B,
that f attains the value y in at least m different points 2y, 2y, ..., Tm € X.
We shall prove that Bn is an F, set in E,.

Let T = {Hi}: be a countable basis of the space X consisting of
connected sets H;. Let B* denote the set of all y ¢ B, with the following
property: For y e B* there exists a set Hie T such that f(x)=y for
every @ ¢« H;. Since T i3 a countable system of sets, the set B* is also
countable. Let us notice that for each H; ¢ T the set f(H;) is an interval.
Denote by B** the set of all y ¢ By with the following property: For
y e B** there exists a set H; e T such that y ¢ f(H:) and y is an end-point
of the interval f(H:). The set B** is again a countable set, owing to the
countability of 7. . |

Put Op = Bm— (B* v B**). If y € O, then y € By and so the existerce.
of m different points @y, &, ..., #m € X such that f(a)) = y (j=1,2,...,m)
is guaranteed. Since X is a Hausdorff space, there exist Hy eI’
(j=1,2,..,m) such that @ eHy (j=1,2,..,m) and Hy"nHy=0
for j # L

On account of the Darboux property of f, the sets K;= f(Hg,)
(j=1,2,...,m) are intervals and y e K; (j=1,2,...,m). Sin.ce y ¢ B*,
K; is not a one-point set and since ¥ ¢ B*, g is an interior point .of the:
set Ky (j=1,2,...,m). Hence the set Ky=EK n K, n...n Kn is a;ls.o
an interval which is not a one-point set and ¥ is an interior point of this.
interval. ‘ . .

Let K5 denote the interior of the interval K. Then K, is an open
interval containing the point ¥, and for'each z e K there ex%sts in each Hy,
a point &} such that z == f(z}) (j=1,2, ..., m). Si‘;nce Hy (j = 1,'2, ey M)
are pairwise disjoint, we have zeBp. Thus K5 C By. This gives

Op = Bm—(B*v B*)C {J K3 C Bu.

yeCm

Tt follows that Bm— | Ky is a countable set, and sincechj K5 is open,.
y€Cm y€Cm
By is an F, set in B. o
3. We shall prove that for each open set @ C Ef the set 77 (@) is
a Gy set in Hy. ] ; i
Tt suffices to prove that for each set G of one of the flollow%n‘g orms:
(@) G= (b, ~ooy or G = (b, +ooy, beBy,b>0; (b) G isa finite ;pe_n
interval, @ C (0, +o0); (¢) G= (b, +0); ¥ ¢ E,, b >0, the set 77 (@) is
a Gy set in H. e
In case (a:; we infer from the 2-nd step of the proof that =7 (@) is
an F, set in B, and it is also a Gs seb in E,.
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If G=(a,b); a,beF;, a<b, then

7 @) = 77 ((@, +o0¥)— 77 (Kb, +00)))

and according to the 2-nd step of the proof the right-hand side is a differ-
-ence of two F, sets, and so 77 () is a Gy, set in F;.

Finally, let G = (b, +-o0), beHy,b>=0. Since {-+oo}= ﬂuIm, I,
. ‘ ia
= (m, +ocod, we have 7 ({+oo})= ﬂDMm, where . My = 77 (I)
e
(m=0,1,..)is an F, set in E,. Further, according to the 2-nd step of
the proof, we have 77%((b, +ood) = | Fu, where Fy (n=0,1,...) are
. n=0
«closed in F,. Since 77 (@)= 17"((D, + o0))— 77 ({+o0}), We get
7 (@) = UDFn—‘ OMm= ( L%Fn) A (H— () M)
n=| m=i N=

m=0

Hat

(El——]l_’[m) = UFn (@) M;n;

0 M
where M, = By— My (m= y1,..) is a G set in F;. From this we see
that 77 (@) is a Gy set in F,. This ends the proof. '

Remark. Let f be a real function with the Darboux property on
a Hausdorff topological space X. Following the previous theorem, 77 is
& meagurable function if X fulfils the following conditions:

(#) X has a countable basis for topology,

(++) X is loeally connected.

The following examples show that each of the previous conditions
I8 essential in theorem 2.

Exameie L. Let X be a set, X > ¢ (17[ denotes the cardinal number
of the set M, C being the power of the continuum). Let § = 2% (the power
set of X). The space X with the topology § fulfils the condition (%) but
it doe‘sznot fulfil the condition (x). Let 4 C E; be a non-measurable set.
Since 4 < ¢, there exists a subset X, of the set X such that the sets X
and A aré equivalent. Let g denote a one-to-one mapping from X, onto 4.
Lt 4y ¢ By—A. We put f(x) = g(x) for 2 ¢ X, and f(@)=t, for v e X—X,.
Since the system of all connected subsets of the space X coincides with
the system of all one-point sets, every function from X to B, has the
‘Darboux property and so f also has this property. Further, {y e Hy;
71(y) = 1} = A; therefore 7y is non-measurable.

- Examprr II. Put X = 0 C 0,1,
consider the space X with the usual Buclidean topology. Then X fulfils
the eondition (x), but it does not fulfil the condition (#x). Let A and f,
have the same meaning as in example I. Put €' = (¢ n <0 , 3.

0

. 00
= UFun

=
=0

G denoting the Cantor set. We

Since

icm

©
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Z<cand O = ¢, there exists a subset C, of ¢’ such that the sets €,
and A are equivalent. Let g denote a one-to-one mapping from C, onto A.
Put f(z) = g(x) for @ € Oy and f(z) =%, for ¥ ¢ C— 0,. It can be checked
in the same way as in example I that f has the Darboux property while
75 is not measurable.

It follows from theorem 2 that for each function f: <0,1)>—F, with
the Darboux property the function 7 is Lebesgue-measurable. Since
many non-meagurable functions belong to the class of all Darbouxian
funetions f: <0, 1>—B, (cf. [5]; [6], example 33, p. 97-98), we obtain
a clags of non-measurable functions f: <0,1>—F; with measurable
generalized Banach indicatrices 7s.

From the non-negativity of 7r for each real function f follows the

existence of the integral f 2(y)dy in the case of measurability of zy. Of

course, this integral can have the value +oo. Especially for the real
functions f with the Darboux property, defined on a locally eonne?ted
Hausdorff topological space with a countable basis this integral exists.

TEEOREM 3. Let X be a locally connected Hausdorff topological space
with a countable basis. Let f: X —H, have the Darbouz property and be

discontinuous at least one point of the space X. Then we have__efo #(y)dy

Proof. Let f be discontinuous at the point z, e X. Let T = {G}_be
2 countable basis of X consisting of connected sets. Such a basis exists
according to the l-st step of the proof of theorem 2. )

Tet z, e G (G e T). We consider the set G as a subspace (with the
relative topology) of the space X. Then G is a locally connected Haus-
dorff topological space. According to the Darboux property of thfa fune-
tion f, the set f(G) = ¥ is an interval which cannot be a one-point set.
Namely, if the set ¥ were a one-point set, then f would be constant on
the set @ and thus it would be continuous at @, contrary to the as-
sum%?xﬁ).te by ¥, (¥, the set of all ye Y for which f;;he sit
{£e@; f(w) =y} is finite (closed in G). Since G is a Hausdorff space,
every finite subset of @ is closed in G and thus we haajre

(2) Y,CY,.

In paper [3] J. 8. Lipidgki proved tl.lat it X* is*a: locaélly n;:o:;;x;c}tlﬁ
gpace, then the function A: X* - E, is continuous on X 1f and o Zrt o,
the Darboux property and gimultaneously the following prop 3;1 o é
there exists a set H C h(X*) dense in h(X*) such that for each lzf Er L the
set h7'({y}) is closed in X*. Since f is not continuous on @, we inie

3
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the above mentioned result of Lipinski that the set Y, is not dense in ¥,
According to (2) not even the set Y, is dense in Y. Hence there existg
an interval I C Y such that I ~ ¥,= @. Then for each ¥ ¢l we have
77(y) = + oo, and thus in view of the non-negativity of zr we get

oo

[ w(y)dy = J (y)dy = +oco. This ends the proof.
00 I

Tet us consider the interval X = <a, b), a Cb, with the usual Eucli-
dean topology. Then X fulfils the assumptions of theorem 2, and thus
7; is & measurable funetion for each real function f: <a, b>—F; which
has the Darboux property. This implies the existence of the integral

f w(y)dy. If f is continuous, then we have the equality

o

b
3) V()= [ ly)dy

b .
between the variation \/ (f) of f and the above-mentioned integral (ef. [1],
p. 374-375; [2], p. 246-248). We sball prove that (3) holds for every

funetion f: {a, b>->F,, which has the Darboux property.
At first an auxiliary result will be proved.

LevumA 1. Let f: {a,by—E, have the Darboux property and be dis-
b
continuous at a point of the interval {a,b>. Then \/(f) = - oo.
a

Proof. Let f be discontinuous on the right at @y, a < @, < b. Since f
has the Darboux property, the following inequality must be true:

(4) 1= liminff(s) < limsupf(s) = L.

Let us choose two real numbers a, 8 such that I< o< < L. It
easily follows from (4) that there exist real numbers @, ¥, € {a, b> such

that flon) < a, flya) =28 (n=1,2,..) and @, > y; > %, > Yy > . > 5.
Obviously, ‘

n
i=1

b
V)= Dlfa—fw)l =n—a) (=1,2,.),

hence \b/(f) = +oo.

THEOREM 4. Let f: <{a, by—E, have the Darbous property. Then

- b o«
(5) V= Juway.
P‘roof. In the ease of the continuity of the function fon <La, b) the
assertion of theorem is frue (cf. [1], p. 374-375; [2], p. 246-248)

©
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Tf f is not continuous on <a, b), then the equality follows from theo-
rem 3 and lemma 1.

The assumption of the Darboux property of the function f is essential
in theorem 4. This is shown by the following example.

Examere 3. Leb f(#) =0 for 0 <2 <1 and f(0) =1. Obviously f
does not have the Darboux property. Further, w(0) = -foo, (1) =1
and 7(y) =0 for § 50,1 So we have [ w(y)dy=10 but V()= 1.

The following example shows that the assumption of the Darboux
property of the function f is not necessary for the validity of the
equality (B)-

ExAMpLE 4. Liet ¢ be & function which maps every interval I C <0,1)
onto the interval (—1,1)>. Such a function can be constructed, e.g. by

o
means of a subseries of a divergent series Y an, ), an= 2 |aa| = +oo,
1 ;=0 (J

nian< i
an—0 (cf. [8]). Put f(»)=g(x) if ¢g(2) is irrational and f(z) =0 in
the opposite case. Obviously f hag not the Darboux property (even
b

in an interval I C <0,1)>); further, \/ (f) = +oco and since for each
'3

irrational value 4 € (—1, 1> we have 7x(y) = + oo, the value of the integral

[ #(y)dy is also +oco.

—00

Let f: <@, by —>E; have the Darboux property. We shall investigate
the question what influence the change of values of the function f has

on the value of the integral [ w(y) dy.

Tet ¢: <a,b)—>E, and let us put M= {z ea, b); fl@) #g(m)}.
It M is a countable set, then obviously the set {y e By; wr(y) # 1,(9)} 18
also countable. Fence 7, is a measurable function and

o0 [+
[ty = [ wway.
—c0 —0
. . -
But for the function g the equaliby V(g) = {0 ,(y)dy meed not be true.
M _
This is shown by the following
Examerm 5. Let f(#) = @ on {0, 1). Let us put ¢(z) = f(#) on (0, 1>

] 0 1
and ¢(0)=1. Then we have Jw(y)dy= J w(y)dy Dut \0/(9)'*—2’

V=1

3*
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"Tf M is a null set, then not even the measurability of 7, can be
guaranteed. This follows easily from the examples 1, 2 using the well-
known fact that to every real function h: <{a, b>—H, there exists a func-
tion f: <a,b)y—>HE, with the Darboux property such that {z e {a,b);
fl@) # h(z)} is a nuil set (cf. [4]).
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An unfinitizability proof
by means of restricted reduced power

by
Andrzej Grzegorczyk (Warszawa)

In this paper I try to make some progress in solving the problem
of the unfinitizability of theories containing the arithmetic of natural
numbers. This problem remained open after Ryll-Nardzewski’s paper [6]
proving the infinitizability of the rule of induction in eleméntary arithme-
tic. The method of the present paper consists of constructing a kind of
reduced power restricted to functions and sets definable by means of
n-quantifiers. The main observation (Theorem 1) is that in this case
only the sentences confaining n-quantifiers which are true in the basic
model M remain true in the reduced ultra power M*. Finding a theorem
which is not preserved, we get the unfinitizability proof. Dividing by
a filter cut up to sets definable by n-quantitiers may be conceived ‘as
adding new “defective” objects having only 7-quantifier properties.
It might be presumed that these new objects preserve only #-quantifier
statesments.

The result obtained in this way was independently obtained also by
Ryll-Nardzewski by means of the method of his old paper [6]. It is
probably not the strongest one. The problem remains open for theories
containing arithmetic and dealing with two kinds of objects: natural
numbers and the other objects (sets, classes efe.). A partial result in this
domain was obtained by A. Mostowski in [4]. The main contribution of
this paper is an outline of a new method.

1. Restricted filters, functions and ultrapower. Let C be an arbitrary
family of subsets of a given set M; we shall consider the following notion
of ultrafilter restricted to O:

1) DeUt(0) «=1. DCCO,
2.0¢D,
3. X,YeDrXnYec(~>X n YeD,
4. X e DNXCYNT e (Y eD,
5. X uYeDAX,Ye(0~>XeDvYeD.
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