A reduced free product of lattices

by

G. Grätzer* (Winnipeg, Man.)

1. The purpose of this note is to provide a generalization of the Basic Lemma of [1]. The new form is more general and easier to apply than the form given in [1].

To state the result we need some notation. For a lattice K with 0 and 1 let $C(K)$ denote the set of complemented pairs, that is,

$$C(K) = \{(x, y) \mid x, y \in K, x \land y = 0, x \lor y = 1\}.$$

K is called a lattice with no comparable complements if $(x, y), (x, z) \in C(K)$, and $y \geq z$, imply $y = z$.

Let $I_0, \lambda \in A$, be pairwise disjoint lattices with 0 and 1. Let C be a set of two element subsets of $\bigcup \{I_0 \mid \lambda \in A\}$ such that if $(x, y) \in C$ then for some $\lambda, \mu \in A$, $x \in I_0, y \in I_0, x \neq 0, 1, y \neq 0, 1,$ and $\lambda \neq \mu$.

Theorem 1. Let $I_0, \lambda \in A$, and C be given as described above. Assume that all I_0 are lattices with more than one element and with no comparable complements, and that C satisfies the following condition:

(P) if $(x_1, y_1), (x_2, y_2) \in C, x_1, x_2 \in I_0, y_1, y_2 \in I_0, (\lambda, \nu \in A), x_1 \leq x_2, y_1 \leq y_2$, then $x_1 = x_2,$ and $y_1 = y_2$.

Then there exists a lattice L with 0 and 1 satisfying the following conditions:

(i) L contains all I_0 as $(0, 1)$-sublattices;

(ii) L is generated by $\bigcup \{I_0 \mid \lambda \in A\}$;

(iii) $C(L) = \bigcup \{C(I_0) \mid \lambda \in A\} \cup C$.

A lattice L satisfying Theorem 1 can be described using free products. Let K be the free product of the lattices $I_0, \lambda \in A$. (Note that K has neither 0 nor 1 if A is infinite.) In terms of C we define a congruence relation $\Theta(C)$ on K:

$\Theta(C)$ is the smallest congruence relation satisfying the following conditions:

(a) if 0_1 is the zero of I_0, and $x \leq 0_1$, then $x = 0_1(\Theta(C))$;

* Research supported by the National Research Council of Canada.
A reduced free product of lattices

If \(A \in L_1 \) then \(A_{01} \) and \(A^{(0)} \) exist, and they are both equal to \(A \); \(A_{01} \) and \(A^{(0)} \) do not exist for \(\mu \neq \lambda \).

(ii) If \(A = B \lor C \) then \(A^{(0)} \) exists if and only if \(B^{(0)} \) and \(C^{(0)} \) both exist and in this event \(A^{(0)} = B^{(0)} \lor C^{(0)} \) (the join is in \(L_1 \), of course).

Furthermore, \(A_{01} \) exists if and only if at least one of \(B_{01} \), \(C_{01} \) exists; \(A_{01} = B_{01} \) (respectively \(C_{01} \)) if only \(B_{01} \) (respectively \(C_{01} \)) exists, and \(A_{01} = B_{01} \lor C_{01} \) if both \(B_{01} \) and \(C_{01} \) exist.

(iii) If \(A = B \land C \) then \(A_{01} \) exists if and only if \(B_{01} \) and \(C_{01} \) both exist and in this event \(A_{01} = B_{01} \land C_{01} \), \(A^{(0)} \) exists if and only if at least one of \(B^{(0)} \), \(C^{(0)} \) exists; \(A^{(0)} = B^{(0)} \) (respectively \(C^{(0)} \)) if only \(B^{(0)} \) (respectively \(C^{(0)} \)) exists, and \(A^{(0)} = B^{(0)} \land C^{(0)} \) if both \(B^{(0)} \), \(C^{(0)} \) exist.

Definition 3 (Quasi ordering on \(P(Q) \)). For any \(A, B \in P(Q) \) we define by induction on \(|A| + |B| \) the relation \(A \subset B \) to hold if and only if at least one of the conditions (1) to (6) below holds:

1. \(A = B \);
2. there is a \(\lambda \in A \) such that \(A^{(2)} = B_{01} \) exist and \(A^{(0)} \leq B_{01} \) in \(L_1 \);
3. \(A = A \lor A_1 \), where \(A_1 \subseteq B \) and \(A_1 \not\subseteq B \);
4. \(A = A \land A_1 \), where \(A_1 \subseteq B \) or \(A_1 \not\subseteq B \);
5. \(B = B \lor B_1 \), where \(A \not\subseteq B_1 \) or \(A \not\subseteq B_1 \);
6. \(B = B \land B_1 \), where \(A \not\subseteq B_1 \) and \(A \not\subseteq B_1 \).

Set \(A \preceq B \) if \(A \subset B \) and \(B \subseteq A \).

Theorem 3 (The structure theorems of free products of lattices [3]).

(i) The relation \(\preceq \) is a quasi-order (that is, \(\preceq \) is reflexive and transitive) and thus \(\preceq \) is an equivalence relation.

(ii) Given \(A \in P(Q) \) let \(\langle A \rangle \) denote the equivalence class of \(A \) under \(\preceq \), and let \(L = \{ \langle A \rangle : A \in P(Q) \} \). Define the binary relation \(\prec \) on \(L \) by \(\langle A \rangle \prec \langle B \rangle \) if and only if \(A \subset B \). Then \(\prec \) is a partial order on \(L \) with respect to which \(L \) is a lattice. Moreover, \(\langle A \rangle \lor \langle B \rangle = \langle A \lor B \rangle \) and \(\langle A \rangle \land \langle B \rangle = \langle A \land B \rangle \).

(iii) For each \(\lambda \in A \) the mapping \(\psi_{\lambda} : L_1 \to L_1 \), given by \(\psi_{\lambda}(\alpha) = \langle \alpha \rangle \), is a \(1 \)-1 lattice homomorphism, and \(\langle \psi_{\lambda} \rangle \lambda \in A \rangle = L_1 \) is the free product of the family \(\{ L_1 : \lambda \in A \} \).

(iv) For each \(\lambda \in A \) and \(\langle A \rangle \in P(Q) \), \(A_{01} \) exists if and only if \(\{ \alpha \in L_1 : \langle \alpha \rangle \neq \langle A \rangle \} \not= \emptyset \), and in this event \(A_{01} = \lor \{ \alpha \in L_1 : \langle \alpha \rangle \neq \langle A \rangle \} \), and dually for \(A^{(0)} \). Therefore, if both \(A_{01} \) and \(A^{(0)} \) exist, then \(A_{01} \leq A^{(0)} \).

(v) For \(\lambda, \mu \in A \) and \(A \in P(Q) \), if both \(A_{01} \) and \(A^{(0)} \) exist, then \(\lambda = \mu \).

3. In this section let \(L_1, A \in L_1 \) and \(C \) be given as in Theorem 1. We denote by \(\emptyset \) and \(L_1 \) the zero and unit of \(L_1 \). Set \(Q = \{ \emptyset, L_1 \} \lambda \in A \rangle \) as in [2]. The following definition contains the idea of the proof of Theorem 1.
DEFINITION 4. A subset $R(Q)$ of $P(Q)$ is defined by induction on the length of the polynomial:

(i) if $A \in Q$, then $A \in L_0$ for exactly one $\lambda \in A; A \in R(Q)$ iff A is not 0_1 or 1_1;

(ii) if $A = B \cup C$, then $A \in R(Q)$ iff $B, C \in R(Q)$ and the following two conditions are satisfied:

(iiia) $B \subseteq A$, for no $\lambda \in A$;

(iiib) $C \subseteq B$, for no $(x, y) \in C$;

(iiic) if $A = B \times C$, then $A \in R(Q)$ iff $B, C \in R(Q)$ and the following two conditions are satisfied:

(iiiia) $A \subseteq B$, for no $\lambda \in A$;

(iiiib) $C \subseteq A$, for no $(x, y) \in C$.

Now we are ready to construct L:

$$L = \{0, 1\} \cup \{\langle A \rangle \mid A \in R(Q)\},$$

partially ordered by

$$0 < \langle A \rangle < 1 \quad \text{for all } A \in R(Q),$$

$$\langle A \rangle \leq \langle B \rangle \quad \text{if } A \subseteq B.$$

In other words, $L = \{0, 1\}$ is a subset of the free product; the partial ordering on $L = \{0, 1\}$ is the same as on the free product. Thus L is obviously a partially ordered set.

To show that L is a lattice, take $X, Y \in L$; we have to find $X \vee Y$. If X or Y or both $0, 1$ this is obvious. So let $X \notin \{0, 1\}$; then $X = \langle B \rangle, Y = \langle C \rangle, B, C \in R(Q)$. We claim that $X \vee Y = \langle A \rangle$ if A satisfies (iiia) and (iiib), and $X \vee Y = 1_1$ otherwise. This follows from the observation that if $A, A_1 \in P(Q), A \subseteq A_1$, and A violates (iiia) or (iiib), then so does A_1. The dual argument now proves that L is a lattice.

For $a \in L_0, a \neq 0_1, 1_1$, identify a with 0_1; identify 0_1 with 0 and 1 with 1. This makes $L_{1_1} = \{0, 1\}$-sublattice of L. (\(\langle a \rangle = \langle 0 \rangle\) implies $a = b$ by (1) of Definition 3; the identification preserves meets and joins in view of the discussion in the previous paragraph.) Thus (i) of Theorem 1 has been verified. (ii) of Theorem 1 is obvious.

Finally, we verify (iii) of Theorem 1. It follows from (i) of Theorem 1 that $C(L_0) \supseteq C(L)$. Let $(x, y) \in C(L)$, and (iiiia) of Definition 4 yield $x \vee y = 1_1$ and $x \wedge y = 0_1$ in L, hence $(x, y) \in C(L_0)$. This proves (iii) of Theorem 1.

To prove the converse, let $X, Y \in C(L_0)$, then $X \vee Y = 0, X \wedge Y = 1$. We can assume that $X, Y \neq \{0, 1\}$. Hence $X = \langle A \rangle, Y = \langle B \rangle, A, B \in R(Q)$. Therefore $A \vee B$ violates (iia) or (iiib) and $A \wedge B$ violates (iiiia) or (iiiib) of Definition 4. The four cases that arise are handled separately.
Hence if \(A, B \in \mathcal{R}(\mathcal{O}) \), \(\langle A \rangle \neq \langle B \rangle \), then \(\langle A \rangle \neq \langle B \rangle (\mathcal{O}_\Phi) \). Since \(\mathcal{O}(C) \subseteq \Phi \) is obvious, we conclude that \(\langle A \rangle \neq \langle B \rangle (\mathcal{O}(C)) \), showing that every congruence class modulo \(\mathcal{O}(C) \) other than \([0]_{\mathcal{O}(C)} \) and \([1]_{\mathcal{O}(C)} \) contains exactly one element of \(\mathcal{L} - \{0, 1\} \).

5. The concept of \((0, 1)\)-free product of lattices is the same as that of free product of lattices, except that it is applied only to lattices with 0 and 1, and homomorphism is replaced by \((0, 1)\)-homomorphism. Let us make two observations. First, the construction of \(\mathcal{L} \) in \(\S 3 \) and the proof that \(\mathcal{L} \) satisfies (i) and (ii) of Theorem 1 made no use of the assumptions of Theorem 1. Second, the proof of \(K(\mathcal{O}(C)) \cong \mathcal{L} \) in \(\S 4 \) is independent of the assumptions of Theorem 1. Hence this isomorphism holds for \(\mathcal{L}_1 \) arbitrary and \(\mathcal{C} = \emptyset \), showing that \(\mathcal{L} \) is the \((0, 1)\)-free product of the \(\mathcal{L}_1 \lambda \in \mathcal{A} \). Since the word problem in \(\mathcal{L} \) is solved we conclude:

Theorem 4. The word problem of \((0, 1)\)-free product of lattices \(\mathcal{L}_1 \lambda \in \mathcal{A} \), \(\lambda \in \mathcal{A} \), is solved relative to the \(\mathcal{L}_1 \lambda \in \mathcal{A} \).

This result is not new, as it can also be concluded from a result of [5].

Next we specialize Theorem 1 to \(\mathcal{C} = \emptyset \); this result appears to be new.

Theorem 5. Let \(\mathcal{L}_1 \lambda \in \mathcal{A} \), be lattices with 0 and 1, \(0 \neq 1 \), and with no comparable complements. Let \(\mathcal{L} \) be the \((0, 1)\)-free product of the \(\mathcal{L}_1 \lambda \in \mathcal{A} \). For \(a, b \in \mathcal{L} \), \(a \) is a complement of \(b \) iff for some \(\lambda \in \mathcal{A} \), \(a, b \in \mathcal{L}_1 \lambda \), and \(a \) is a complement of \(b \) in \(\mathcal{L}_1 \lambda \).

As a further application we prove the following result of R. P. Dilworth [2]:

Theorem 6. Every lattice \(\mathcal{M} \) can be embedded in a uniquely complemented lattice.

Proof. Let \(\mathcal{A} = (0, 1, 2, \ldots) \); let \(\mathcal{L}_1 \) be \(\mathcal{M} \) with a new zero and unit. Let \(\mathcal{X}_i \), \(i = 1, 2, \ldots \), be pairwise disjoint infinite sets, \(|\mathcal{X}_i| = \max(n_i, |\mathcal{M}|) \); let \(\mathcal{L}_1 \) be the lattice freely generated by \(\mathcal{X}_i \) with zero and unit added. Since \(|\mathcal{X}_i| \geq |\mathcal{M}| \) we can define a function \(f_i: \mathcal{M} \to \mathcal{X}_i \), which is one-to-one, set \(\mathcal{C}_i = \langle \langle x, y \rangle \mid y = f_i(x), x \in \mathcal{M} \rangle \). Let \(\mathcal{M}_i \), be the \(\mathcal{C}_i \)-reduced free product of \(\mathcal{L}_1 \) and \(\mathcal{L}_2 \). Assuming then \(\mathcal{M}_i \) has been defined, let \(f_i \) be a one-to-one map from the non-complemented elements of \(\mathcal{M}_i \) into \(\mathcal{X}_{i+1}, \mathcal{C}_{i+1} = \langle \langle x, y \rangle \mid x \in \mathcal{M}_i, y = f_i(x) \rangle \), and let \(\mathcal{M}_{i+1} \) be the \(\mathcal{C}_{i+1} \)-reduced free product of \(\mathcal{M}_i \) and \(\mathcal{M}_{i+1} \). Then \(\mathcal{M}_i \subseteq \mathcal{M}_i \subseteq \mathcal{M}_i \subseteq \mathcal{M}_i \); the lattice \(\mathcal{L} = \bigcup \langle \mathcal{M}_i \rangle \), \(i = 1, 2, \ldots \), is the uniquely complemented lattice containing \(\mathcal{M} \).

The generalizations of Theorem 6 given in [1] can also be proved in a similar fashion. The present proof of Theorem 6 is equivalent to the proof given in [1].

Finally, we give an application of Theorem 3 which is crucial in some applications that are given in [4]:

Theorem 7. Let \(\mathcal{L}_1 \lambda \in \mathcal{A}, \mathcal{C} \) and \(\mathcal{L}_1 \lambda \in \mathcal{A} \), \(\lambda \in \mathcal{A} \) be given as in Theorem 1. For every \(\lambda \in \mathcal{A} \), let \(\varphi_1 \) be a \((0, 1)\)-homomorphism of \(\mathcal{L}_1 \) into \(\mathcal{L}_1 \) such that if \((x, y) \in \mathcal{C}, x \in \mathcal{L}_1 \), \(y \in \mathcal{L}_1 \), then \((\varphi_1(x), \varphi_1(y)) \in \mathcal{C} \). Let \(\mathcal{L} \) be the \(\mathcal{C}_1 \)-reduced free product of the \(\mathcal{L}_1 \lambda \in \mathcal{A} \), and \(\mathcal{D} \) the \(\mathcal{C}_2 \)-reduced free product of the \(\mathcal{L}_1 \lambda \in \mathcal{A} \). Then there exists a \((0, 1)\)-homomorphism \(\varphi \) of \(\mathcal{L} \) into \(\mathcal{D} \) such that \(\varphi \) restricted to \(\mathcal{L}_1 \) is \(\varphi_1 \), for all \(\lambda \in \mathcal{A} \).

Proof. Let \(\mathcal{K} \) be the free product of the \(\mathcal{L}_1 \lambda \in \mathcal{A} \), and the \(\mathcal{L}_1 \lambda \in \mathcal{A} \), respectively. Since \(\varphi_1 \) maps \(\mathcal{L}_1 \) into \(\mathcal{L}_1 \subseteq \mathcal{C} \), by the free product property, there exists a homomorphism \(\psi \) of \(\mathcal{K} \) into \(\mathcal{K} \), such that \(\psi \) restricted to \(\mathcal{L}_1 \) is \(\varphi_1 \) for all \(\lambda \in \mathcal{A} \). Set \(\mathcal{L} = \mathcal{K}/\mathcal{O}(\mathcal{C}) \), and \(\mathcal{D} = \mathcal{K}/\mathcal{O}(\mathcal{C}) \), and let \(a \) and \(d \) denote the natural homomorphisms. Then \(\psi^d: \mathcal{K} \to \mathcal{D} \) is a homomorphism; let \(\Theta \) be the congruence relation of \(\mathcal{K} \) induced by \(\psi^d \). We claim that \(\mathcal{O}(\Theta) \subseteq \Theta \). This follows from the assumption that \((x, y) \in \mathcal{C} \) implies \((\varphi_1(x), \varphi_1(y)) \in \mathcal{C} \). The computation is based on \((a)^d \) of the definition of \(\mathcal{O}(\Theta) \), the details are left to the reader. Hence there is a natural homomorphism \(\varphi \) from \(\mathcal{L} = \mathcal{K}/\mathcal{O}(\mathcal{C}) \) into \(\mathcal{K}/\mathcal{O}(\Theta) \). Since \(a \) is the identity map on \(\mathcal{L}_1 \), \(d \) is the identity map on \(\mathcal{L}_1 \), and \(\psi \) restricted to \(\mathcal{L}_1 \) is \(\varphi_1 \), the relation \(ap = pd \) implies \(\varphi \) restricted to \(\mathcal{L}_1 \) is \(\varphi_1 \), completing the proof of Theorem 7.

References

The University of Manitoba
Winnipeg, Manitoba

Reçu par la Rédaction le 24. 3. 1970.