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Countable paracompactness
of inverse limits and products

by
Keid Nagami (Matsuyama)

0. Introduction. The aim of this paper is to give detailed proofs for
the author’s abstract [9]. In this paper all spaces are assumed to be Hauns-
dorff and all mappings to be continuous. The suffix ¢ ranges always over
the positive integers. In Section 1 the normality, paracompactness,
hereditary normality, total normality, etc., of inverse limits are studied.
The countable paracompactness is shown to play an essential role for
these topological properties which are to be countably projective to
inverse limits. In Section 2 we treat the hereditary normality of the
product of two spaces and the normality of the product of uncountably
many spaces. Our results for the first case is to be considered as corollaries
of Katétov’s work [4]. In the second case the countable paracompactness
plays again a meaningful role.

1. Inverse limits. Let {X;, »}} be.an inverse limiting system of a se-
quence of spaces X; with the onto projections alt X;—~X; (i > j). Let X be
the inverse limit of this system and sy: X--X, the projections. A seb
of type 7 {(8) is said a cylindrical dosed set it S is a closed set of X;. We
consider the following condition, say:

(%) An arbitrary countable covering of X consisting of monotonically
increasing open sets can be refined by a countable covering consisting
of cylindrical closed sets.

1.1. TuEoREM. If one of the following conditions is satisfied, then X
satisfies the condition (*).

(i) Bvery open set of every X is F,.

(i) X is countably paracompaci and every m} is open.

Proof. Let {G} be a covering of X consisting of monotonically
increasing open sets. Let G be the maximal open set of X; with
a7 Y(@)) C @;. This notion for open sets of X will be carried out throughout
the paper. Then |7 (6} = X. .
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If (i) is satistied, then for each j, 6 = UlFﬂ with Fj; closed in X,
i
Evidently
(A Py 1=1,2, .0, §=1,2,..}
is a covering of X consisting of cylindrical closed sets Whi.eh refines {@}.
Assume that (if) is satisfied. Since ;@) C mri(GID) for each g,
there exists, by Ishikawa [3] or by an easy verification, a sequence of
open sets Uj, j=1,2,..., of X such that U;C 27X (G)) for each j and
such_that JU;=X. Since {m (Uf): k>4, j=1,2,..} covers X,
R TH: B>, = 1,2,..}, say &, is a covering by cylindrical closed
sets. To see z;(U) C a5 (U5 leb @ = (2> be not in a5 (U¥). Then there
exist an s>k and an open mneighborhood V of Zs such that z7(V) A
A~z (U5) = 0. Hence w(T) ~ vt = 0. Since a3, is open, @y is not in _U?,
which implies that # is not in #g'(U}). Thus a7'(UF) Cap " (UF). Since
7 (UF) Cwy X(G)), & vefines {G4} and the theorem is proved.
1.2. THEOREM. Let every X; be normal. If X satisfies the condition (),
then X is countably paracompact.

Proof. Let {H;} be a countable open covering of X. Set G; = [ H;.
. <1

Is
Let Fiz, k> j, be a closed set of X with 75 (Fy) C 73 (GF) and with
Ul (Fu): 5234, j=1,2,.= X. Tt can easily be seén that the
existence of these closed sets is assured by the condition (). Let Vi be
8 cozero set of Xy such that FjC Vi C G;-‘. Since {my ' (Vi): %k =7,
J=1,2,..}, say v, is a countable cozero covering of X, U can be refined
by a locally finite open covering W= {Wy: k>j, j= 1,2, ..} such
that Wi C ag (V). ‘
{WiaH:i=1,2, wndy k=4 5=1,2,..}

8 a locally finite open coverin
proved.

In the sequel m denotes an infinite
the property Z(m) or to be L{m) if every open covering has a subeovering
consisting of at most m elements. To be L (%) is nothing else to be Lindeldt.
A topological property 7 is said to be eountably projective it the following
condition is satisfied: If every X, hag 7, then X hag v too0.- .

1.3. THEOREM. If X satisfies the condition (x), then the Sollowing
properties are countably projective.

(1) Normality.

(i) Paracompactness.

(iii) m-paracompactness + normality.

(iv) Collectionwise normality.

(v) I(m) + normality.

g of X refining {H;}, and the theorem is

power. A space is said to have

©
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Proof. To prove all cases, except the case (iv), at the same timg,
let W = {U,: ae A} be an arbitrary open covering of X. For the .casg (1)
or (i) consider that A consists of a finite number of indices_?r of m indices,
respectively. Set V= \J {Ua aeA4}. Then ay'(Vy)Cag'(T 2).C“" and
U =i '(V:) = X. By the condition (+) there exists, for each i, a elos_ed
set li"'i of X; such that | 77 (F) = X. Let C; be a cozero seb 0? X w.nt,‘h
F;C 0;CV,;. For the first three cases Wlmr }(Cy) is normal, §1nce it is
refined by {#7 (Ua): @ e A}|;(C0). Since {a7"(Cy): i = 1,2, ...} is a count-
able cozero covering, it is normal. Therefore by Morita [6], Theorem 1.1,
aL is normal. .

For the case (v) UWjz7'(C:) has a subcovering of pf)w(ér <m, by the
same reason as in the above. Hence U has a subcovering of.power <m.
) To prove the case (iv) let {K;: & e &} be a discrete collection of closed
sets in X. Let U; be the maximal open set of X; such that for _elaczl
% e 7 (T;) there exists an open neighborhood V' of m(-:‘c) such that i (111)
me'etls at most one K. Then (@i (U i=1,2,..}is a monatonlcahsf
increaging open covering of X. By the condition (x) thglie eX1s’fs for e;ac i
a closed set F; of X; such that F;C U; and {=m; (.F_{): i= 1’(;’ :.t.l}
covers X. Choose an open set H; of X; with F;CH;C H; C U; and with
(7Y M H) C Hypa. Set

£, = Ly = m(Ee) ~ Hy: §€ B}
Then £, is a discrete collection of closed sets o£ H,. Let {D}f: é ED E’} fl()):
a discrete collection of relatively open sets of H, such that Ly e
each £. Set B
£ = {Lot = (na(Ks) n Hy) v (7) (D) E€ 5}

Then £, is a discrete collection of closed sets o£ H,. Let {?;;E: é eD =} fl;e:
a discrete collection of relatively open sets 0? H, such that Lot . 2;@11
each £ Continuing these processes successively, we obtamf e
i @ discrete collection {Dg: & Z} of relatively open sets o i
Ligb C .Dig, where

Ly = (wi( Ke) ~nHy v (@i (Dicxe), b€

8]

Set . =
De= U @7 (D n He): i=1,2,..3, D={Ds £t

i ‘ . Thus
Then D is a disjoint open collection of X with l;ixgeé)é for each &
is collectioniise normal and the theorem 18.p . o
* lslzois to be noted that all of (i)~{v) are not cour'xtabl% .P;(gri(’;;;;i?
general even if n:f- are open. This can be seen by ]!Ilch;et Sy b the in
paracompact and Lindelof space X in [5] as f9ﬂ0ws. li Namind
rationals. Then X x ¥ is not normal. Sinee Y is completely 5
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Y is the inverse limit of countable discrete spaces Y;. Then XX Y is the
inverse limit of X x ¥;, where each X x Y, satisfies hereditary para-
compactness and Lindelsf.

1.4. CorOLLARY. Let each X; be normal and each az} open. Then the
Jollowing conditions are equivalent. :

(i) X is countably paracompact.

(i) X 4s countably paracompact and normal.

(i) X satisfies the condition (*).

1.5. CoROLLARY. The perfect normality is countably projective. The
perfect normality combined with any one of the following properties is count-
ably projective.

(i) Paracompactness.

(i) m-paracompactness.

(iil) Collectionwise normality.

(iv) L(m).

It is to be noted that Cook-Fitzpatrik [2], Theorem 2, proved the
first half of this corollary.

o0
1.6. CoROLLARY. Let [ | P;be countably paracompact. If [ | P, (n=1,2,..)
i=1 i<n

satisfy any one of the conditions (1)=(v) én Theorem 1.3, then [] P, satisfies
i=1
it as well.

1.7. THEOREM. Let each
X be countably paracompact
with dim X < n.

Proof. By Corollary 1.4 X is normal. To prove dimX < n let U
= {Ua: @€ 4} e an arbitrary finite opeén covering of X. Set V; = |J {U
a e A}. Then by Corollary 1.4 there exists for each i a closed set F; of X,
such that F; C Vs and {wy {(Fy): 4 = 1,2, ..} covers X. Let C; be a cozero
set of X; such that F;C ¢;C 0,CV, and (@)™(0) C Cypr. Consider
{02 o € A4}]0,. Since dim C. < n, there exists for each a an open set Wi,
of 0, such that ord{Wa: ¢ ¢ A}y <n+1 and UlWai aed) = C,. Consider
{@2) (W) (Ta— (=) 0): e A)ic,.

There exists for each « an open set Wi,

X; be a normal space with dim X; < n. Let
and each m; open. Then X is a normal space

of C, such that
fia C ()" (Wa) © (02— (a)74(T,)
ord {Wae: a e A} <m+1,
U{Wsat aed) = 0.

Im Countable paracompaciness of inverse limits and products
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st Wae = Wia v ((#2) 7 (Wea) 0 (a1) (C) -
Then
Wea C Ues
ord{Wse: a e A} <n+1,
J{Wsat e A} = Cy,
Wia o ()7 (C1) = (7)™ (Woa) > (1) (1) -
Continuing these processes we obtain for each i an open set Wi of X;
such that ;
Wiu C Ua y
ord{Wi: ae A} < nt1,
U{Wi: aedy= 04,
i i -1
Win o (h-2) " (Cia) = (#i-) " (Wimaa) N (wi2) " (Cia) -
Set
We= U {ni (W) i=2,3,..}-
i h that ord {W,: ae A}
is an open set of X with W.C U, such th;
ahzli—yzrlxsd U {pWa: aeA}= X. Thus we obtain dimX <n and the
=
theorem is proved. . ‘ o
1.8. THEOREM. Let each X; be hereditarily normql oF hef;dzta?tlg
pm‘acc;'rr;pact. Let each ni be open. If a subset & of X is €osfmtf1b y ec’g;;;ely
compact and G' is dense in some open sel, say G, them G is resp
rmal or paracompact. N o
noml]groofp Let U= {U.: aeA} be an arbitrary finite or 1nf1}1111:§
relatively (;pen covering of G’ according resl?ectlvel;y.r toﬂthe Zis:m;aet_
each X; is hereditarily normal or when each X is hereditarily I;:rof ot
Let us prove the normality of U. Let U. be an open S’C Ry
U, @ = U, and U, C@. Set Vi= |J{Ui: aeA}. Then & Um:,tabli
m == a a . .
C ‘;} and ;7 (Vi) C wita(Visa). Applying I‘shlkawa_ [31] to eﬁlie’f?of Gg
paracompact set G’ theve exists for each 7 a felatn(?y cg)’ h,ldim{e o
such that [Dj]C i (Vi) @ and |JDi= &, whelflal Eﬁh;]t by icates. i
relative closure of D;. Let D; be an olperil set‘ of { 31}(, D et
and D;C w7 (Vy). Then @& C Jxi (D)C Umi (Vo) @ thej oy
B ZE o (ﬁ#m). e 1ﬂ;1(Bi)Gr'\ Cj’; T fb:l S:]rllﬂ;ibitmry natural
Pick oint & = <{ws> from z; (Bi) ~ G Le : turel
mlﬁnbzrpv;ﬁ;h i<j and U(zs;) an arbitrary open ne}llgm;()l‘;lfm:d,gizce ,jﬂ
Set U(zq) = 23U (@)). Then U (z) is an open neighborhoo ti nee
is open. Set V= U(#:)) ~ Di. Then V is open and non-empty.

i . Thus
= m; (V) ~ a7 (U(ey)). Then U is open and non-empty in . Thu
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Un@ #06 and hence «; (U(x)) nai'(D)) G #6. Therefore
ze[n7 (DY) ~@']C [Di~ G'1=[D;]. This implies that [Di] is not eop-
tained in :r?l(KQn G’y which is a contradiction. Let ¢; be a cozerg set
of X;— By with Di~B; C C;C V;. Then =7 (Cy) is a cozero set of X — 7 (By).
Set 27(Cs) ~ G = 8;. Then §;is a cozero set of @ such that USi=¢
Since {77 (Us): aeA} is normal, )

{7 (U2): a e 4}|8
is a normal relatively open covering of S;. Therefore
Ul (UD): a e d}8: i=1,2, .

is a normal relatively open covering of @', by Morita [6], Theorem 1.1
which refines U. The proof is completed. ’
1.9. THEOREM. Let each n:} be open. If each open set of X is countably
paracompact, then the following properties ave countably projective.
(i) Hereditary normality.
(i) Hereditary paracompactness.
(iii) Total normality.

Proof. Since the cases (i) and (ii) are evident from Theorem 1.8
we prove the last case. Let @ be an arbitrary open set of X. Then ag we’:
have done in the preceding proof, there exists for each 4 an open set (),
of X; such that =; '(Cy) is cozero in @ and {7 (0):4=1,9, ...} covers G‘
Let-{C,-a: a e A} be a locally finite (in Ci) covering of 01 s{mh that each.
Gi.a 1s cozero in X;. Let D; be a cozero set of @ such that Dy~ G C 7Y Cy)
UDi= Gand {Di: i =1,2, ...} is locally finite in @. Set Ty = 77:-—1(10’- ) ~
:.—\Di. E)[‘hen} T,; is cozero in X by Nagami [8], Lemma 51 {T-z' aemAi,
t=1,2, ..} is locally finite in ¢ rer, i Iy
o e g 13 Tocal yp ouite and covers ¢. Thus X ig totally normal

1.10. CoRrOLLARY. Let cach open set of [Z P; be cozmtabiy paracompact.
=

k3
T . I
f for each n, g Py is hereditarily normal, hereditarily Pparacompact or

totally normal, then ] is 7 4k itari
Yy normal, then 1g Py s respectively hereditarily normal, hereditarily
paracompact or totally normal.

) fl.Products. A n.}apping 1 @>R is said to be quasi-perfect if f is
;0087‘810 ind[ g]vegrl point-inverse under J is countably compact. According
“rorita (6], Theorem 6.1, 2 space Q is said an I7-spages if ot 5 i

I . A -space if it is the in-
Zeisz 1$age of a me’tm.zvspace under a quasi-perfect mapping. It is to be
oted that Arhangel'skil [1], Definition 5, got almost the same idea. The
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following Theorem 2.2 and 2.5 are to be considered as corollaries of Ka-
t&tov [4], Corollary 1, as stated in the following:

2.1. LeMMA. Let the product P X @ be hereditarily normal. If Q contains
a countable non-discrete set, then P is perfectly normal.

2.2. THEOREM. Let @ be an I -space and the product Px Q be heredi-
tarily normal. Then either P is perfectly normal or Q is discrete.

Proof. Let f be a quasi-perfect mapping of @ onto a metric space R,
First consider the case when R is discrete. Then {f '(2): z R} is a discrete
collection. If each f '(z) is discrete, then @ becomes discrete. If there
exists a non-discrete point-inverse, say f '(z,), then f'(z,) contains
a countably infinite subset @, with Q,—@, @ by the countable com-
pactness of f (z,). Hence P is perfectly normal by Lemma 2.1.

Let us consider the case when R is not discrete. Then there exists
a sequence of points 2y, 2, #, ... in B such that z; # 2; whenever 1 #j
and 2, is the limit point of 2,2, .. Pick a point y; from F%(z;) for
i=1,2,.. Let @, be the closure of {y, ¥a, -..}. If @; ~ f7(2,) # O, then
{Y1, Yz ...} is not discrete. Hence by Lemma 2.1 P has to be perfectly
normal. If @, ~nf (&) =0, @—Q: is an open neighborhood of f™(z,).
By the closedness of f, Q—@, contains f~'(z), =1, 2, .., equifinally,
which is a contradiction. Thus the theorem is proved.

2.3, COROLIARY. Let P be a paracompact M-space. If PXPXP is
hereditarily mormal, then P is metric.

Proof. When P is not discrete, P XP is perfectly normal. Hence
P is metric by Okuyama [10], Theorem 1.

This is an analogy to Katétov [4], Corollary 2. Let & be a covering
of a space @ and ¥ a point of Q. Let C(y, F) denote the intersection of
all elements F of ¥ with y e F. Let {F;} be a sequence of locally finite
closed coverings of @ satisfying the condition:

If K,DK,D... is a sequence of non-empty closed sets of § such
that K;C C(y, 5;) for some point y and for each ¢, then [ K # @.

Such a sequence {F;} is said a Z-net of Q. According to Nagami [7],
Definition 1.1, a space having a Z-net is said a Z-space. This notion is
a generalization of I -spaces. Let C(y)=C(y,F). It is countably
compact.

2.4, Lemwma (Nagami [7], Lemma 1.4). Let @ be a Z-space. Then
Q has o Z-net {Fg} which satisfies the following:

(i) Boery Fi is finitely muliiplicative.
(ii) .‘J"-g = {F(al a1): Qyg eeey A E.Q}.

(iil) Bvery F(ay ... a;) is the sum of oll Flay ... a;aiss); g€

(iv) For every y €Q there ewists a sequence Gy s, ... €2 such that
if C(y) C U with- U open, then C(y) CF{ay ... a1) C U for some 4.

Fundamenta Mathematicae, T. LXXIIT 18
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2.5. THEOREM. Let the product P X Q be heredilarily normal and
a Z-space. Then either P is perfectly normal or § 18 a countable sum of closed
discrete sets.

Proof. Let {F;} be a Z-net of @ as stated in Lemma 2.4. If there
exists & point y in @ such that C(y) # C(y, ¥) for any ¢, pick a point y,
from C(y, Fi)—C(y) for each 7. Set Qo= {y1, ¥s, ---}. Since Q—0Q, # G,
P is perfectly normal by Lemma 2.1.

Congsider the case when, for each point ¥ in @, there exists an 7 with
Cly)= Cly, F4) and C(y) is finite. Let @; be the sum of all elements
Flay ... ;) e Fy such that, for some point y, C(y) = Cy, Fe) = F(q ... w).
Then @ = [ JQ; and each Qs is a closed discrete set of points.

Consider finally the case when there exists a point y, in @ such that
C(y,) contains infinite points. Since C(y,) is countably compact, C(y,)
contains a countable set which is not discrete. Hence by Lemma 2.1
P is perfeetly normal. The proof is finished.

2.6. LeMmMA. Let N;, e M, be copies of the discrete space of positive
integers, where the power of the index set M is uncountadle. Then the product
[1¥; is not countadly paracompact.

Proof. Set T= [[N,. Let k& be a positive integer and A the set
of points = {x;»> of T such that » #* % implies the number of 1 with
;= n is at most 1. Then {4dz: k=1, 2,...} forms a discrete collection
of closed sets. Set Gy = T—|J{4As: i 5 k}. Then (| JGr=T. If we as-
sume that T is countably paracompact, then we can get a locally finite
open covering {Hy} of T such that Hy C Gy for each k. It is clear that
A C Hy for each k. Pick a point 2 = (x> from 4. Since o' « H;, there
exists a finite set o = {1, ..., b} C M with U(s™ o) C H,, where
U(c': a;) is the set of all points o= <a> with a} =, for each Aeag,.

Let « = (a3 De the point such that af=d if A=14 (6=1,...,n(1))

and af=2 if 1e M—q,. Since a®¢ 4,CH,, there exists a finite set
= {Ay oo; Anp} C M such that #(2) >n(l), Ua'a)n U@ o) =0
and U(#: ;) C H,. Continuing this process successively, we get a se-
quence #(1) < n(2) < ... of positive integers, a sequence oy = {Iay ory i}y
i=1,2,.., of subsets of I and a sequence #*, 2%, ... of points of T
such that

w=j if i=1, Aeo,

le ﬂl—ai...l 3
U(-Ti: ai) CH; .
U@t:a) nU(@:iaq))=0 it

7

i#E].
Let p = {ps be the_ point of T such that p, = jif A= 4;, j = 1,2, .y
‘and pi=11if 2¢ M—{_ja;. Let § be a finite set of M such that Ulp:p)

icm
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meets at most a finite number of H’s. We assume here without loss of
generality that f= az v y for some %, where y C M —|Ja;. For each

i >k consider the point p°= (pl> such that
1)3:_], it A=1, Ajeaii,
‘ A=y,
pi=1, it leM—a.
Then pie U(p: f) nU(ai: a)) C U(p: p) ~ Hy, which implies that U(p: f)
meets H; for each i > k. This contradiction yields that T’ is not countably
paracompact. The proof is finished.

2.7. THEOREM. Let X;, i € A, be non-empty paracompact Z-spaces and

X = [[X,. Then the following conditions are eguivalent.
(i) X is normal.

(i) X is countably paracompact.

(iliy X 4s paracompact.

(iv) X is a paracompact Z-space.

Proof. Assume that there exists an uncountable subset M of 4 such
that X; is not compact for any 1 e M. Then for each 4 e M, X, containg
a copy of N, say N;, as a closed subset. Hence X cannot be countably
paracompact by Lemma 2.6. By the same reason X cannot be normal
as was shown by Stone [11], Theorem 3. Therefore if either (i) or (i) is
satisfied, then X is the product of ¥ and Z, where Y is the countable
product of paracompact X-spaces and Z is a compact space. Since the
countable product of paracompact X-spaces is again a paracompach
X-space by Nagami [7], Theorem 3.13, Y is a paracompact Z-gpace.
Since a compact space is a Z-space, X itself is a paracompact Z-space.
The remaining implications are trivial and the proof is finished.

A X-space Q is said a o-space if each C(y) is a single point. If @ is
a paracompact X-space and @ X @ is perfeetly normal, then @ is a o-space
by Nagami [7], Theorem 3.15. Hence we get at once the following triple
product theorem for paracompact X-spaces.

2.9. CorOLTARY. If Q is a paracompact Z-space and @XQXQ is
hereditarily normal, then @ is a o-space.

Let H be the product of uncountably many closed unit. intervals.
The author does not know whether each countably paracompact open
set of H is normal or mot. .

pi=1, if

Zj €A — Uj_1
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On some problems of Borsuk

by
E. Barton (Urbana, 11l.)

1. Introduction. In [1] Borsuk introduced the concept of the index
of r-proximity of two topological spaces. The purpose of this article
is to answer three problems concerning this index posed by Borsuk in [2],
p. 208. Theorem 8 provides the answers to all three problems.

2. Main result.

DEFINITION 1. A natural number » is said to be the index of r-pro-
ximity of two spaces X and ¥ provided there is a system of n--1, but
not less, spaces X,, Xy, ..., Xp with X, =X, X, = Y and such that X;
and X;.; are r-neighbors for ¢ =0,1,...,n—1.

A space X is a r-image of a space Z, denoted X <. Z, if there are
maps 7 Z->X and i: X —Z such that 7 = idx, the identity on X.
X < Z means not X <r Z; X <, Z means that both X <, 7 and Z <. X.
X is an r-neighbor of Z if there is no space that is strictly r-between X
and Z; ie. there is no space Y with X <, ¥ <, Z.

See [2] for definitions.

DeriNiTION 2. A Hausdorff space X is a Peano space if and only
if X is the continuous image of the unit interval, I =[0,1].

Lemma 8. If X is a Peano space, then there exists a map h: (0,1]
X x I such that h((0,1]) = R((0,1]) & (X x0), (disjoint). Also |y is
an embedding for each 0 <t<C1.

Proof. Let f: 12X with f(I) =
by ¢(f) = ( sml —;—;, ) Let p: I xI-—I be the projection p(z,y)==
and set g = pg. Finally, define h: (0,1]-X xI by k() = (fe(®),1).
Then % is continucus and satisfies the conditions given.

X x0 is contained in R{(0, l]) For each (z,0) e X x0 there is a ¢

in I such that f(¢) = # and a sequence of points {tn} in (0, 1] such that {tn}
converges to zero and ¢(ty) =1t for each n. Then h = [fop(tu), ta)

= (2,1, and so {h{tx)} converges to (z,0). That i, (m,O)eh(O,l]).

X be given. Define g: (0,1]>I %I
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