Some properties of real functions of two variables
and some consequences

by
S. N. Mukhopadhyay.(Burdwan)

1. Introduction. It is interesting to note that some of the well-known
results for a real function of a single real variable come as a consequence
of more general theorems for real functions of two variables. A classieal
theorem of G. C. Young [6] is that if f is an arbitrary real funetion of
a real variable, then the set of points for which the upper derivate of fon
one side is less than the lower derivate of f on the other side is countable.
This theorem comes as a special case of a theorem of H. Blumberg 13,
which states that if f is a real function defined in the open half-plane on
one side of a line I and if 6; and 6, are two directions, then for any point
p ¢ I, except a countable set, the upper limit of f at p in the direction 8, is
not exceeded by the lower limit of f in the direction 6,. A second instance
of this sort is the theorem of C. J. Neugebauer [5]. Neugebaner proved
that if f is a continuous real-valued funetion of a single real variable,
then, except a set of the first category, the two-pper derivates are equal
and the two lower derivates are equal. A. M. Bruckner and C. Goffman [2]
proved that this result is also a special case of & more general theorem
for functions of two variables, viz. if fis & continuous real funetion defined
on. the open half-plane on one side of a line I and if 6 is a direction, then
for any point p ¢ L, except a set of the first category, the total cluster
set of f at p is the same as the cluster seb of f at p in the direction 9. It is
also proved in [2] that if f is a continuous real function defined on the
open half-plane on one side of a line L and it 6, and 0, are directions,
then for any point p ¢ I, except a set of the first category, the approximate
upper limit of f at p in the direction 6, is not exceeded by the approximate
lower limit of f at p in the direction 0,. Just as the theorem of Young
comes as a special case of the theorem of Blumberg, we can conclude
from this last theorem of Bruckner and Goffman that for a continuouns
funetion f of a single variable the set of points where the approximate
upper derivate of f on one side is less than the approximate lower derivate
of f on the other side is of the first category.
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Now it is natural to ask whether the above exceptional sets of the
first cafegory are also of measure zero. Since it is remarked in [57 that
for a continuous function f of a single variable the get of points where two
upper derivates or the two lower derivates are not equal is not necessarily
of measure zero, we conclude that the exceptional set which appeared
in the former theorem of Bruckner and Goffman is not necessarily of
measure zero. It is found in this paper that the exceptional set which
oceurred in the later theorem of Bruckner and Goffman is of measure
zero, and thus the analogune of the theorem of Blumberg is completed
by showing that if [f is continuous in the open half-plane on one side of
a line L and if 6, and 6, are any two directions, then for any point pel,
except a set of measure zero and of the firgt category, the approximate
upper limit of f at p in the direction 6 is not exceeded by the approximate
lower limit of f at p in the direction 0. Finally, some other results for

functions of a single variable are established with the help of analogous
theorems. '

2. Terminology and notation. In this section we explain some of the
terms used to prove our results. [A] will denote the Lebesgue measure
of the measurable set 4. The function fis taken to be defined in the open
half-plane above a line L which, in particular, may be taken as the X-axis.
The open half-plane above the line I is H. The points on the line L, viz
(¢, 0), will be denoted simply by 2, while any other point in H is de-
noted by p.

If 6'is a direction, then () is the half-ray in H in the direction 6
terminating at z; and Lg(z, ) is the open line segment in H in the di-
rection 6 of length % and having # as one of its end-points.

Let SC H and suppose that § ~ Ly(z) is measurable. Then the upper

and the lower densities of § at z in the direction 6 are denoted by d(§ 5 a; 8)
and @(8;x; 0) respectively. That is,

a(8; a; 0) = limsup|8 ~ Lyz, k)|/h
10
and
4(8; ; ) = liminf[§ ~ Loz, B)|/R .
hs0
Let f: H—+R and assume that f is measurable along the direction 6.
Then the approximate u

pper limit of f at # in the direction 6 is the lower
bound of all numbers ¥ (£ oo admitted) for which the upper density
of the set

{p: p < H; flp) >y}
at z in the direction § is zero, and it is denoted by limsupapf(p). That is,
D—z,0

lgigpapf(p)= ntly: d({p: p ¢ B; f(p)>y); @3 6) = 0}
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Qimilarly,
limintapf(p) = sup{y: d({p: p ¢ H; flp)< y}; = 6)=0}.
p—=,0

r imi f f at # in the direction 6 are the upper
¢ upper and the lower limits o
:31111(1 tlllé lower limits of the function f[Ls(2) at z and are denoted by
limsupf(p) and liminff(p) respectively, where f/Ls(x) denotes the re-
pz,0 D=x,0 .
striction of f to Ls(w).

3. Main results. .

LeMMA 1. Let f: H—~>R be continuous and let 0 be a direction. Then
fhe oot @ fp)<y for all peTo, W)
is a closed set for fiwed values of y, & and h. '

Proof. Since f is continuous, every limit point of the set is a member |
of the set and hence the lemma is proved. o

LemymA 2. Let f: H-—>R be continuous and let 0 be a direction. Let
m(z, h, 0,9) = {p: D e Lo(x, h); f(p) = y}|. Then the set

{m: m(z, h, 0, y) < Ah}

is an open set for fized values of h, 0, y and i and hence the function
m(z, h, 0,9) 18 measurable for fized values of hy- 0 and y. '

Proof. We shall prove the lemma for y= 0;. for y =0 we };mz
only to consider the function f(p)—y. For any arbitrary constant 1 w
have to show that the set

E = {z: m(z,h, 0,0)< Ak}

is open. Since 0 < m(w, h, 0, 0) < ky if 1 > 1 then ¥ is the set of all pof}i
2z el and if 4 < 0 then E is the null set. So, we may assume 0 <1 < 1. Le

A = {o: Hp: p e Lle, h); f(p) > e}l = b} .

Then if ¢,¢ A and ¢, < ¢;, then ¢, ¢ A. Also sup4 ¢ A. Let
@(®, h, 0,4) =supd. '

Then ¢ is a function of # for fixed values of %, 6 and A. It can easily be
verified that B — (o 9o, b, 6, 7)< 0}

8o, the lemma will be proved if we show that thef fhun;tzjlxlldq:lls an
upper semicontinuous function of » for fixed values 2 0, o ;]_‘hen

Let 2, be any arbitrary value of = and let p(@, k, 0, 4) = G-
for any arbitrary e >0

l{p: p € Lo(ws, h); f(0) = Gyt ell < Ah.
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Let [{p: p e Ly(zo, h); f(p) = ¢+ &} = Ah—0. Then

[{p: p € Lo(o, b); f(p) = cyte; [p—2m| > 0f2}| < Ah—0.

So, .
{p: D « Lo(zy, h); f(9) < cyt; |[p—10| > 0/2} = h—Ah+qf2 .

Since f is continuous in H, it is uniformly continuous in any bounded
closed region in H and hence there is a d > 0 such that [z — | < & implies

[{p: p e Lo(z, b); f(p) < Go-+2¢5 |p—0| >0[2}| = h—Ah+ )2,
ie., '
[{p: p < Lofw, 1); f(2) > e+ 26; Ip—i| > 0f2}| < h—0
and hence

[{z: pe Loz, b); f(p) = co+ 2} < Ah— /2 < Ah.
So, if |z—a,] < 8 then @(z, b, 6, 2) < ¢,+ 2¢, showing that

limsupe(z, &, 0, 1) < ¢y+2¢ .

-2y
Bince e is arbitrary, limsupe(xz, k, 6, 1) < ¢,. This shows that @ is
Z—>T

upper semicontinuous at #,. Since , is arbitrary, ¢ is an upper semicon-
tinuous function of x for fixed %, 6 and 1. This completes the proof.

Lenwa 3. Let f: H~R be continuous and let 6 be o direction. Let
Mz, 0,y)= H;rlﬁupm(m, Ry 0,7)/h, where m(@, h, 0,y)={p: p € Ly(, h);
7(®) = p}. Then M(x,6,y) is a measurable function of © for fized values
of 8 and y.

Proof. Let A(z,h,0,y) =supm(s,l,0,y); 0<l<h). Since
m(z,1, 8, y)/l is a continuous function of I in (0, &), the upper bound is
the same if only rational values of 1 are considered. Then Az, h, 8,y),
being the upper bound of an enumerable set of measurable functions,
is measurable.

Now as h decreases, A (x, &, 0, y) decreases and hence %imA(m, h,0,y)

fi—0

is a measurable function of # for fixed § and y. Since M(z, 0, y)
= }IimA(w, k, 8, y), the result follows.
S0

Lenwa 4. Let f: H->R be continuous and let 6 be a direction.
Then limsupapf(p) is a measurable Sfunetion of x.
]

Proof. Let y be any real number. We shall show that the set
E = {z: limsupapf(p) > 7}
D0

is measurable. Consider a decreasin

g sequence {y,} such that y,—>y as
n—co. Then by Lemma 3, the fu

netion M(x, 0, p,) is measurable for

ic'rn©
each n and hence the set {#: M (=, 0, y,) >0} is measurable for each n.
Now it is easy to verify that . .
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BE= Ul{w: Mz, 8, yn) >0},
n=

which shows that the set F is measurable. This completes the proof.
LEMMA b. Let f: H—>R be continuous and let 0 be a direction. Let
miz, by 0,9) = [{p: p eLo(2, h); f(p) = y}|. Then the seis

EB(B,y, A, n)={x: m(z, k, 0,y)/h <A for all b, 0 < h<1/n}
and
F(O,y,u,n)={x: m(@, b, 0,y)[h=p for all h, 0 <h<1n}

are measurable for fized values of 0, y, A, u and n, where n is any positive
integer. . .
Proof. For a fixed value of 2, 0<h<1/n, we write

By, 7, 1) = {w: m(z, h, 0, )[R < 2}.
Then 500 »
E(O,y,)., ) =0<;Q1/n w8, vy 4) .

Now since m(z, &, 0, y)/h is a continuous function of % in (0,1/n), t}}e
intersection () (8, y, 4) is the same if only rational values of % in
o<h<lin

(0,1/n) are considered. That is,

= B0, y, A
’E(ﬁ, ¥y hym) 0<7erlllﬂ m(0s 75 4)
where h, are the rational values of h in (0, 1/n).

By TLemma 2 the set By, (0, v, ) is measurable for each A, and hence
the set E(f, y, A, n) is measurable. Similarly, it can be shown that the
set F(0, v, u, n) is measurable. o

TrmorEM 1. If f: H R is continuous and b;, 0, are directions, then
the set .

E = {x: limsupapf(p) > limsupf(p)}
D201 p—>x,0p
8 of measure zero and of the first category. . -

Proot. For a fixed rational number y and a fixed positive integer =

let B,, denote the set of all points # such that

@ fp)<y -forall peLoyle,1n)
and
@ lim supapf(p) >7 -

p—>a,01
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Clearly,
(3) ECEn,

where the union is taken over the set of all rational numbers and the
set of all positive integers. Since

(1) Epn= {2 f(p) <y for all p e Loy(w, 1/n)} ~ {2 123;}11)&131‘(29) >,

the set H,, is measurable for each y and n by Lemma 1 and Lemma 4.
We shall show that E,, is of measure zero for each y and n. If possible,
suppose |B,,| = 0 for some y and n. Let z, ¢ B,y be a point of density
of B,,. From (2) we conclude that , is a point of positive upper density
of the set i

{5) {p: p € Lo(m); f(p) >} .
Let
(6) d({p: p e Lofmo); F(D) > v}; @03 01) = >0

Suppose 6, > 0,. For each @ ¢ B,,, &< @, let Ly,(x) intersect Ly (z,) at
the point g(z). Since #, is & point of density of the set E,n, z, is also
a (one-sided) point of density of the set

(7) {0(@): @ e By < mp}.

Hence and from (6) we conclude that there is an interval J C Ly (%)
with z, as one of its end-points such that ’

®) i <120

©) U~ {02 p e Lo (9) >3} > T]-10
and

(10) Vo la@): @ e B 0 <y > W)-(1-3)

From (9) and (10) we conclude that the sets (5) and (7) have common
points in J. Let p,«J be one of such common point. Then

(11) Fpo) > .

Also since pye{q(a); 7 € By 3<<2g}, we have &' ¢ K, o' < @, and
Po = q(«'). Hence by (8) p; e Lp(2’, 1/n). Sp, from (1)

(12) Fp)<vy.

Since (11) and (12) are contradictory, we conclude that | B,n| = 0 for
each y and n. The relation (3) shows that the set B is of mieasure zero.

icm
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The case 0, << 6, can be similarly treated by considering points =
of B, such that @ > @, and the interval J C Ly (2,) such that |J]| < %Z—i—%—j
Thus in any case |E|=0.

To prove that the seti B is of the first category it suffices to show
that the sets F,, are nowhere dense. Suppose, on the contrary, that there
is an interval I = [a, b] in which one of the sets By, say By, 15 dense.

So, from (4) the set
{m: f(@) <%

is dense in I. Since by Lemma 1 the above seb is closed, we conclude
that for every wel

for all p e Ly,(m, 1/ng)}

f@)Y< o for all pelaw, 1ng) .
Let J = [¢, d] be any interval such that a <e¢< d < b. Then
limsupf(p) <9, for all zed.
p—>T,01
Thus
(13) J ~ {@: limsupf(p) > 9} =0.
P—>2,01

Now by (4) the set {z: limsupap F(p) > yo} is dense in I, and hence there
’ . p—>2,01

isa & such that

(14) . Eed ~ {m: limsupapf(p) > Yo} -

P—>2,0
Since (13) and (14) are contradictory, we conclude that the sets B, are
nowhere dense and this completes the proof. .
TrmorEM 2. If f: H—>R is continuous and 8,, 0, are directions, then
the set o
E = {z: limsupapf(p) < hmmgfapf(P)} .
p—>I,U2

p+x,01
is of measure zero. :
Proof. For a fixed pair of rational numbers a,n(.i s, y<<s8, and
a fixed positive integer n; let Hye, denote the sef of all points # such that
for all h, 0 < h< 1/n, the following relations hold:

(1 [{p: p e Lo, ; f(0) = v}l <1/
‘ and
(2) [{p: p € Lo, b); f(p) = s} =203 .

Then it is easy to verify that
(3) EC\) By
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where the union is taken over the set of all pairs of rational numbers y
and s, y < s and over the set of all positive integers n.

Then &, is measur-
able for each y, s and . Indeed, letting

B0y, v,1/3,n) = {z: m(z, h, 01, y)[h <1/3 for all b 0< h< 1fn}
and

10, 5,2/3, n) = {z: m(®, b, 0,, s)/h = 2/3 for all hy 0 < h< 1/n}
where )

Mm@, by 0,1) = |{p: p e Lo(z, 1); f(p) > 1),
we see that

Byon = B8, y, 1/3,7) ~ F(0,, 8,2[3,n),

and since B(0,, y,1/3,n) and F(6y,5,2/3,n) are measurable by Lemma 5,
the set E,q, is measurable. We shall prove that E.

yen 18 of measure zero
for each 9, s and n. If Dossible, let | B! + 0. Let % € Bys, De a point of

density of B,,. 8o, there is an interval I containing &, in its interior
such that

4) Byon ~ I > {EI).

Let T be the triangle in H whose base is I and whose other two sides,
designated as L, and L,, are in the directions 6, and 6, respectively. We
consider the interval I to be so small in length such that both of L; and L,
are of length less than 1/n. For each ze T y let ,(z) denote the length of
the line segment in the direction 0, joining # with L, and let. hy(x) denote

the length of the line segment in the direction 0, joining z with L.
Now

{2 2 T5 f()> 91 C{p: p Loz, (@)); f(p) >y; 2el A B

ysn} v

vip:p € Ly, (, In(2)); & € I—B,q,) .
Hence

B} ip: peT; f(p) > 9} < sing, f

I0Eysy,

(22 p ¢ Lofo, (@); 1(p) > y)|ao

+sin#, f HIJ: P & Ly, hl(w))}‘dm

T—~Eyen

< §sing, f hy(@)dz 4 sin 6, f hi(z)dz  from (1)

I0Eysn I-Tyun

It

sing, | (@) dz—3sin6, [ hy(o)in
I

INEysn

=ITi~%sin6, [ hy2)du .
INEysn

icm
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Also since
{p: peT; f(p)=8}D{p: peLofw, ha(a)); f(0) =85 v I~ Fyon},
we have

6) {p:peT; f(p) = s} >sinb, [

INEysn

{p: D eLafr, f@); f(p) = s}lde

>3sin6, | hyfz)dw from (2).
InEysn

From (5) and (6),
IT1=>% [ [sin6,hy()-+sin Oy hy(2)]do
INEysn

2 i i A d.
> 3 [ [sin6,hy(@)+ sin b ln(w)ldo—§ [ [sin 6, hy(a)+ sin b, ho(a)]} 42
I

I-Eysn

> 12T~ [ [sin0,hy(@)+sin0,ha)]do,
- I—Evysn
ie.,

IT) <2 [ [5in0,hy(z) -+ sin 6, hy(o)]do
I—Eysn

< 2[Lsin 0, 4+ Lsin 0,]- [T — Bysn|
where I, and I, are the lengths of L; and L, respectively,
= 2:2k-|I—Eyml| ,
where k is the altitude of the triangle T,
< 4k- I} from (4)
= k- {1}
= }iT1,

which is a contradiction. Hence x;fe conclude that [E,e} = 0. 8o, by (3),
E| = 0. This completes the proof. ‘ ‘ . i
" Remark 1. In [2] it is proved that if f: H —>Rf 1tsh :23(;1:1;2;1;01%
it 0 is a direction, then, except a set of values of o b f e T
the total cluster set of f at # is the same as t.he ‘clusterR sis s 2t
divection 6. From this one can deduce that if f: Ht -

it 6, and 6, are any two directions, then the se

. limsupf(p)}
(o K ynfe) =X 00!
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is of the first category. Since

limsupapf(p) < Iimsgpf(p) for all #,

D,00 P—>,01

we conclude that the set

{e: limsupapf(p) > limsupf(p)}
P>,61 D—2,03
is of the first category. Hence the last part of Theorem 1 also follows
from [2].
Remark 2. It is also proved in [2] that if fi H->R is continnous
and if 6, and 6, are any two directions, then the seb ‘

{&: limsupapf(p) < liminfapf(p)}
D0y P20y
is of the first category. Thus Theorem 2 together with this -result com-
pletes the analogue of the theorem of Blumberg [1] by showing that for
a continuous function f: H >R if 6, and 6, are any two directions, then
for any point « < I, except a set of measure zero and of the firsh category,
the approximate upper limit of f at z in the direction 0, is not exceeded
by the approximate lower limit of f at & in the divection 6,.

4. Some consequences. Inthis section we shall study some conse-
quences of the results established in the last section. Let I, denote the
line y = @ in the plane and let H denote the open half-plane above the
Line L. Then to every pair of points @, y, £ < 9, on the real line R there
corresponds a unique point (a, ¥) in H and to every point (%,y) in H
there correspond two definite real numbers # and y such that o< y. Let
J be and arbitrary real function of a real variable. Let us define a
F in the open half-plane H such that

Fa,y) = 1010
Then the upper right derivate and the
of f at  are the same as the upper limit and the approximate upper limit
of Fat (z, a) respectively in the vertical direction, The upper left derivate
and the approximate upper left derivate of f at @ are the
upper limit and the approximate upper limit of ¥ at (2, «)
in the horizontal direction. The symmetric upper derivate
proximate symmetric upper derivate of f at # are the same
limit and the approximate upper limit of ¥ g (z, )

function

for  (z,y)eH.

approximat.e upper right derivate

same as the

respectively
and the ap-
as the upper
respectively in the

wer limit and the ap-
analogously. Further, we have to
then F: H-R is also continuous.

proximate lower limit of F af (z, 2)
note that if f: R>R is continuous,
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As usual, D*f, Df, f, AD"f, AD"f and f& will denote the right

hand upper, left hand upper, symmetric upper [3], right hand approximate

upper, left hand approximate upper and the s;gmmetric- approximai%g

upper [4] derivate of f respectively; D% Iy DS, £, AD.f, AD_f and Jfap

will denote the corresponding lower derivates. Let AW, Uap, £ and £, be
the sets of functions defined by

W= {D¥, D71, 7" W= {AD"f, AD7F,73};
£ = {Dif, D-f, 1Y Cwp = {ADyf, AD_f, f3}.

From Theorems 1 and 2 and Remark 2 we have the following theorems:

THEoREM 4. If fi B —R is continuous, then for arbitrary A e U, p € Uyp,
the set

{o: 2(2) < p(@)}

is of measure zero and of the first category.

Remark. An analogous result is true for functions of classes €
and Lqp. ‘

TEEOREM 5. If f: R—>R is continuous, then for arbitrary Ae WUep,

u e Lap, the set
{2 2(2) < ()}

is of measure zero and of the first category.
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