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each V)~ A is in T(A) (resp. H(A), so that by theorem 12, 577

is m;(%{) (resp. H(A)). Since X is in A, 4| ¢7(V): i7V) -V is a topological

quotient map. Thus by theorem 12, ¥ is in T(A) (vesp. §(A)).
CoroLLARY (Franklin [6]). Back of the properties “Hausdor

generated” and “sequential” is open-hereditary. I compactly

Proof. Clearly by theorem 13, §(& ~ §) =T (K) ~ 9. Also by the
eoroualjy to proposition 9 every open subset of a compact Hausdorff
Space is compactly generated. Similarly, every open subset of every

convergent sequence is a convergent sequence ( ibly finite) a i
‘ possibly finite
¢ . ) and so is
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Svenonius sentences and Lindstrom’s theory
on preservation theorems

by
M. Makkai (Budapest)

Introduction

Let us call the infinitary sentence g A @ a Svenonius senience or
S-sentence if ¢ is a prefix of length < and O is a countable set of finitary
first order formulas appropriate for a fixed countable similarity type &.
Tt is immediate from the semantics of infinitary formulas (see [5], [6], [7]
and § 0 below) that any class K of structures of type £, definable by an
S-sentence, is. a PC, class. Svenonius [12] showed a partial converse
of this fact.

Let us call K a P(; class if K is the class of the reduets to & of the
countable models of a countable set of ordinary sentences. Svenonius’
theorem says that the PCj classes are exactly the classes of countable
models of §-sentences (1). Svenonius [12] also showed that Craig’s inter-
polation theorem [1] is an easy consequence of this theorem. Considered
from this point of view, (the proof of) Svenonius’ theorem yields perhaps
the most elementary model-theoretical proof of the interpolation theorem,
or more particularly, it demonstrates that the ideas of Henkin [4], if
properly applied, are sufficient for proving the interpolation theorem.

Knowing the close connection between certain preservation theorems
and interpolation theorems, it is natural to ask whether there exist
analogs involving S-sentences of known preservation theorems such
that the original theorems are consequences of the new ones. This paper
gives a positive answer to this guestion.

Call an S-sentence g A @ positive if every element of 0 is positive
in the usual sense. Our Corollary 2.4 (a) says that K is a PC; class closed
under homomorphisms iff K is the class of countable models of a positive
S-sentence. We also show that Lyndon’s well-known preservation theo-
rem [9] is an easy consequence of this result.

(%) See Theorem 2 in [12]. In [12] a different terminology is used and S-sentences
are mentioned only in passing.
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After having found the last-mentioned Corollary 2.4 (a) and s series
of analogous results, the author came across Per Lindstrom’s Important
work [8], which unifies the treatment of many preservation theoremg
concerning binary relations between structures. Lindstrém introduceg
games G involving o-type sequences of choices by two players of finite
strings of elements in two structures % and B and associates a relation
R(@) with G between structures such that AR(G) B iff Player IT, hag
8 winning strategy in @ played on (2, B) (for precise definitions se,e §o
below).

) The present paper combines the author’s earlier findings, originating
in Svenonius [12] with Lindstrém’s theory. Say that K is closed (8- closed)
under R if for any (countable) A and B, A ¢ K and AR B imply BeX.
‘We associate with a Lindstrém game @ a class § (@) of S-sentences a]i
preserved under R(@) such that K is a PC5 class %-closed under R(®)
iff K is the class of countable structures of an element of S (@) (Corol-
lary 2.1). Our methods of proof are closely related to thoge of Svenonius [12]
Svenonius’ theorem is, in fact, & special case of our Corollary 2.1. -

Corollary 2.4 (a), concerning homomorphisms, is obtained as a special
case t0o. It should be mentioned that a direct proof avoiding Lindstrém
games can be given for this Corollary through a considerable simplification
of the proof of the main theorem. For the proof of bLyndon’s theorem
thus resulting we could claim a similar status as we did above for the
proof ?f Craig’s interpolation theorem via Svenonius® theorem.
axs X}g also obtain a version of Lindstrom’s [8] main result as Corol-

Our results were announced in [91, [10].

§ 0. Preliminaries

Excep.t for some slight modifications mentioned below, we use the
set-(;:hleoretlca.l and logical notation that is commeon in the literature of
model theory. E.g., o is the set of natur : = {m:

T he , al numbers, = {m: m < n}

The symbols f P a and f o g will be used in a more general sense than

_ at
usual. We put fPa=fn((an~domf) xmf), ie. fMa=f}(a~ domf).
Also, fog is the funetion kb such that domh — {z e domg: g(z) e domf}
and h(z) = flg(=)} for x e domh. »

In the formal languages considered we identify the variables with
ﬂh.e‘natura.l nupbem. Sometimes v, is written for n. If not stated ex-
plicitly otherwise, “formula” (“sentence”) always means “finitary first-
order formula (sentence) appropriate for &7 with a fixed countable similarity
type £. Also, all structures considered are of type &
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If ¢ is a function with domo C w, rno C o, and ¢ is a formula, then
¢ (o) denotes the result of substituting o(z) for » (r « domo} in ¢ at every
free gecurrence of x in ¢ after renaming bound variables to make o{x)
free for z in ¢. ¢(y/x) stands for ¢({{z, y)}). We write ¢~y to denote
that p differs from ¢ in the names of bound variables only.

We include the empty disjunction %/ 0 and the empty conjunction
# 0 among the (finitary) formulas. The former is identically false, the
latter is identically true, and both are considered positive.

In this paper we deal with {possibly) infinitary sentences @ of the form

(Qoﬂ"o aee Qu.rn V< ,’A\ e

where 1< w, @ is a countable set of (ordinary) formulas, @ is V or &,
and the &, are distinet variables. Such a sentence is called a Srenonius-
sentence or S-sentence. If 1 < o and @ is finite, @ is a finitary sentence.
Here we reproduce the truth-definition for §-sentences by specializing
that given in [3], [6], [7] for a more general type of infinitary formulas.
For the sake of simplicity we assume = n=v, in the above
q = {Quitn: 1 < i and we identify ¢ with {Qu: n < Z>. In this case ¢ is
called a simple prefix.

Denote by V(g) and H(g) the sets {n < i: g{n)= V} and n<a:
g(n) = "} = A—V(q), respectively. A q-strategy on A iz a function
f: YO4 5@ such that for ay,ake P4 and n <l ay P n=ayln
implies f(ay) N # = flag) M » or, in other words, fla)[n depends only
on aMn. fis a winning strategy for “Aj=g A 67 if for any aye V94
and #¢ @ we have U =8[ay U flag)]l. We write Ul=® or AeMod (D)
if there exists a winning strategy for “% |=®” and in his case we say
that @ is true in A and that U is & model of P. Note that in the case where
@ is a finitary sentence (i.e., 2 < o and @ is finite), @ is true in Ain the
new sense just in case @ is true in % in the ordinary sense.

A finite approzimation of ¢ A O is a finitary sentence g' N 0 such
that ¢ is a finite initial segment of ¢ and @’ is a finite subset of @. This
notion is a special case of a notion of Keisler [6]. The next proposition
is obvious.

0.1. A model of an S-sentence is a model of any finite approximation
of it. (Proof. Cut the winning strategy to the appropriate size.)

The mext proposition ean be proved easily by (i) translating the
S-sentence ¢ A\ O into a theory with (Skolem-) funection symbols corre-
sponding to the functions fz: Y9 F4 4 such that fi(a) = (flav)) (k) for
some (any) av extending o and f is a ¢-strategy on 4, and then (ii) using
the Lowenheim-Skolem theorem and the compactness theorem. It is
contained implicitly in [12] (see Theorem 5 and the proof of “Craig’s
lemma”, pp. 388-389). '
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0.2. Assume that every countable model of the S-sentence @ is g model
of the (finitary) sentence p. Then @ |=y for some finite approzimation
o of .

The method of Skolem functions also yields

0.3. Mod (9) is a PC; class, i.e. it is the class of reducts of some ele-
mentary (EC,) class of structures of some countable type &' D é&.

For a «“4, we say that (U, a) is a model of the set X of formulas
if A |=gp[a] for all p ¢ Z. The formula ¢ is said to be a logical consequence
of X with the variables held constant it any model (%, a) of X is a model of ®.

The next lemma is a version of a part of Henkin’s proof [4] of the
completeness theorem.

The part in question.consists in showing that a consistent set of
formulas, if extended by an appropriate collection of formulas of the
form Hzp—@(y/z), remains consistent.

0.4. Assume we are given the simple prefix ¢ = <Q.: n < w), and
for every k < w, the natural number y; and the formula Hzrpr such that

(@) k1 <k, Implies yr, < Yr,,
(i) yi e Efg), '
(iil) every free variable of Hezgy is <Yg-

Put H = {Teepr—pr(yr/zk): ¥ < w}. Then any structure is a model
of ¢ A H. Consequently, if % is a model of the set T of sentences and
each element of @ is a consequence of 7w H with the variables held
constant, then % is a model of gA 6.

In the rest of this section we reproduce Lindstrom’s [8] definition
of “regular relations”.

Let p = {Prun n < w) be a generalized prefiz where each P, is V
or d and each u, is a non-empty finite set ‘of variables. Let I" be an
arbitrary set of formulas. We refer to the pair @ — (p,I") as a Lindstrom
game. Following [8], we associate with @ a relation R(@) between structures
as follows. To give first an illustration, assume eg.that Pp=H,P, =V, ..
and wu;= {2}, ..., 2{"}. Then, by definition, AR(G) B iff the following
infinitary statement “with a prefix of type w” holds:

(Vage A, ..., Var e A)(Ebd e B, ..., T ¢ B)(VH B, ..., Vb ¢ B)x
X (Hale 4, ..., Tal' e A)...
A=yl alfet = Bl=y L. blal )

'Though this definition is essentially precise, for practical purposes
Wwe give a more formal one in the case where P is a simple prefix (i.e.
Un = {tn}; DOW p is identified with (Pn: n < o))
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We call a mapping h: TPU x¥PB_FPL W IPR 5 posirategy on

AxB if, with (¢,f) 2 (e, f), “«’ P n and #Pn depend only on
(a}m, pT 0)”, ie., more precisely, (ai, ;)= h(a:;,B:) (i=1,2) and
aMtn=aln fBltn=pF"1n imply aeifn=aln and gidn=pMn
p is called a winning strategy for “UR(G)B” if, in addition, for any
(ag, Bv) € *PAXTPB and (ay, fg) = h(ag, fy); U=y (ay v ay) implies
B l=y(fy v Pg) for all yel. AR(GF) B holds by definition iff there is
a winning strategy for “UR(G)B”.

Lindstrém [8] has shown that many ordinary algebraic relations R
coincide with R(@) for suitable & when R and R(G) are both restricted
to countable structures. An example of an R where we need more than
one (in fact, two) variables in each u, quantified in p at a time is the
relation “A X A is isomorphic to B x B”.

§ 1. The main result

(a) Definition of the class S(@). We call ¢ a regular tree if (i) p is
a (reflexive) partial ordering with field 2 < o, (i) o is a tree, i.e. nfg]
£ {m: mon} is totally ordered by g, (iil) mon implies m < n.

Let ¢ be a regular tree. Clearly, n[o]Cn--1. Let the level I(n) (or
simply 1(n)) of n be nfg]—1. Obviously, men implies I(m) < I(n), and
also conversely provided that both m and n are in some set k[p]. We say
that n is a p-successor of m if mon and l{n) = I(m)-+1. We introduce
one more symbol. Let ¢ (or simply o") be the function o" = (1] n[o])™"
g is the enumeration of the elements of n[g] in the order of their levels.

Let the Lindstrom game G = (p, I') be given with a simple prefix p.
Let o be a regular tree with field 1. Let g = q[p, ¢] be the simple prefix
g=<p(l(n): n< Ay Note that neH(g){neV(g) Hf Un)e F(p)(t(n)
€ V(p)). We call a formula a &, o-formula if it is of the form y(oy) such
that y eI" and all the free variables of y are in dom(o}).

For a given Lindstrom game G = (p, '), we define S(G) to be the
class of all S-sentences @ such that for some regnlar tree o, D is g[p, 0]\ O
and each element of @ is a finite (possibly empty) disjunction of @, o-for-
mulas. :

Remark 1. Consider thé case g = <. Now the o™ are identity mappings
and g¢[p, g] = p. Thus the above @ becomes p A O, where the elements
of @ are finite disjunctions of elements of I'. It is easy to see that this
@ is preserved under R(G).

Next we give the definition of (@) for G = (p, I') where p = (Putin?
® < @y is a generalized prefix. Let us write Qs for (Qvy,...; Qor if
§ = (Vgy ..., ¥x) and 2, Qus, for the concatenation Qg8 ™ @15 ... NOW,
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let ¢ be again a regular tree with field A and &= {&x: new) a system
of mappings en: wm—w such that ru(e) A ra(s) = 0 for n, = n,. For

each n, let s, be a 1-1 sequence such that 7n(s,) = #n( Ja). Put ¢ i 2 Pimsa
k%
and let O be any set of finite disjunctions of formulas of the form Y{U &m)
men

such that % <1, y «I" and the free variables of y arein dom(| J em). We

define 8(@) to be the class of all S-sentences ¢ A @ thus obt:;'glzed.
Remark 2. To facilitate reading, in the proofs we restrict ourselves
to Lindstrom games (p, ') with a simple p. If we wanted to write out
the proofs for the general case, we would use generalized prefixes in
writing S-sentences. When doing so, the above s, are superfluous and ¢
becomes (Pynrn(e.): n < o). Thus concatenation is avoided too.

(b) Properties of S(G).

) ProrosiTION 1.1. Every element of S(Q) is preserved wunder R(®)
ie. DeS(G), UR(G)B and A =D imply B |= .

Proof. Let @ = (p, ). We assume that p is simple.

(I) Construction of a g-strategy on B. Let o be a regular
tree with field 4, g=gqlp, g]. Let h: TP TOR_ Yo 4, GOR. 1,
a p-strategy on AxB and f: Y94 T94 u g sirategy on A. Exbend
the definition of & by defining h(a, f), for any I < » and (a, §) ¢ T@04 x
x¥PB tobe the uniquely determined pair (o', 8') € V(”)”ZA’X "ONIR snch
that for some (any) extension a; « ™4, g, ¢ "?'B of o and B, respectively
and ﬁor (ai, 1) = h{a;, B), of and B; are extensions of o' and B re-’
spectively. Note that if h(a;, fi) = (a}, f}) for i+ — 1,2 and ¢, C a, § é:ﬁ
then a; C as, §1C 5, i.e. h is monotone. v
. ggz choose ﬁva(eq)v‘Q)B arbitrarily. We claim that there exist unique.

v € and fye™ B such that for each # < 1 we have

2

&) ((fay) o o, py o “n) = (ag oo™ fgroom).
Observe that in (1)
"INl < Fimnlp
for I=1I(n)-+1.

) T(.) establish the claim, we define the values ay(m) for m ¢ V(g) by
m{duc-tmn ?n m<1, meV(g). Assume ay(m’) is defined for m’ < m
m’ eV(g), ie. ayl m is defined. Since fis a g-strategy and m;‘ﬁ(q;
= (Ilom( Jav)y (fag) P (m+1) = (fay) M m is defined too (and is equal to
{(fep) T m for any of ¢ P4 such that oy Mm = ey M m). Using rn{c™)
Cm+1, we see that ( Jag) o o™ is defined. P‘ut v . |

the pzjuir of arguments on the left-hand side is in
and the pair on the right-hand side is in Y®"'4 x TPNIp

(2) (ag, f1) = h((fav) ° 0™ fy o Gm)
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and finally
(3) a(m) Z a(l(m)) (meVi(g).
Having ay, we define Sz « "B by
) Balm) = fuiim))  (m < T (g)

for any m € H(g) where f, is defined by (2).
To show (1), choose < 2 and let

. at

() * (az; Ba) = h((fav) e o™, ﬁv”‘fn)-

Let k& < I(n) be arbitrary, put m = o™(%); hence we have k = I(m). Taking
the restrictions to 441 on both sides in (5) and using the fact that & is
monotone, we obtain

(6) (@D (B+1), Bl (B-+1)) = ((fax) o 6™, B o 0™).
Comparing (2), (3) and (6), we infer for & e V(p)

(k) = (2 T (B+1)}(k) = a;(l(m)) = ax(m) = (ay oo™ (k)
and similarly for % < H(p)
Be(k) = (Bg ° o™)}(k) .

Hence
g=ayoo® .and fy=fgoo".
The last two equalities together with (5) establish (1) as desired.

Conversely, it is clear that if (1) holds, then (3) and (4) hold with
definition (2). This shows the uniqueness of ay and fig, and even more,
viz. that ay(m) (for m eV (g)) and fg(m) (for m € H(g)) depend only on
By oo™, ie. they depend only on By (m-41). Otherwise expressed,
ay M n, g ] n depend only on ¢ P n for n < w. Hence, if we put g(fs)
= pg such that we have (1) for n < 4, g is a ¢-strategy.

(II) Showing that g is a winning strategy for “Bl=0"
Now let @ € S(G) and let o be a regular tree such that @ = g[p, el AO
and the elements of @ are finite disjunctions of @, g-formulas.

Assume AR(G)B and Al=@. Let h be a winning strategy for
“QR(@)B” and f a winning strategy for “% [=®”. Let g be the ¢-strategy
on B defined in (I), i.e. for every By ¢ *@B there is an ay € "4 such that

(M) - h((fav) o 0", fy o On) = (aV o o™ (gBy) ° O'n)

for n < 1. Let By ¢ "®B and ¢ ¢ 6. Choose ay such that (7) holds. Since
f is a winning strategy for “Y|=®”, we have U |=y[ay v fay]; hence
A=y (o™ [ay © fag] for some &,’p-formula y(o") which is a disjunet
of 9. Here y e I" and the free variables of y are in dom(o"). The last fact
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allows us to infer A[=ylay oo™ v (fay)o o). This and (7) yield B
[=7[Bv o o™ v (ghy) o o"] since h is a winning strategy for “4 R(@)B».
Consequently B |=9[fv v gfy], which shows that g is a winning strategy
for “B |= &”, completing the proof of 1.1.

Let us write COg(K) for the class of all B such that for some Y ¢ K
we have AR B. Let Mod (T), Cr(K) denote the class of countable members
of Mod(T), Cr(K), respectively.

Our main result is

THEOREM 1.2. Let @ be a Lindstrom game. For any set T of sentences
there is a certain @ ¢ S(G) such that we have

Cre(Mod (T)) C Mod(®) ,
ER(G)(LIOG.(T)) = GR(G)(MOG.(T)) = Mod(@) “

Proof. We again consider only the case where p is simple, & = (p, I).

(I) Construetion of &. To simplify the terminology, we say in
connection with a regular tree o that the elements of level 0 are o-Sue-
cessors of —1 and we extend the definition of the function I, by putting
L(—1) = —1. ‘ ’ '

We first construct a regular tree o and, in case H(p) 0, the se-
quences {Hzrpr: k< wd, {yx: k < w) of formulas Heppy and variables Ui,
respectively, such that: )

(i) For any neow v {—1}, there are infinitely many p-successors
of n,
and for H(p) £ 0,

(ii) if 2 occurs free in Hergy, then z < e (7, b < o),

(iif) oy < kp implies yr, < yr, (ky, ko < o),

(iv) L(yr) € L(p) (k < o),

(v} for any ne.co v {1} with I(n)+1 eH(p) and for any formula

Hzp there is a k < o such that y; is a p-successor of # and
Heppr ~Hegp. (%)

Nott? Fhaﬁ (i) means that (w, g) is isomorphic to the set S of non-
famptyj finite sequences of natural numbers partially ordered by the
melusu.m C. Also, the regularity of o means that for some (any) iso-
.mog;\hlsm 7 of (o, 0) onto (8,C), v(n)C z(n,) implies n, < n,. This
indicates why we proceed as follows. . :

If H(p) = 0, the construction of o with (1) is trivial. Suppose H (p) # 0.

Let us call a subset 8 of § conver if s, ¢ 8’y 8, €8, 5,Cs, imply s, € 8"
A 11 enumera.tlon 7 of a convex subset of § with 1— dom(7) < w i8
called regular if, for ny,m,< 2, v(n,)C 7(n,) implies n, < n,. Note the

2 5. .
of 6.“ The reader may skip the following elementary argument up to the definition
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following elementary fact: If 8, 8, are finite convex subsets of §, §, C 8,
and 7, is a regular enumeration of §,, then there is a regular enumeration z,
of 8, such that 7, C 7,.

Let {sx: k< oy be an enumeration of § and {(te, Heorye): k < o
an enumeration of all pairs (¢, Hwy) such that ¢ « § U {0} and k(i) (= the
length of ?) ed(p). We define an increasing sequence {rx: k < > of
regular enumerations of finite convex subsets of S, as well as (yi: k < o>
by induction on k as follows. Assume that 7 is defined for %' < k.
Let X be the smallest convex subset of 8 such that X contains

" (Tg—1) v {Sm: m i3 free in Hwrype} o {fx} v (s}

(if %= 0, omit n(rz_s) and if t; = 0, omib {#}). Let & = tx v {{Th(t), i}}
for a certain (the smallest) ¢ such that #; ¢ X. By the above remark,
let v’ be a regular enumeration of X such that if % > 0, then 7., C1’,
put ykif dom(z’) = lh(7') and finally = 2o {(yx, tr)}. Clearly, v is
again a regular enumeration of a convex subset of S.

Put v= |J 7x. Since sy ern(rx), v is a regular enumeration of S.
k<o

Hence the partial ordering p of o defined by moen < z(m)Cz(n) is
g regular tree and we trivially have (i). Now let the 1-1 onto function

w: o—o be defined by (u(m)) = s, and put E[quokg (Hwpye) (u). We
leave the verification of (ii)—(v) to the reader.

Note that the items g, Hzzpr, yr constructed depend only on p and
the underlying similarity type. C '

Put H = {Hzepr —@u(ye/er)) £ T(p) %0 and H=0 if H(p)=0.
Let @ be the set of all finite disjunction # of &, g-formulas such that ¢ is
a logical consequence of T v H with the variables held constant. Put
&= ¢[p, o] A\ 0. Clearly, @ e S(&).

(II) Verification of the relationships stated in the
theorem. We will assume ® (p) = 0. Since for ¢ = q[p, o] we haven < T(q)
iff I(n) € E(p), it follows from (I) (iv) that yx € H(g). Thus by (I) (ii) and
(ili) the conditions of 0.4 are met and we may conclude that any model
of T is a model of @. Hence by 1.1 we have

(8) Cre(Mod (T)) C Mod® .

Now suppose that B is a countable model of &. Our goal is to
construct a countable model ¥ of T such that AR(G) B.

Let g be a winning strategy for “®B |=@”. Sinee by (i) the set Sa
of p-successors of any n € o w {—1} is infinite and B is countable, there
it 8 fy e V2B such that

9 m(Be 8y =B (82CV(q)
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for every n ew w {—1} with I(n)41 eV (g), i.e. 8,CV(g). Put B=feu
U ¢(By). Then we have o

v B |=D[B]
for every 9 < 6. :
Consider the set X, of formulas g such that @ is a @, o-formula and
B = @[l Put T= T v H v Z,. We claim that 3 is consistent, i.e. that
it has a model (', a). Indeed, if not, then by the compactness theorem
there is 7,0 <n < w and pi e X, for each i < n such that A Tes is
~<n

@ logical consequence of 7w H with the variables held constant; hence
80 is & z _\/(p;.

Y Thus # e &, and consequently B |=#[f], ie. B =@l A1
for a certain ¢ < n, which is a contradiction to s € X5

Let (A, a) be a model of X, ie. A’ |=9¢la] for ¢ € 2. Take n, e H(g)
# 0. Note that %' |= (E[zk¢k—+gak(yk/zk))[a] for % < w. Hence, by (I) (v)
?upplied for n = ny, it follows that for any formula of the form Wzp there
Is & y=yreSy such that A |=(Hep —9(y/2))[a]. Therefore, by the
Elementary Substructure Criterion of Tarski and Vaught [13],
conclude that the substructure 9 of A’ with domain 4 — rn(a) exists (3)
and is an elementary substructure of A’. A fortiori, (A, a) is a model of X.
Obviously, 4 is countable.

We claim that

(10) mal ) =4 (8,CH(g)
for any n such that 8, CH(g). Let » be such that 8, CH(g) and aed,
Le. a= a{m) for a certain m < w. Consider the logically valid formula
Homlvm ~ ] With some m’ £ m. Apply (I) (v) to find % such that
?[zk¢k~ﬂ@ml[ﬂm ~m] and § = yz € S,. Hence we have W' |= (vm ~yx)[a]
Le. a= a(m)= a(yr) ern(al 8,), as was to be shown. ’
Note that the faet that (%, ) is a model of 0
equivalently by saying that

(vi) Al= pla] implies B |=p[f] for any @, g-formula ¢.

Now we show that AR(Q)B. To define a winnin aw)
! . g strategy h: ¥4 x
X TOBYPA IR for YR(G) B, take ag T4 ﬁ.'f Z Y®B. By

induction on % we define e < o as follows: ny is the smallest nakural
number such that I(ng) = Ey mp_ong it k< 0, and

C X can be expressed

(11
(12)

ank) = a(n)

Bolk) = B(m)

for  keH(p),

for keV(p).

() The underlying similarity. type may contain operation symbols.

we may .
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By (9) and (10), the n; exist. Next we define af ¢ 774, g5 « ™R by
{13) ay(k) = a(ng) keVi(p),
(14) Balk) = B(nx) ke®(p).

Put H(a, By) = (af, A .

It is obvious from the definition that ot [n, By ) n depend only on
(ag ™ n, By [ ®); hence I is a p-strategy on A x B. Now choose y e I" arbi-
trarily, let m be a natural number not smaller than any free variable of y,
and put # = Ny,. o™ maps {0, ..., m} onto {ng, ..., "m} such that e™k) = ng.
Assume U |= y[ag v ag). This means that % |= y(e")[a] by (11) and (13).
Hence by (vi) B =y(e®)[f], ie. Bl=y[f¢ v gl by (12) and (14). We
have shown that % is a winning strategy for “YR(G)B".

To sum up, we have proved that for any countable B e Mod(®)
there is a countable % e Mod(T) with AR(G) B, or in symbols:

for

for

(15) “Mod (@) C Cr{Mod{T))..

(1) and (15) imply the equalities of the theorem, g.e.d.

§ 2. Corollaries and remarks

Let us call a class of structures a PC; class if it consists of the reducts
to the underlying similarity type & of all models of a countable set of
sentences appropriate for some extended similarity type, and let a class
be called a PC;-class if it is identical to the class of countable members
of a PCs class. Theorem 1.2 easily generalizes to PC; classes in place of
Mod (T) if we note the following.

Let & be a countable similarity type extending £. Let the Lindstrom
game be given with a set I" of formulas of £ Then @ defines the relations
R(G) and R'(G) between structures of type £ and those of &, respectively.
Qlearly AR(G) B Ef AP ER(G) B | £ where A £ is the reduct of U to &
Hence (Crie(K))T &= Cref(E | £ for any class K of structures of &'. This
remark and an application of 1.2 to R'(@) leads to

CorROLLARY 2.1. K is a P(s5 class %,-closed under R(G) iff K is the

class of all countable models of some @ e 8(G).

Proof. The “if” part follows from 0.3 and 1.1. Suppose next th:fe
K= (Modz{(T)) I &£ and K is ¥,-closed under E(G). Note that R(G) is
reflexive. The last two facts imply K = Cre(K). By 1.2, we have
@ e 8(G) such that

K = Ope(K) = Cne|Mods(D) I £) = (5R’(G>(ms'(1’ N
“ — Mody(0) 1 & = Modd@), a.ed.
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Define L(6) to be the class of finitary elements of §(&). Inspection
of the definition of §(&) shows that, if p is a simple prefix in ¢ = (p,I),
every finite approximation of any element of §(@) belongs to L(@). (Tn
the general case, the prefix of a finite approximation v of an element
g A @ of §(@) can be extended to another finite initial segment of ¢ such
that the resulting v’ belongs to L(&); obviously v is logically equivalent
to ")

Now let R be a relation between structures (of £) such that (i) AR B
implies AR(G) B for any A and B, and (i) AR B iff AR(G) B for count-
able U and B. We briefly say that & is associated with B. Cleaxly, it @ is
associated with R, then in 2.1 R(@) can be replaced by R.

The following Corollary is a version of the main result of Lind-
* strom [8] (ef. Remark 1. below).

COROLLARY 2.2 (Lindstrdm [8]). Assume that @ is associated with R.
For any sentences ¢ and vy, the following two conditions are equivalent:

(i) For any A and B, A l=¢ and ARDB imply B |=1y.
(i) There is © e L(G) such that @l=9|=y.

Proof. The implication (ii)=(i) is a direct consequence of 1.1. Now
assume (i) and let O e S(6) be chosen for T = {p} according to 1.2.
By (i), Cr(Modg)C Mody, hence by 1.2. Mod (®) C Mod (). Using 0.2 we
can find a finite approximation # ¢« L(G) of @ such that & [= . Since by
the reflexivity of R(@), by 1.2 and by 0.1 we have

Modg C Cre(Modp) C Mod® C Mod 9 ,

we also have ¢ |=#, which completes the proof.
Putting ¥=¢ in 2.2 we obtain

. COROLLARY 2.3 (Lindstrom [8]). If @ is associated with R, o senience
is preserved wunder R iff it is logically equivalent to an element of L(@).

Remark 1. Lindstrom formulates his main result differently and
derives 2.2 as a consequence. Let us call R (strictly) elementary if there
exists an extended similarity type &'D & containing the
predicate symbols 4, B and if there exists a set X of ge
(a sentence ¢ of &) such that AR B iff for some model M of X we have
A~(M D §)§A3’, B (M EBY where M|C denotes the substructure
of M with domain C. Lindstrém associates sets A (@), 4%(@) of sentences
of & with any given &; 4*(@) is the closure of 4 (G) under finite disjunction
‘fmd conjunction. These sets are syntactically closely related to our L(@);
in fact, one can show in an elementary though lengthy way that every ele-
ment of 4%(&) is logically equivalent to an element of L(Gi and vice versa.
This last fact, of course, also follows from 2.3 and Lindstréom’s result,
which is 2.3 with L(@) replaced by 4%@). Lindstrém’s main result,

new” unary
ntences of &
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restricted to a countable similarity type and slightly weakened, states
that for any elementary R and for any @ associated with R, if =0
implies B |=9 for any @ e4(G), then there are elementary extensions
A, B' of 4 and B, respectively, such that A'RB’. We point out that
this statement, as well as Lindstrom’s original theorem in its full strength,
can be-derived in a few lines from 2.2 with L(®) replaced by 4%@) by
means of standard model theory, ie. 2.2 is essentially equivalent to
that theorem. We also notée that this cannot be said of 2.3.

Consider the relation ARB if A is isomorphic to B. Let p be the
alternating prefix (HVHV...» and let " be the set of all atomic and negated
atomic formulas. As Fraisse [3] has shown (c.f. [8]), @ = (p, ) is as-
sociated with R. Applying 2.1, we obtain Svenonius’ theorem stated in
the Introduction.

Next consider the relation AR B iff B is a homomorphic image of U,
take the above p and let I" be the set of atomic formulas. Lindstrom [8]
shows (*), G'= (p,I) is associated with R. Clearly, every element of
8(G) (of L(@)) is a positive S-sentence (sentence) (). Hence by 2.1, 2.3
we have

CorOLLARY 2.4. (a) K is a PC; class closed under homomorphisms
iff K consists of the countable models of some positive 8-sentence.

(b) (Lyndon [9]) A sentence is preserved under homomorphisms iff
it 18 logically equivalent to a positive one.

The “if” part in (a) is trivial though it is not a consequence of our
earlier results.

Remark 2. We think that 2.4 (a) is new (or at least it was new when
we announced it in [9]) in spite of its straightforward character. We
point out again that a direct proocf avoiding Lindstrom games can be
given for 2.4. (a), which is considerably simpler than, though in essentials
quite similar to, the proof of 1.2. This fact contrasts with the original
approach of Lindstrom [8], where Lindstrom games play an essential
role even if restricted to special cases, such as Liyndon’s theorem.

Remark 3. In [8] many elementary relations are listed with Lind-
strom games associated with them. These examples yield preservation the-
orems as special cases of 2.2. We now add one more item to this list. Fol-
lowing Feferman [2], we call B an E-extension of U (where E is a binagy
predicate symbol) if 9 is a substructure of B and for a e 4, b e B, L bE a
then b e 4. Let AR B denote that B is an F-extension of A. We exhibit
@ = (p, I') associated with B as follows. Let p be the simple alﬁernating
prefix ¢HVHV...>. Let <ji: 4 ¢V (p)y be a mapping such thabt j: e H(p),

(*) The proof uses a “Cantor-type argument”.
(%) Note that V0 is considered a positive sentence.
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Jji<i, and for any j « @(p) there are infinitely many 4 with j, = j.Let
be the set of formulas of the form
wiBoy, Vo ~0;]] >0
iennv(n)

where o is a quantifier-free formula such that every free variable of 4
Is <n. With this @, 2.3 gives a preservation theorem for B - extensions.
This example shows, however, that Lindstrom’s (our) approach does not
always give the most natural preservation theorem, in particular, it doeg
not always give the one that could be generalized to the infinitary lan-
guage Ly,.. (For the “natural” result that can be so generalized, c.f. Fe-
ferman [2] and also [11].) Similar situations arise with other natural
relations too, c.f. [11].

This limitation is connected with the circumstance that owr (Lind-
strom’s) approach yields (essentially) prenex sentences as the “special”
sentences in L(6) (in 4*(@)) (at least in the cagse where I”

contains only
quantifier-free formulas), which we cannot expect to suffice in the case
of L.

Remark 4. Note that for any @, R(G) is (i) elementary, (ii) reflexive
and transitive, and even more, (iii) its transitivity “can be expressed
in first order terms”. By (iii) we mean that if fs g are winning strategies
for “UAR(G)B”, “BR(AE” and firg are represented as sequences
et ke H(p)y, <gnt ke® (p)> of finitary operations in the domain of
a structure M containing isomorphic copies of A, B and €, then the &y in
a’ winning strategy k= ¢hy: ke (p)> for “UR(G)B” can be defined
over M by first-order formulas using the fi, gx. It would not be difficult
to formulate this stronger transitivity property for any strictly elementary
relation. Note that a number of familiar relations have the properties
(i)~(iii) and there are Lindstrom games & associated with them (though
they are not identical to RB(@)). We conjecture that any strictly elementary
relation with (ii) and (iii) has a Lindstréom game associated with it.
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