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A normal space X for which XxI is not normal

by
Mary Ellen Rudin (Madison, ‘Wisc.)

The purpose of this paper is to construct (without using any set
theoretic conditions beyond the axiom of choice) a normal Hausdorff
space X whose Cartesian product with the closed unit interval I is met
normal. Such a space is often called a Dowker space. The question of the
existence of sueh a space is an old and natural one [3].

Tn 1951, C. H. Dowker [4] proved that a normal Hausdorff space
is not countably paracompact if and only if its Cartesian product with T is
not normal. Other interesting equivalences are given by C. H. Dowker
and M. Katstov in [4] and [8], and one is a useful tool for constructing
a Dowker space. M. Katétov [8] proved there is no perfeetly normal
Dowker space and B. J. Ball [1] proved there is no linear Dowker space.

In [10] I proved that the existence of a Souslin line implies the
existence of a Dowker space. And, more recently, I observed that almost
the same proof yields: if z is a regular cardinal which is not the successor
of a singular cardinal, then the existence of a Souslin tree of cardinality »
implies the existence of a Dowker space. The existence of a Souslin line
and Souslin trees of these cardinalities has been proved consistent with
the usual axioms of set theory ([13], [11], [7h.

I am indebted to N. Howes [6] for the idea that a singular cardinal
might be useful in constructing a Dowker space. Howes also introduced
me to the example of A. Misfenko given in [9] which I was able to prove
is not normal. But successive moditication of this example led me to the
Dowker space X described below.

1. The definition of X and some notation will be given. We use the usual
convention that an ordinal A is the set of all ordinals less than A. An
ordinal y is cofinal [5] with A if there is a subset I" of 1 order isomorphic
with y such that « < 2 implies there is a f e I" such that a < B. Let ef(4)
denote the smallest ordinal cofinal with .

‘Let N denote the set of all positive integers.

Let F = {f: N>l f(n) <oy for all nelN}.

Let X = |feF] TieN such that o, < cf(f(n)) < o; for all n e N}.
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Suppose f and g belong to F. If f(n) < g(n) for all n ¢ Ny we say f < ¢.
If f(n) < g(n) for all n e, we say f<Cg. And if i eN and f(n) < g(n)
for all # > i, we say f<g. Define Us,= {heX| f<h <g}

The set of all Uy 4 for f and ¢ in F is a basis for a topology on X, and
we prove this space is a Dowker space. It is obviously Hausdorff.

II. We prove that X xI is not normal. We prove there is a simple
sequence D, D D,D... of sets closed in X such that () Dn= @, bus
neN

ﬂNU,, # O if each Uy, is open in X and contains .D,. Thus (as proved
ne.

by Dowker in [4]), X x 0 cannot be separated from {J (D x1/n) in X x I.

nenN

So X % I is not normal.
For all » ¢ N, let

Dy = {feX| @i >n such that f(i) = w:} .
And for 1 < n, let
Co= {fe X| f(i) = o; for all i <n and f(i) < w; for all i>=n}.
Observe thatQND,, = (. Also, each Dy is closed. For suppose f ¢ X— Dy}

then {ge X| g <f} is open and does not intersect D,.
SBuppose that U, is an open set containing D,. Claim: N U, # 0.

neN

In fact, we prove that N\ U, n 0, # 8.
neN .

Lmwwa 1. Suppose 1<nelN, Uis open, fe Oprr, and U D {he Opyl
S <ns+1h}. Then there exists ge Op such that UD {h e Cu| g <uh}.

.Pfoof. Define & € Oy by letting %(3) = f(i) for all 4 % n and k(n) = 0.
Define™K = {k,] « < 4} to be a maximal well-ordered family of terms of
Cp— U such that <n ks <n kg for all « < B < A. Without loss of generality
we assume 1 5 0 sinee 1 ==0 implies % has the property of the g in our
lemma. Let g be the term of ¥' defined by letting ¢'(i) = sup {%.(3)] « < A}
for all 1 eX.

Clearly A < wn. Suppose = w,. Then ¢ '

3 . . g €COpyy and f< ;80
by the hypothesis of the lemma, ¢’ ¢ U and there e;ists gF<yg Elﬁg‘ ’sucbi
thml .U,,s,ng U. But there is an a; < A for each 12 n such that ky(?)
-9 (4). Let a= sup{a| ¢ >n}. Then ¢g* < k, < ¢'; hence %, e U which
is a contradiction.

. T?-l)ls A< ;u,,. ll)lefine g X by letting g(i) = ¢'(¢)+ o, for all i=n
and g(z) = w¢ for all i < n, Then g € 0,. And, by th imali
T the Ouf g 2iin, n , by the maximality of X,

Lewwva 2. Suppose 1 <neN. There is a ier ue
a2 s rm f of Cp such that Un

©
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Proof. Since the g of Lemma 1 depends only on f and U, denote
the g guaranteed by Lemma 1 by gsr. By induction down we define
Fie O for 2 <4< n+1. Select any kpii € Cpea. Since TpD Dy D Cpyay
UnD {heCpisl Fns1<ap:l}. So we can define kn= granv.; and in
general, define k;= grp.,v, for 2 << n. Thus, f= & has the desired
properties for Lemma 2.

LeEMMA 3. n Un # .

neN

Proof. For 1 < n e N, let f, be the f guaranteed by Lemma 2. Then
for ie N, select an ordinal «; such that cf(a) = w, and, for all n >1
fali) < a;s < wy. Define o = ;. Now define ge X by letting g(i) = a
for all ieN. Clearly ge Unn C, for n>1. And ge X =D, CU,.

III. We prove X is (collectionwise) mormal. Suppose = {Hj}jes is
a collection of disjoint closed subsets of X such that LCJ implies (| H;
jeL

is closed. We show that there is a collection {U;}jes of disjoint open sets
such that U;D Hj for each jeJ. This shows that X is collectionwise
normal [2]. And, by the special case where J has exactly two members,
X is normal.

Let H be the union of the members of ¥. And if U CF, define iy in F
by letting {u{n) = sup{f(n)] fe U} for each n ¢ N. Clearly U DV implies
iy <1y, :

A. Our aim will be to define for each countable ordinal «, by induc-
tion, a eover J, of H by disjoint open sets having the following property:

I p< a< o, and ¥ €3, then there exists a U e J; such that

1 vcCrw,

(2) if ¥ intersects at least two members of ¥, then iy =* iy, and

(3) if U intersects at most one member of ¥, then U = V.

B. Pirst let us prove that the existence of J, as described in A is
sufficient to find a set of disjoint open sets {Uj}jes such that U;D Hj.

Suppose feH. Since J, covers H with disjoint open sets, a < o
implies there is a unique U, €3, such that f e U,. Since the terms of Jz are
disjoint by (1) of A, < a< w, implies U,C Up; thus iy, <t And
if U, intersects more than one term of X, by (2) of A, there is at least
one n e N such that fr,(n) < ty,(n). Hence, since for any one #, one can
move backward in o, only finitely many steps, there is an ¢; < o, such
that U,, intersects at most one term of . So, by 3) of A, y< < oy
implies Up = U,

For all j e, define U; = ,iv

€,

terms of J¢. Now there is « < w, greater than ey or ag; thus the term of J,
to which f helongs is Ua, and the term to whiech g belongs is U,,. Since

| Uqy. Suppose f and g belong to different
Hj
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the terms of J, are disjoint and U., intersects only one term of Jé, Uy A
~ U,, = O. Hence the terms of {Ujieq are disjoint.
' 0. We now prove the existence of J. as described in A.

Define 3, = {X}.

Suppose J; has been defined for all0 < f < a < oy, and. let us define J,.

C.1. Suppose « is a limit ordinal. If fe H and f< a, define Uyp)
to be the term of Js to which f belongs, and define Uy = ﬂﬂ U4(B). Define

<a

3. = {T;] f ¢ H}. By Lemma 4 below, each Uy is open since a is countable.
And the terms of J, are disjoint. If § < a, Uy(f) is the term of J; contain-
ing Ty. If U; intersects two terms of ¥, then so do Uy(B) and Usp-+1).
80 tr,pen # luge and to, <logesn <loxe. Hence, iy, # fuyy and (2)
of A is satisfied. If T,(p) intersects only one term of 3¢, then U(B) = Ugy)
for all f < y < a; hence Uy= U/p) and (3) of A is satisfied.

LeMMA 4. If {Unlnew 5 a collection of open sets, then [ Uy is open.

. neN

Proof. Suppose f e ﬂNU,,; for all n ¢ N there exists g, ¢ #' such that
ne N

gn<f and U,;C U,. Let geF be defined by letting g(i) = sup{g,,(z‘)]
ne N} for each i N. Then, since g <f and ef (9(2)) < w, < ef(f(4)) for
each i e N, g<f. So Uy C f}v Up. Thus () Uyp is open.

ne. neN

N C2 Suppose a= f+1. For all U eJ; we shall define a set Iy of
disjoint open subsets of U covering U ~ H such that 7 e Jy implies (2)
and (3) of A are satisfied. Clearly J,= UUJ Jy thus has the desired properties.

€dp

Assume U eJ; and let ¢ denote ty.

Case 1. If U intersects at most one term of 3, then define 3y = {U}

o Ivi 5 .

(learly (.3), and trivially (2), of A are satistied. In all other cases we need
only. satisfy (2) since (3) then becomes trivial.

) Case 2. Assume U intersects at least two members of J& and there
is an i< N such that of(1(3)) < w,. Sinee U #£@,1(d) 5 0. If 0 < cf (£(4))
< @y, then #(i) = y+1 for some ordinal y. But fe U implies of(f(d)) is
uncountable and f(i) <t(4), so f(4)< y; but this contradicts &= iy.
Thl}s ?f(t.(i)) = wy. Let {da}nen be an increasing sequence of terms of #(i)
cofinal with ¢(7). Define ¥, = {f ¢ U] f(i) <A} and, for 1 < n < wy, define
Vo= ;{f;l’;{ Ay < f(3) § an. Then Iy = {Vu| n e N} is a set of c’h'sjoint
g}ﬁ)eend:;rzz sp(l)ipli’rg;?armg U. And n e N implies #p,(7) < #(4). Thus Jy has

Case 3. Assume U igtersects at least two members of ¥ and cf (t(n))
> w, for all n e ¥. This is the hard case and we need a lemma.

Lexma 5. There evists an fe ¥ su
) ‘ ch that i
intersects at most one term of Je. ftmd et f<n
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From Lemma 5, we define Jp in Case 3 as follows. If M C X, define
Ty = {h e Ul h(n)< f(n) for all & ¢ I and h{n) > f(n) for all n € (N—ID)}.

Observe that, if &, =t, then M = 0. But Ve intersects at most one
term of J. So, if Jv = {Fy| M C N}, then Jr has the desired properties.
Tn order to prove Lemma 5, we need Lemma 6. For each i € N, define

Up= {he U] ct(h(i)) < wp for all i eN}; clearly U= ‘\J_\_F,, .
nED

TEMMA 6. Suppose neN. There evists geF such that g <t and
{he Uyl g<<h) intersects at most one term of X.

Before proving Lemma 6, let us show that Lemma 6 implies Lemma 5.
Let gn be the g guaranteed by Lemma 6 for n. Define feF by letting
fli) = sup{gn{i)| neN} for each ieXN. Then f<t by the aisumption
ot Case 3. Let us show that {he U f< R} intersects at most one term
of J6. Suppose f<heUn H and f< kel n H. There exists 7 and j
in ¥ such that e U; and ke Uy; let n = i-+j. Then g <2 and go < k
and he Uy and k € Uy; thus b and k belong to the same term of .

Proof of Lemma 6. Assume that Lemma 6 is false; that is, for
all feF such that f < t, there are terms & and & of T, such that f<<h
and f< k and h and k belong to different terms of .

We now need more notation. Remember, n is fixed.

For i< n, define M= 1jeXN| cfft(j)) = wi}. Define W = [ie X
() > oa). By Case 3, X = | M¢w AL
{=n

Tet B= {r: (1,2, ., n)—wy 7(i) < o for all ie(l,...,n)}. The
cardinality of R is clearly w,. So we can define a set {Filicw, Of terms
of R such that 2 < wg and r ¢ R implies there is a y such that 1<y << o
and r, = .

For all i < n and j e M, choose a subset {8jolocw Of {(j) cofinal
with #(j) such that o< y < o; implies 87, < 87+

Te return to the proof, we wish to select by induction for each ordinal
A< oy an f; e F and ; and Iz belonging to Un as follows. Define f, by letting
fol§)= Siro Tor j e Miand i<<n and letting folj)=0 for je M. Then choose
Tip e Uy and kg e Uy belonging to different terms of 3 such that fo< hy
and f, < ke such a choice i possible since f, <t and we assumed that
Lemma 6 is false. Suppose %y and k; in U, have been chosen for all
y < A< wy. Define f; by letting i) = Sjaun for je My and i<, and
f)y=sup{h(H] ke A T3} for j e M. If B is hy or k, for some y < A,

2

then h e Uy by our induction hypothesis; so 1{j) < t{j) for j e M. Since

. A < wn, the definition of 3 gives fuj) < t(j) for all j e 3. And fit) < £(])

for j e N— M. Hence f; < £. Thus, by our assumption that Lemma 6 is
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false, we can choose hie Uy and ki e Uy such that fi < ks and f, <k,
and %, and %, belong to different terms of J&. The facts we need to re-.
member are:

(@) %< wn and i< n and je M; implies s;.n < Ma(f) <#(J) and
S0 < Fa() < 2D

(b) y <A< w, and je M implies %y(j) < ka(j) < hasa(§) <1(j) and
7 () < ka(§) < Tuaa(§) < 1(9)-

(¢) 71 and ki belong to different terms of J€.

Define g  F by letting g(j) = t(j) for j e N—M and g(j) = sup {ha(j)|
i< wy) for jeM. If jeN—IL, then cf(g(j)) > w, by our assumption
of Case 3, and cf(g(§)) < wn by our definition of M. For j € M, cf (9() = o
by (b). Hence geX, and, by (a) and (b), g <1

By our definition of J, since g € X, there exists f ¢ F' such that f< ¢
and Uj, intersects at most one term of X.

Sincef< g and g <t, f<t.

For i <n and j e My, since {Sjclo<u 18 cofinal with #(j) and f(j)
< 1(j), we can choose oj < @ such that f(j) < $;,,; Then let p; = sup {oji
j € M. Since M; is countable, ui < ;. Define r ¢ B by letting (i) = ps
for all 7 < n. Then f(j) < 8jnn for all j e My.

) For j e M there is a o5 < wa such that h.(j) > f(j). Let o = sup{oy]
j € A} Then Ay(j) > f(j) and k,(j) > f(j) for all j ¢ M and y > o by (b).

Choose y with o<y <wn and r,=7v. If je M, then f(j) < h(j)
< g(j). And, if je M, for some i <Im, then f(j) < s = Simm < h_y,(j)
< t(j) = g(j). Thus f< h, < g; and similarly f< &, < g. Butb th;s con’éra—
dicts the faet that Uy, intersects at most one term of JC.

IV. Let us comment. The construction of a Dowker space makes
one wonder about other, perhaps nicer Dowker spaces. There is nothing
unique about the space X described here, but all other Dowker spaee;
T know how to construct are roughly as bad as X. Consider the followiné
questions: ’

1. Does there exist a Ist-countable Dowker space?

2. Does there exist a separable Dowker space?

3. Does there exist a cardinality », Dowker space?

Tt is consistent with the usnal axioms of set theory that the answer
to each of the three questions is yes.{*) But I do not know how to construct

b(;) Th; er;aénple desgibed in [10] has cardinality &, and with a simple modification
can made 1st-countable. Thus (1) and (3) exist i ‘
O it sllows 2 31 St oot } in any model of set theory (such
To prove that (2) is consistent with the usual axi
To h ; oms of set theo: s
a Martin’s ‘amom. Then one can' have both (a) an %, Souslin tree T and (g,a;szuifbfé;g
of the reals every subset of which is a relative F, [11]. Using T of (a) and th: methods

icm
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such spaces using only the axiom of choice. I conjecture that (3) having
a no answer is equivalent to Souslin’s conjecture [121. T feel (2) is a question
about the cardinality of ¢ rather than about Dowker spaces. There is
probably a non-consistency example for (1).

Another question one might ask is:

4. Does there exist a realcompact Dowker space?

The Dowker space constructed in (3) using a Souslin line is realcom-
pact. But the space X (as well as the Dowker spaces constructed using
Souslin trees of cardinality greater than ;) is not realcompact. Thus
a yes answer to (4) is again only a consistency result.

To see that X is not realcompact let us Jook at the space X’
={feF| cf(f(n)) > w, for all a} for this space is interesting in itself.
Mr. P. Nyikos pointed out to me that X' is the realcompactification
of X. Clearly X=X’ but X is dense in X'. By Lemma 5 every conti-
nuous real valued function on X can be extended to X'. And X’ is
realcompact (and paracompact) for, given an open COVer U of X', there
is an open refinement of W covering X’ with disjoint open sets. Let us
prove this.

Suppose ge@ and peX'. Define i(p,g) to be the point of X'
such that i(n)= o, When p(n)> g(n) and i(n) = p(n) when p(n) < g{n).
Define U(p, 9)={g< X'| g(n) > g(n) when p(n) = gln) and g(n)=p(n)
when p(n) < g(n)}. Since U eovers t{p, g), there exists a term h(p,9) =9
in @ such that TUli(p, g), k(p, g)) is @ subset of some term of .

Suppose p e X'. Let f,, «,~G be defined by:

(a) F,(0) is the term of F' all of whose eoordinates are 0.

(b) fla+1)="N{p,f.(a))-

(¢) fulay(n)= sup{f(B)n) B < a} when o is a limit ordinal.

It p e X' and a < o, define N(p, a) = {neN' p(n) < fpla)(n)}. Then
@ < implies N(p,a)C N(p,B); and it peU(p,fa)), then N(p;a)
= N(p, B)- So there is a smallest ordinal a, such that » e U(p, fulay))-

Define U= {T(p,fpla)} P e X'}. Clearly U is an open refinement
of U covering X'. In order to show that the terms of U are disjoint,
assume a point e U(p, fy{ap) 1 TG, flag)-

Recall that g < a, and p(n) < f,(B)(n) implies r(ny=p(n), and f< a,
and p(n)=f,(f)(n) implies rin) = f(A)(n); and similariy for ¢ in place
of p. Without loss of generality we assume a, < 0.

Hence 3 < a, < a, and f,(5) = f(#) implies 1(p, f,(f))=1(s, 7)) and
thus f(f—~1)= f(-+1). So by induction fy(a,) = fy(e,) and f(p,fp(ap))

of [10], one can build an x, Dowker space I'. And using S of (b) one can, in a cannonical
way, add a eountable discrete set C to S and topologize C U S to be a normal space
with 02 S and S being diserete in itself. Now identify S and I in some one-to-one
fashion. The space € ¥ thus formed is a separable Dowker space.
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= t(g, fi(ap)) I g€ Ulg, filw,)) then T(p,fy(a,)

iom®

U(q, f,(o,). Otherwise

M. E. Rudin

there is an n such that q(n) < f{a,)(n) but p(n) > f,(a,)(n). But Foley)
= fila,) 80 #(n) < fylay)(n) and #(n) > f,(a,)(n) which is a contradiction.
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