

- [3] and A. S. Svarc, A new definition of uniform spaces. Metrization of proximity spaces, Dokl. Akad. Nauk SSSR 89 (1953), pp. 393-395.
- [4] S. Leader, Metrization of proximity spaces, Proc. Amer. Math. Soc. 18 (6) (1967), pp. 1084-1088.
- [5] E. E. Reed and W. J. Thron, m-Bounded uniformities between two given uniformities, Trans. Amer. Math. Soc. 141 (1969), pp. 71-77.
- [6] Wang Shu-Tang, Remarks on ω_{μ} -additive spaces, Fund. Math. 55 (1964), pp. 101-112.
- [7] R. Sikorski, Remarks on some topological spaces of high power, Fund. Math. 37 (1950), pp. 125-136.
- [8] F. W. Stevenson and W. J. Thron, Results on ω_μ -metric spaces, Fund. Math. 65 (1969), pp. 317-325.
- [9] W. J. Thron, Topological Structures, New York 1960.

178

Reçu par la Rédaction le 19. 8. 1970

A normal space X for which $X \times I$ is not normal

bу

Mary Ellen Rudin (Madison, Wisc.)

The purpose of this paper is to construct (without using any set theoretic conditions beyond the axiom of choice) a normal Hausdorff space X whose Cartesian product with the closed unit interval I is not normal. Such a space is often called a *Dowker space*. The question of the existence of such a space is an old and natural one [3].

In 1951, C. H. Dowker [4] proved that a normal Hausdorff space is not countably paracompact if and only if its Cartesian product with I is not normal. Other interesting equivalences are given by C. H. Dowker and M. Katětov in [4] and [8], and one is a useful tool for constructing a Dowker space. M. Katětov [8] proved there is no perfectly normal Dowker space and B. J. Ball [1] proved there is no linear Dowker space.

In [10] I proved that the existence of a Souslin line implies the existence of a Dowker space. And, more recently, I observed that almost the same proof yields: if \varkappa is a regular cardinal which is not the successor of a singular cardinal, then the existence of a Souslin tree of cardinality \varkappa implies the existence of a Dowker space. The existence of a Souslin line and Souslin trees of these cardinalities has been proved consistent with the usual axioms of set theory ([13], [11], [7]).

I am indebted to N. Howes [6] for the idea that a *singular* cardinal might be useful in constructing a Dowker space. Howes also introduced me to the example of A. Miščenko given in [9] which I was able to prove is not normal. But successive modification of this example led me to the Dowker space X described below.

I. The definition of X and some notation will be given. We use the usual convention that an ordinal λ is the set of all ordinals less than λ . An ordinal γ is cofinal [5] with λ if there is a subset Γ of λ order isomorphic with γ such that $\alpha < \lambda$ implies there is a $\beta \in \Gamma$ such that $\alpha \leqslant \beta$. Let $cf(\lambda)$ denote the smallest ordinal cofinal with λ .

Let N denote the set of all positive integers.

Let $F = \{f: N \to \omega_{\omega} | f(n) \leqslant \omega_n \text{ for all } n \in N\}.$

Let $X = \{ f \in F | \exists i \in N \text{ such that } \omega_0 < \operatorname{cf}(f(n)) < \omega_i \text{ for all } n \in N \}$.

icm[©]

Suppose f and g belong to F. If f(n) < g(n) for all $n \in \mathbb{N}$, we say f < g. If $f(n) \le g(n)$ for all $n \in \mathbb{N}$, we say $f \le g$. And if $i \in \mathbb{N}$ and f(n) < g(n) for all $n \ge i$, we say f < i g. Define $U_{f,g} = \{h \in X | f < h \le g\}$.

The set of all $U_{f,g}$ for f and g in F is a basis for a topology on X, and we prove this space is a Dowker space. It is obviously Hausdorff.

II. We prove that $X \times I$ is not normal. We prove there is a simple sequence $D_1 \supset D_2 \supset \ldots$ of sets closed in X such that $\bigcap_{n \in N} D_n = \emptyset$, but $\bigcap_{n \in N} U_n \neq \emptyset$ if each U_n is open in X and contains D_n . Thus (as proved by Dowker in [4]), $X \times 0$ cannot be separated from $\bigcup_{n \in N} (D_n \times 1/n)$ in $X \times I$. So $X \times I$ is not normal.

For all $n \in N$, let

$$D_n = \{ f \in X | \exists i \ge n \text{ such that } f(i) = \omega_i \}$$
.

And for 1 < n, let

$$C_n = \{ f \in X | f(i) = \omega_i \text{ for all } i < n \text{ and } f(i) < \omega_i \text{ for all } i \ge n \}.$$

Observe that $\bigcap_{n \in \mathbb{N}} D_n = \emptyset$. Also, each D_n is closed. For suppose $f \in X - D_n$; then $\{g \in X | g \leq f\}$ is open and does not intersect D_n .

Suppose that U_n is an open set containing D_n . Claim: $\bigcap_{n \in \mathcal{N}} U_n \neq \emptyset$. In fact, we prove that $\bigcap_{n \in \mathcal{N}} U_n \cap C_2 \neq \emptyset$.

LEMMA 1. Suppose $1 < n \in \mathbb{N}$, U is open, $f \in C_{n+1}$, and $U \supset \{h \in C_{n+1} | f <_{n+1}h\}$. Then there exists $g \in C_n$ such that $U \supset \{h \in C_n | g <_n h\}$.

Proof. Define $k \in C_n$ by letting k(i) = f(i) for all $i \neq n$ and k(n) = 0. Define $K = \{k_a \mid a < \lambda\}$ to be a maximal well-ordered family of terms of $C_n - U$ such that $k <_n k_a <_n k_\beta$ for all $a < \beta < \lambda$. Without loss of generality we assume $\lambda \neq 0$ since $\lambda = 0$ implies k has the property of the g in our lemma. Let g' be the term of F defined by letting $g'(i) = \sup\{k_a(i) \mid a < \lambda\}$ for all $i \in N$.

Clearly $\lambda \leqslant \omega_n$. Suppose $\lambda = \omega_n$. Then $g' \in C_{n+1}$ and $f <_{n+1} g'$; so, by the hypothesis of the lemma, $g' \in U$ and there exists $g^* < g'$ in F such that $U_{g^*,g'} \subset U$. But there is an $\alpha_i < \lambda$ for each $i \geqslant n$ such that $k_{\alpha_i}(i) > g^*(i)$. Let $\alpha = \sup\{a_i | i \geqslant n\}$. Then $g^* < k_{\alpha} \leqslant g'$; hence $k_{\alpha} \in U$ which is a contradiction.

Thus $\lambda < \omega_n$. Define $g \in X$ by letting $g(i) = g'(i) + \omega_1$ for all $i \ge n$ and $g(i) = \omega_i$ for all i < n. Then $g \in C_n$. And, by the maximality of K, $U \supset \{h \in C_n | g <_n h\}$.

Lemma 2. Suppose $1 < n \in \mathbb{N}$. There is a term f of C_2 such that $U_n \supset \{h \in C_2 | f < h\}$.

Proof. Since the g of Lemma 1 depends only on f and U, denote the g guaranteed by Lemma 1 by $g_{i,U}$. By induction down we define $k_i \in C_i$ for $2 \le i \le n+1$. Select any $k_{n+1} \in C_{n+1}$. Since $U_n \supset D_n \supset C_{n+1}$, $U_n \supset \{h \in C_{n+1} | k_{n+1} <_{n+1} h\}$. So we can define $k_n = g_{k_{n+1},U_n}$; and in general, define $k_i = g_{k_{n+1},U_n}$ for $2 \le i \le n$. Thus, $f = k_2$ has the desired properties for Lemma 2.

LEMMA 3.
$$\bigcap_{n \in N} U_n \neq \emptyset$$
.

Proof. For $1 < n \in N$, let f_n be the f guaranteed by Lemma 2. Then for $i \in N$, select an ordinal a_i such that $\mathrm{cf}(a_i) = \omega_1$ and, for all n > 1 $f_n(i) < a_i < \omega_i$. Define $a_1 = \omega_1$. Now define $g \in X$ by letting $g(i) = a_i$ for all $i \in N$. Clearly $g \in U_n \cap C_2$ for n > 1. And $g \in X = D_1 \subset U_1$.

III. We prove X is (collectionwise) normal. Suppose $\mathcal{K} = \{H_j\}_{j \in J}$ is a collection of disjoint closed subsets of X such that $L \subset J$ implies $\bigcup_{j \in L} H_j$ is closed. We show that there is a collection $\{U_j\}_{j \in J}$ of disjoint open sets such that $U_j \supset H_j$ for each $j \in J$. This shows that X is collectionwise normal [2]. And, by the special case where J has exactly two members, X is normal.

Let H be the union of the members of \mathcal{K} . And if $U \subset F$, define t_U in F by letting $t_U(n) = \sup\{f(n) | f \in U\}$ for each $n \in N$. Clearly $U \supset V$ implies $t_V \leq t_U$.

A. Our aim will be to define for each countable ordinal a, by induction, a cover \mathfrak{I}_a of H by disjoint open sets having the following property: If $\beta < \alpha < \omega_1$ and $V \in \mathfrak{I}_a$, then there exists a $U \in \mathfrak{I}_\beta$ such that

(1) $V \subset U$,

- (2) if V intersects at least two members of \mathcal{K} , then $t_V \neq t_U$, and
- (3) if U intersects at most one member of \mathcal{X} , then U = V.

B. First let us prove that the existence of \mathfrak{I}_a as described in A is sufficient to find a set of disjoint open sets $\{U_j\}_{j\in J}$ such that $U_j\supset H_j$.

Suppose $f \in H$. Since \mathfrak{I}_a covers H with disjoint open sets, $a < \omega_1$ implies there is a unique $U_a \in \mathfrak{I}_a$ such that $f \in U_a$. Since the terms of \mathfrak{I}_β are disjoint by (1) of A, $\beta < a < \omega_1$ implies $U_a \subset U_\beta$; thus $t_{U_a} \leqslant t_{U_\beta}$. And if U_a intersects more than one term of \mathfrak{K} , by (2) of A, there is at least one $n \in \mathbb{N}$ such that $t_{U_a}(n) < t_{U_\beta}(n)$. Hence, since for any one n, one can move backward in ω_n only finitely many steps, there is an $a_f < \omega_1$ such that U_{a_f} intersects at most one term of \mathfrak{K} . So, by (3) of A, $a_f < \beta < \omega_1$ implies $U_\beta = U_{a_f}$.

For all $j \in J$, define $U_j = \bigcup_{f \in H_j} U_{\alpha_f}$. Suppose f and g belong to different terms of \mathcal{K} . Now there is $\alpha < \omega_1$ greater than α_f or α_g ; thus the term of J_α to which f belongs is U_{α_f} and the term to which g belongs is U_{α_g} . Since

the terms of \mathcal{I}_a are disjoint and U_{a_f} intersects only one term of \mathcal{K} , $U_{a_f} \cap U_{a_a} = \emptyset$. Hence the terms of $\{U_j\}_{i \in J}$ are disjoint.

C. We now prove the existence of \mathfrak{I}_a as described in A. Define $\mathfrak{I}_a = \{X\}$.

Suppose J_{β} has been defined for all $0 \le \beta < \alpha < \omega_1$, and let us define J_{α} .

C.1. Suppose α is a limit ordinal. If $f \in H$ and $\beta < \alpha$, define $U_f(\beta)$ to be the term of \mathfrak{I}_{β} to which f belongs, and define $U_f = \bigcap_{\beta < \alpha} U_f(\beta)$. Define $\mathfrak{I}_{\alpha} = \{U_f | f \in H\}$. By Lemma 4 below, each U_f is open since α is countable. And the terms of \mathfrak{I}_{α} are disjoint. If $\beta < \alpha$, $U_f(\beta)$ is the term of \mathfrak{I}_{β} containing U_f . If U_f intersects two terms of \mathfrak{I}_{β} , then so do $U_f(\beta)$ and $U_f(\beta+1)$. So $t_{U_f(\beta+1)} \neq t_{U_f(\beta)}$ and $t_{U_f} \leqslant t_{U_f(\beta+1)} \leqslant t_{U_f(\beta)}$. Hence, $t_{U_f} \neq t_{U_f(\beta)}$ and (2) of A is satisfied. If $U_f(\beta)$ intersects only one term of \mathfrak{I}_{β} , then $U_f(\beta) = U_f(\gamma)$ for all $\beta < \gamma < \alpha$; hence $U_f = U_f(\beta)$ and (3) of A is satisfied.

LEMMA 4. If $\{U_n\}_{n\in\mathbb{N}}$ is a collection of open sets, then $\bigcap_{n\in\mathbb{N}}U_n$ is open.

Proof. Suppose $f \in \bigcap_{n \in N} U_n$; for all $n \in N$ there exists $g_n \in F$ such that $g_n < f$ and $U_{g_n,f} \subset U_n$. Let $g \in F$ be defined by letting $g(i) = \sup\{g_n(i) \mid n \in N\}$ for each $i \in N$. Then, since $g \leqslant f$ and $\operatorname{cf}(g(i)) \leqslant \omega_0 < \operatorname{cf}(f(i))$ for each $i \in N$, g < f. So $U_{g,f} \subset \bigcap_{n \in N} U_n$. Thus $\bigcap_{n \in N} U_n$ is open.

C.2. Suppose $\alpha = \beta + 1$. For all $U \in \mathfrak{I}_{\beta}$ we shall define a set \mathfrak{I}_{U} of disjoint open subsets of U covering $U \cap H$ such that $V \in \mathfrak{I}_{U}$ implies (2) and (3) of A are satisfied. Clearly $\mathfrak{I}_{\alpha} = \bigcup_{U \in \mathfrak{I}_{\beta}} \mathfrak{I}_{U}$ thus has the desired properties.

Assume $U \in \mathfrak{I}_{\theta}$ and let t denote t_{H} .

Case 1. If U intersects at most one term of \mathcal{R} , then define $\mathfrak{I}_U = \{U\}$. Clearly (3), and trivially (2), of A are satisfied. In all other cases we need only satisfy (2) since (3) then becomes trivial.

Case 2. Assume U intersects at least two members of $\mathfrak X$ and there is an $i \in N$ such that $\operatorname{cf}(t(i)) \leqslant \omega_0$. Since $U \neq \emptyset$, $t(i) \neq 0$. If $0 < \operatorname{cf}(t(i)) < \omega_0$, then $t(i) = \gamma + 1$ for some ordinal γ . But $f \in U$ implies $\operatorname{cf}(f(i))$ is uncountable and $f(i) \leqslant t(i)$, so $f(i) < \gamma$; but this contradicts $t = t_U$. Thus $\operatorname{cf}(t(i)) = \omega_0$. Let $\{\lambda_n\}_{n \in N}$ be an increasing sequence of terms of t(i) cofinal with t(i). Define $V_1 = \{f \in U \mid f(i) \leqslant \lambda_1\}$ and, for $1 < n < \omega_0$, define $V_n = \{f \in U \mid \lambda_{n-1} < f(i) \leqslant \lambda_n\}$. Then $\mathfrak I_U = \{V_n \mid n \in N\}$ is a set of disjoint open subsets of U covering U. And $u \in N$ implies $t_{V_n}(i) < t(i)$. Thus $\mathfrak I_U$ has the desired properties.

Case 3. Assume U intersects at least two members of $\mathcal K$ and $\mathrm{cf}(t(n)) > \omega_0$ for all $n \in \mathbb N$. This is the hard case and we need a lemma.

LEMMA 5. There exists an $f \in F$ such that f < t and $\{h \in U | f < h\}$ intersects at most one term of \mathcal{H} .

From Lemma 5, we define J_U in Case 3 as follows. If $M \subset N$, define

 $V_M = \{h \in U \mid h(n) \leqslant f(n) \text{ for all } n \in M \text{ and } h(n) > f(n) \text{ for all } n \in (N-M)\}.$

Observe that, if $t_{V_M} = t$, then M = 0. But $V_{\mathfrak{o}}$ intersects at most one term of \mathfrak{F} . So, if $\mathfrak{I}_U = \{V_M | M \subset N\}$, then \mathfrak{I}_U has the desired properties. In order to prove Lemma 5, we need Lemma 6. For each $n \in N$, define

$$U_n = \{h \in U | \operatorname{ef}(h(i)) \leq \omega_n \text{ for all } i \in N\}; \text{ clearly } U = \bigcup_{n \in N} U_n.$$

LEMMA 6. Suppose $n \in \mathbb{N}$. There exists $g \in F$ such that g < t and $\{h \in U_n | g < h\}$ intersects at most one term of \Re .

Before proving Lemma 6, let us show that Lemma 6 implies Lemma 5. Let g_n be the g guaranteed by Lemma 6 for n. Define $f \in F$ by letting $f(i) = \sup\{g_n(i) | n \in N\}$ for each $i \in N$. Then f < t by the assumption of Case 3. Let us show that $\{h \in U | f < h\}$ intersects at most one term of \mathcal{B} . Suppose $f < h \in U \cap H$ and $f < k \in U \cap H$. There exists i and j in N such that $h \in U_i$ and $k \in U_j$; let n = i + j. Then $g_n < h$ and $g_n < k$ and $h \in U_n$ and $k \in U_n$; thus h and k belong to the same term of \mathcal{B} .

Proof of Lemma 6. Assume that Lemma 6 is false; that is, for all $f \in F$ such that f < t, there are terms h and k of U_n such that f < h and f < k and h and k belong to different terms of \mathcal{X} .

We now need more notation. Remember, n is fixed.

For $i \leqslant n$, define $M_i = \{j \in N | \operatorname{cf}(t(j)) = \omega_i\}$. Define $M = \{j \in N | \operatorname{cf}(t(j)) > \omega_n\}$. By Case 3, $N = \bigcup_{i \leqslant n} M_i \cup M$.

Let $R = \{r: (1, 2, ..., n) \rightarrow \omega_n | r(i) < \omega_i \text{ for all } i \in (1, ..., n)\}$. The cardinality of R is clearly ω_n . So we can define a set $\{r_{\lambda}\}_{\lambda < \omega_n}$ of terms of R such that $\lambda < \omega_n$ and $r \in R$ implies there is a γ such that $\lambda < \gamma < \omega_n$ and $r_z = r$.

For all $i \leq n$ and $j \in M_i$, choose a subset $\{s_{j,\sigma}\}_{\sigma < \omega_i}$ of t(j) cofinal with t(j) such that $\sigma < \gamma < \omega_i$ implies $s_{j,\sigma} < s_{j,\gamma}$.

To return to the proof, we wish to select by induction for each ordinal $\lambda < \omega_n$ an $f_\lambda \in F$ and h_λ and k_λ belonging to U_n as follows. Define f_0 by letting $f_0(j) = s_{j,r_0(i)}$ for $j \in M_i$ and $i \le n$ and letting $f_0(j) = 0$ for $j \in M$. Then choose $h_0 \in U_n$ and $k_0 \in U_n$ belonging to different terms of $\mathcal K$ such that $f_0 < h_0$ and $f_0 < k_0$; such a choice is possible since $f_0 < t$ and we assumed that Lemma 6 is false. Suppose h_λ and k_λ in U_n have been chosen for all $\gamma < \lambda < \omega_n$. Define f_λ by letting $f_\lambda(j) = s_{j,r_\lambda(i)}$ for $j \in M_i$ and $i \le n$, and $f_\lambda(j) = \sup\{h(j)|\ h \in \bigcup_{i \ge 1} \{h_i, k_{ij}\}$ for $j \in M$. If h is h_γ or k_γ for some $\gamma < \lambda$, then $h \in U_n$ by our induction hypothesis; so h(j) < t(j) for $j \in M$. Since $\lambda < \omega_n$, the definition of M gives $f_\lambda(j) < t(j)$ for all $j \in M$. And $f_\lambda(t) < t(j)$ for $j \in N-M$. Hence $f_\lambda < t$. Thus, by our assumption that Lemma 6 is

false, we can choose $h_{\lambda} \in U_n$ and $k_{\lambda} \in U_n$ such that $f_{\lambda} < h_{\lambda}$ and $f_{\lambda} < k_{\lambda}$ and h_{λ} and h_{λ} belong to different terms of 3C. The facts we need to remember are:

- (a) $\lambda < \omega_n$ and $i \leq n$ and $j \in M_i$ implies $s_{j,r_{\lambda}(i)} < h_{\lambda}(j) \leq t(j)$ and $s_{j,r_{\lambda}(i)} < k_{\lambda}(j) \leq t(j)$.
- (b) $\gamma < \lambda < \omega_n$ and $j \in M$ implies $h_{\gamma}(j) < k_{\lambda}(j) < h_{\lambda+1}(j) < t(j)$ and $h_{\gamma}(j) < k_{\lambda}(j) < h_{\lambda+1}(j) < t(j)$.
 - (c) h_{λ} and k_{λ} belong to different terms of \mathcal{K} .

Define $g \in F$ by letting g(j) = t(j) for $j \in N-M$ and $g(j) = \sup\{h_{\lambda}(j) | \lambda < \omega_n\}$ for $j \in M$. If $j \in N-M$, then $\operatorname{cf}(g(j)) > \omega_0$ by our assumption of Case 3, and $\operatorname{cf}(g(j)) \leq \omega_n$ by our definition of M. For $j \in M$, $\operatorname{cf}(g(j)) = \omega_n$ by (b). Hence $g \in X$, and, by (a) and (b), $g \leq t$.

By our definition of \mathcal{K} , since $g \in X$, there exists $f \in F$ such that f < g and $U_{t,g}$ intersects at most one term of \mathcal{K} .

Since f < g and $g \le t$, f < t.

For $i \leqslant n$ and $j \in M_t$, since $\{s_{j,\sigma}\}_{\sigma < \omega_i}$ is cofinal with t(j) and f(j) < t(j), we can choose $\sigma_j < \omega_i$ such that $f(j) < s_{j,\sigma_j}$. Then let $\mu_i = \sup\{\sigma_j | j \in M_i\}$. Since M_i is countable, $\mu_i < \omega_i$. Define $r \in R$ by letting $r(i) = \mu_i$ for all $i \leqslant n$. Then $f(j) < s_{j,r(i)}$ for all $j \in M_i$.

For $j \in M$ there is a $\sigma_j < \omega_n$ such that $h_{\sigma_j}(j) > f(j)$. Let $\sigma = \sup\{\sigma_j | j \in M\}$. Then $h_{\gamma}(j) > f(j)$ and $k_{\gamma}(j) > f(j)$ for all $j \in M$ and $\gamma > \sigma$ by (b).

Choose γ with $\sigma < \gamma < \omega_n$ and $r_{\gamma} = r$. If $j \in M$, then $f(j) < h_{\gamma}(j) < g(j)$. And, if $j \in M_t$ for some $i \leq n$, then $f(j) < s_{j,r(i)} = s_{j,r\gamma(i)} < h_{\gamma}(j) \leq t(j) = g(j)$. Thus $f < h_{\gamma} \leq g$; and similarly $f < k_{\gamma} \leq g$. But this contradicts the fact that $U_{f,g}$ intersects at most one term of \mathfrak{F} .

- **IV.** Let us comment. The construction of a Dowker space makes one wonder about other, perhaps nicer Dowker spaces. There is nothing unique about the space X described here, but all other Dowker spaces I know how to construct are roughly as bad as X. Consider the following questions:
 - 1. Does there exist a 1st-countable Dowker space?
 - 2. Does there exist a separable Dowker space?
 - 3. Does there exist a cardinality & Dowker space?

It is consistent with the usual axioms of set theory that the answer to each of the three questions is yes.(1) But I do not know how to construct

such spaces using only the axiom of choice. I conjecture that (3) having a no answer is equivalent to Souslin's conjecture [12]. I feel (2) is a question about the cardinality of c rather than about Dowker spaces. There is probably a non-consistency example for (1).

Another question one might ask is:

4. Does there exist a realcompact Dowker space?

The Dowker space constructed in (5) using a Souslin line is realcompact. But the space X (as well as the Dowker spaces constructed using Souslin trees of cardinality greater than κ_1) is not realcompact. Thus a yes answer to (4) is again only a consistency result.

To see that X is not realcompact let us look at the space $X' = \{f \in F | \operatorname{cf}(f(n)) > \omega_0 \text{ for all } n\}$ for this space is interesting in itself. Mr. P. Nyikos pointed out to me that X' is the realcompactification of X. Clearly $X \neq X'$ but X is dense in X'. By Lemma 5 every continuous real valued function on X can be extended to X'. And X' is realcompact (and paracompact) for, given an open cover $\mathfrak U$ of X', there is an open refinement of $\mathfrak U$ covering X' with disjoint open sets. Let us prove this.

Suppose $g \in G$ and $p \in X'$. Define t(p,g) to be the point t of X' such that $t(n) = \omega_n$ when $p(n) \geqslant g(n)$ and t(n) = p(n) when p(n) < g(n). Define $U(p,g) = \{q \in X' \mid q(n) \geqslant g(n) \text{ when } p(n) \geqslant g(n) \text{ and } q(n) = p(n) \text{ when } p(n) < g(n)\}$. Since U covers t(p,g), there exists a term $h(p,g) \geqslant g$ in G such that U(t(p,g),h(p,g)) is a subset of some term of U.

Suppose $p \in X'$. Let f_p , $\omega_1 \to G$ be defined by:

- (a) $f_n(0)$ is the term of F all of whose coordinates are 0.
- (b) $f_p(\alpha+1) = h(p, f_p(\alpha)).$
- (c) $f_p(\alpha)(n) = \sup\{f_p(\beta)(n) | \beta < \alpha\}$ when α is a limit ordinal.

If $p \in X'$ and $a < \omega_1$, define $N(p, a) = \{n \in N \mid p(n) < f_p(a)(n)\}$. Then $a < \beta$ implies $N(p, a) \subset N(p, \beta)$; and if $p \in U(p, f_p(a))$, then $N(p, a) \neq N(p, \beta)$. So there is a smallest ordinal a_p such that $p \in U(p, f_p(a_p))$.

Define $\mathbb{V} = \{U(p, f_p(a_p)) | p \in X'\}$. Clearly \mathbb{V} is an open refinement of \mathbb{V} covering X'. In order to show that the terms of \mathbb{V} are disjoint, assume a point $r \in U(p, f_p(a_p)) \cap U(q, f_q(a_q))$.

Recall that $\beta \leqslant a_p$ and $p(n) < f_p(\beta)(n)$ implies r(n) = p(n), and $\beta \leqslant a_p$ and $p(n) \geqslant f_p(\beta)(n)$ implies $r(n) \geqslant f_p(\beta)(n)$; and similarly for q in place of p. Without loss of generality we assume $a_p \leqslant a_q$.

Hence $\beta\leqslant a_p\leqslant a_q$ and $f_p(\beta)=f_q(\beta)$ implies $t(p,f_p(\beta))=t(q,f_q(\beta))$ and thus $f_p(\beta+1)=f_q(\beta+1)$. So by induction $f_p(a_p)=f_q(a_p)$ and $t(p,f_p(a_p))$

⁽¹⁾ The example described in [10] has cardinality κ_1 and with a simple modification can be made 1st-countable. Thus (1) and (3) exist in any model of set theory (such as V = L) which allows an κ_1 Souslin tree.

To prove that (2) is consistent with the usual axioms of set theory, assume $M_{\aleph 3}$, a Martin's axiom. Then one can have both (a) an $\aleph 2$ Souslin tree T and (b) an $\aleph 2$ subset S of the reals every subset of which is a relative F_{σ} [11]. Using T of (a) and the methods

of [10], one can build an \aleph_2 Dowker space Y. And using S of (b) one can, in a cannonical way, add a countable discrete set C to S and topologize $C \cup S$ to be a normal space with $\overline{C} \supset S$ and S being discrete in itself. Now identify S and Y in some one-to-one fashion. The space $C \cup Y$ thus formed is a separable Dowker space.

 $=t(q,f_q(a_p))$. If $q \in U(q,f_q(a_p))$ then $U(p,f_p(a_p))=U(q,f_q(a_q))$. Otherwise there is an n such that $q(n) < f_q(a_p)(n)$ but $p(n) \ge f_p(a_p)(n)$. But $f_p(a_p) = f_q(a_p)$ so $r(n) < f_q(a_p)(n)$ and $r(n) \ge f_p(a_p)(n)$ which is a contradiction.

References

- B. J. Ball, Countable paracompactness in linearly ordered spaces, Proc. Amer. Math. Soc. 5 (1954), pp. 190-192.
- [2] R. H. Bing, Metrization of topological spaces, Can. J. Math. 3 (1951), pp. 219-224.
- [3] K. Borsuk, Sur les prolongements des transformations continues, Fund. Math. 28 (1937), pp. 99-110.
- [4] C. H. Dowker, On countable paracompact spaces, Can. J. Math. 3 (1951), pp. 219-224.
- [5] P. R. Halmos, Naive set theory, Princeton, (1960).
- [6] N. Howes, Ordered coverings and their relationship to some unsolved problems in topology, Proc. Wash. State Univ. Conf. General Topology March (1970), pp. 60-69.
- [7] T. Jech, Non-provability of Souslin's Hypothesis, Com. Math. Univ. Caroline 8 (1967), pp. 291-305.
- [8] M. Katetov, On real-valued functions in topological spaces, Fund. Math. 38 (1951), pp. 85-91.
- [9] A. Miščenko, Finally compact spaces, Sov. Math. Dokl. 145 (1962), pp. 1199-1202.
- [10] M. E. Rudin, Countable paracompactness and Souslin's problem, Can. J. Math. 7 (1955), pp. 543-547.
- [11] R. M. Solovay and S. Tennenbaum, Iterated Cohen extensions and Souslin's problem (to appear).
- [12] M. Souslin, Problem 3, Fund. Math. 1 (1920), p. 223.
- [13] S. Tennenbaum, Souslin's problem, Proc. Nat. Acad. Sci. U.S.A. 59 (1968), pp. 60-68.

Reçu par la Rédaction le 7. 10. 1970