Dimension raising maps for which polyhedra
are mapped to polyhedra*

by
H. J. Charlton (Raleigh, N. C.)

If 7=1[0,1] and 8 = I x I then there exists a map f from I onto &
such that the image of every polyhedron is a topological polyhedron.
This suggests dimension raising mappings from one complex to another
may map tame sets onto tame sets.

THEOREM 1. There exists a map f from I onto S such that the image
of every subinterval is a 2-cell.

Proof. Consider E. H. Moore’s Crinkly curve C° [1]. It is a map f
of I onto § given as the uniform limit of a sequence of continuous maps

Talt) = (‘Pn(t)y %-(t))y tel

whose images are curves (s C 8. In the definition of €5, I is partitioned
into 37" equal subintervals and § into the same number of congruent
squares. The partitions for 5., refine those of C}. The construction
of €3 is such that if fa(ts) is an endpoint (Moore’s nodes) of a line segment
of (% in a square of the corresponding subdivision of § then fm(te) = fu(ts)
for all m > n. Further if I' is an interval of a partition of I corresponding
to the square S’ of a partition of S, then f(I') = §'.

Let [a, b] be a subinterval of I. Now by the Hahn-Mazurkiewicz
Theorem, as f([a, b]) is a Peano space, it is compact connected and locally
connected. Thus by Theorem 13.1, p. 160, Newman [2], int(f[a, b]) is
uniformly locally connected. If we assume that int(f[a, b]) is simply con-
nected then Bd(f[a, b]) is a simple closed curve by Theorem 16.2, p. 167,
Newman [2]. Then by the Schoenflies Theorem f([a, b]) would be & 2-cell.

To see that int(f[a,d]) is simply connected assume there exists
a simple closed curve C Cint(f[a, b]) which is not homotopic to a point
in int(f[a, b]). Let p be a point in the bounded complementary dorain
of ¢ in E* which does not belong to int(f[a, b]). Further suppose p € fla, b]

* I am indebted to R. D. Anderson for suggesting E. H. Moore’s Crinkly curves.
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for if not then p € Bdjla, b]. So every neighborhood of p meets B\ f[a, b].
Thus there is a p' ¢ E°\f[a, b] in the bounded complementary domain
of €. So there is an open set Up about p such that Up » fla, b]= 0.
Therefore there exists an # and map f, with corresponding partition
of I into subintervals such that for some subinterval of this partition,
say In,f(In)C Up. But then from the definition of ¢ and fu([a,d]),
I3, C[a, b] which is not possible. Therefore int(f[a, b]) is simply connected.

THEOREM 2. Let f: I—8 be the map for Moore’s Crinkly curve C* and
let {R}, i=1,2,..,p, be a finite disjoint sequence of closed iniervals
in I. Then

Cx

1R = 11U Ry

i =1

[

18 tame.

Proof. By induction and repeated use of theorems such as 11.7,
Wilder [4], p. 31, and 4.42, Whyburn [3], p. 40, together with radial
extension of homeomorphisms on boundary of disks, it suffices to show
if f(R;) and f(Rj), 4 #j, are 2-cells which meet in their boundaries (by
the definition of f they do not meet in their interiors) then Bdf(R;) n
~ Bdf(R;) consists of at most two components. For suppose not,
Bdf(R)\(BAf(R:) ~ Bdf(Ry)) consists of open intervals, choose two of
these intervals in Bdf(R;) not accessible in Ez\( f(Ry) v f(.Rj)) from
unbounded complimentary domain of Bdjf(R;) v Bdf(R;). Choose two
corresponding closed intervals in Bdf(R;) which together with the open
intervals form two simple closed curves not accessible in the same sense.
These simple closed curves bound open disks not accessible as before
and which do not meet f(R;) v f(R;). Now there exists an n, f, and parti-
tion of I into 3°" intervals such that both disks contain a square in the
corresponding partition of 8. But as before it is easily seen that this is
not possible.
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Involutions on solenoidal spaces
by ‘ ,
James T. Rogers, Jr. and Jeffrey L. Tollefson (New Orleans, La.)

1. Introduction. A weak solenoidal sequence (solenoidal sequence) of
closed manifelds is an inverse limit sequence (X, f) such that each factor
space X, is a closed manifold and each bonding map fm: Xn—>Xpm i8
a covering map (regular covering map). The limit space X is called
a weak solenoidal space (solenoidal space).

In section 5, we present a general technique for constructing weak
solenoidal spaces from solenoidal spaces. Suppose that (X, f) is a solenoidal

. sequence such that each factor space X, admits a free involution that

commutes with the bonding maps. These involutions induce an involution
on the solenoidal space X.; moreover, if ¥ is the orbit space of this
free involution on X, then Y. is a weak solenoidal space.

The impeortance of this technigue is not only that we can construct
new examples of weak solenoidal spaces, but we can obtain a keen insight
into the internal structure of the spaces. Moreover, if we can construct
a weak solenoidal space in a geometric manner and then show that we can
obtain the same space as the orbit space of a known free involution on
a solenoidal space, then we have tools to investigate both the global and
local properties of the spaces.

We carry out this program in section 6, where we present a weak
solenoidal space Mo — lim(M,f) which has the following properties:
(1) each factor space M, is homeomorphic to the Klein bottle; (2) each
bonding map fn'' is regular (although compositions of bonding maps
are not regular); (3) the fundamental groups of any two path compenents ‘
of M, are isomorphic; (4) M is not homogeneous; (5) there are exactly
two different homeomorphism classes of path components, with only one
path component in the first class; and (6) Mo is double-covered by the
product of §* and the dyadic solenoid.

Tn section 3, we give a convenient characterization of the path
component of a weak solenoidal space; this characterization is a valuable
tool in the succeeding sections. In the process we obtain some interesting
regults (in the general theory of inverse limit spaces) concerning the


GUEST




