Homotopically labile points of locally compact metric spaces

by

W. Kuperberg (Stockholm)

§ 1. Introduction. A point a of a space M is called homotopically labile (or unstable) (see [1]) if for each neighbourhood U of a there exists a continuous function $h: M \times [0, 1] \to M$ (a homotopy) which satisfies the following four conditions:

1. $h(x, 0) = a$ for all $x \in M$,
2. $h(x, t) = a$ for all $x \in U, t \in [0, 1]$,
3. $h(x, t) \in U$ for all $x \in U, t \in [0, 1]$,
4. $h(x, 1) \neq a$ for all $x \in M$.

A point a is called stable if it is not homotopically labile.

In this paper is shown a connection between the concept of homotopically labile point on the one hand, and the concepts of the retraction and of the extension of a map, on the other hand, for locally compact metric spaces. This connection is established by means of the following characterization of unstable points of locally compact metric spaces:

Theorem 1. A point a of a locally compact metric space M is unstable if and only if there exists a homotopy $H: M \times [0, 1] \to M$ which satisfies the following two conditions:

1. $H(x, 0) = x$ for all $x \in M$,
2. $H(x, t) \neq a$ for all $x \in M, t > 0$.

In other words, Theorem 1 states that a $a \in M$ is unstable iff there exists a retraction $r: M \times [0, 1] \to M \times \{0\}$ such that $r^{-1}(a, 0) = \{(a, 0)\}$.

Let Y_n be a closed subset of a space Y. A mapping $f: Y_n \to M$ is said to be extendable if there exists an extension $\tilde{f}: Y \to M$ of f. The following theorem establishes a connection between the unstability of a point $a \in M$ and the existence of a special extension of any extendable mapping $f: Y_n \to M$.

Theorem 2. If a is an unstable point of a locally compact metric space M, then for any extendable mapping $f: Y_n \to M$, where Y_n is a closed
subset of a metric space \(Y \), there exists an extension \(E: Y \to M \) such that \(E^{-1}(a) = f^{-1}(a) \).

In a special case, where the space \(Y \) contains \(M \) as a retract, we obtain as a corollary:

Theorem 3. If \(a \) is an unstable point of a locally compact metric space \(M \), then for any metric space \(X \) which contains \(M \) as a retract there exists a retraction \(r: X \to M \) such that \(r^{-1}(a) = \{a\} \).

On the other hand, it is known (see [2], p. 562) that if \(a \in Y \subseteq X \) is an unstable point in \(X \) and if there exists a retraction \(r: X \to M \) such that \(r^{-1}(a) = \{a\} \), then \(a \) is unstable in \(Y \), too. Together with Theorem 3 this implies the following:

Theorem 4. If \(M \) is a locally compact retract of a metric space \(X \) and if \(a \in M \) is unstable in \(X \), then \(a \) is unstable in \(M \) if and only if there exists a retraction \(r: X \to M \) such that \(r^{-1}(a) = \{a\} \).

A homotopy \(H \), which one can obtain by Theorem 1 for an unstable point \(a \in M \), can be "localised" with respect to \(a \); more precisely:

Theorem 5. If \(a \) is an unstable point of a locally compact metric space \(M \), then there exists a homotopy \(h: M \times [0, 1] \to M \) which satisfies both (i) and (ii) (from Theorem 1) and, moreover,

(iii) For any neighbourhood \(U \) of \(a \) there exists a number \(\epsilon > 0 \) such that for each \(s \in \epsilon \) \(h(x, s) = x \) if \(x \not\in U \) and \(h(x, s) \not\in U \) if \(x \in U \).

§ 2. Proofs.

Lemma 1 (see [2], p. 562, Proposition 3). Let \(a \in X \subseteq X \) and let \(r: X \to M \) be a retraction such that \(r^{-1}(a) = \{a\} \). Then if \(a \) is unstable in \(X \), then it is unstable in \(Y \), too.

Lemma 2 (compare [1], p. 163). Let \(a \) be an unstable point of a space \(X \) and let \(Y \) be a Tychonoff space. Then for any \(y \) \(\in Y \) the pair \((a, y) \) is an unstable point of the Cartesian product \(X \times Y \).

Proof. Let \(W \) be a neighbourhood of \((a, y) \). The point \(a \) has a neighbourhood \(U \subseteq Y \) and \(y \) has a neighbourhood \(V \subseteq V \) such that \(U \times V \subseteq W \). Let \(f: X \to [0, 1] \) be a continuous function such that \(f(y_0) = 1 \), and \(f(y) = 0 \) for all \(y \not\in V \), and let \(h: X \times [0, 1] \to X \) be a homotopy which satisfies (1)-(4). Then the homotopy \(H: X \times X \times [0, 1] \to X \times X \) defined by \(H(x, y, t) = h(x, f(y), t) \) satisfies conditions (1)-(4) with respect to \(a \) and \(y \).

Proof of Theorem 1. 1st Necessity. Denote the Cartesian product \(M \times [0, 1] \) by \(Z \), and assume that \(a \in M \) is unstable. Thus, by Lemma 2, each point \(a_n = (a, 1/n) \) \((n = 1, 2, \ldots) \) is unstable in \(Z \). Let \(U_n \) be a compact neighbourhood of \(a_n \) such that \(\operatorname{diam} U_n < 1/2n(n+1) \). Observe that \(U_n \cap U_m = \emptyset \) if \(m \neq n \), and each \(U_n \) is disjoint with the set \(M \times \{0\} \).

For each \(n \) there exists a homotopy \(h_n: Z \to [0, 1] \to Z \) which satisfies (1)-(4) with respect to \(a_n \) and \(U_n \). Now, define a continuous function \(f: Z \to [0, 1] \) by the formula:

\[
f(z) = \begin{cases} h_n(z, 1) & \text{if } z \in U_n \text{ for some } n, \\
0 & \text{if } z \not\in \bigcup_{n=1}^\infty U_n.
\end{cases}
\]

It is easy to see that \(f(z) \neq a_n \) for each \(z \in \mathbb{Z} \) and \(n = 1, 2, \ldots \), moreover:

(a) the set \(Z \setminus f(Z) \) is an open neighbourhood of any \(a_n \) (since any \(U_n \) is compact),
(b) \(f^{-1}(a, 0) = \{(a, 0)\} \),
(c) the restriction \(f \mid_{M \times \{0\}} \) is an identity map.

By (a), for each \(n \), the set \(Z \setminus f(Z) \) contains a neighbourhood \(V_n = W_n \times \{y_n, y_0\} \) of \(a_n \), where \(W_n \subseteq X \) is a neighbourhood of the point \(a_n \), and \(\{y_n, y_0\} \) is an interval-neighbourhood of the point \(1/n \) in \([0, 1] \), such that \(y_n + 1 < y_0 \). We can assume that \(W_n \subseteq X \).

Then \(a \) is unstable in \(M \); therefore, for each \(n \) there exists a homotopy \(h_n: M \times [0, 1] \to M \) which satisfies conditions (1)-(4) with respect to \(a \) and \(W_n \). Define a continuous function \(g: Z \setminus \bigcup_{n=1}^\infty V_n \to Z \) by the following formula:

\[
g(x, t) = \begin{cases} g_n(x, 1, t) & \text{if } y_{n+1} = t \leq y_n \text{ for some } n, \\
(x, t) & \text{otherwise}.
\end{cases}
\]

Observe that \(g \) has the following properties:

(d) the set \(g(Z \setminus \bigcup_{n=1}^\infty V_n) \) contains no point of the form \((a, s) \) with \(s > 0 \),
(e) \(g^{-1}(a, 0) = \{(a, 0)\} \),
(f) the restriction \(g \big|_{M \times \{0\}} \) is an identity map.

Let \(\pi: Z \to M \) be the canonical projection, \(\pi(x, t) = x \). Then the composition \(\bar{F} = \pi \circ g : M \times [0, 1] \to M \) is the required homotopy. Indeed: (e) and (f) imply that (i) is satisfied, and (ii) follows by (a), (b), (d), (e).

2nd Sufficiency. By Lemma 2 the point \((a, 0) \) is unstable in the Cartesian product \(M \times [0, 1] \). The mapping \(r: M \times [0, 1] \to M \times \{0\} \) defined by \((x, t) = h(x, t, 0) \) is a retraction (by (i)) and \(r^{-1}(a, 0) = \{(a, 0)\} \) (by (ii)), and so assumptions of Lemma 1 are satisfied. Thus \((a, 0) \) is an unstable point in \(M \times \{0\} \), which means the same as that the point \(a \) is unstable in \(M \).
Proof of Theorem 2. Let \(f : Y_0 \to M \) be an extendable mapping, denote by \(f^* : Y \to M \) an extension of \(f \), and let \(a \) be an unstable point of \(M \).

By Theorem 1 there exists a homotopy \(H : M \times [0, 1] \to M \) which satisfies (i) and (ii). The required extension \(F \) of \(f \) can be obtained by the following formula:

\[
F(y) = H \left(f(y), \min \{ 1, \varphi(y, Y_0) \} \right).
\]

It is easy to see that \(F \) is an extension of \(f \) and \(F^{-1}(a) = f^{-1}(a) \).

Theorems 3 and 4 are proved in the introduction.

Proof of Theorem 5. By Theorem 1 there exists a homotopy \(H : M \times [0, 1] \to M \) which satisfies (i) and (ii). The mapping \(h : M \times [0, 1] \to M \) defined by \(h(x, t) = H(x, \max \{ 0, t - \varphi(x, x) \}) \) is the required homotopy. Indeed:

- \(h(x, 0) = H(x, 0) = x \) for any \(x \in M \);
- \(h(x, t) = a \) if \(x = a \) and \(t = 0 \);
- if \(\varphi(x, x) \geq t \), then \(h(x, t) = x \), which implies (iii), since \(h \) is continuous.

§ 3. Two problems.

Problem 1. Is the assumption of the local compactness of \(M \) necessary in Theorem 1?

Problem 2. Let a subset \(A \) of a space \(X \) be called unstable if there exists a homotopy \(h : X \times [0, 1] \to X \) such that \(h(x, 0) = x \) for all \(x \in X \) and \(h(x, t) \notin A \) for all \(x \in X \) and \(t > 0 \). Is it true that the set of all unstable points of a finite-dimensional compact metric space is an unstable set?

References

Reçu par la Rédaction le 1er juillet 1979