As a corollary of the proof it is not difficult to show that if $M =_a N$ then for any cardinal a, $\mathcal{X}_a M =_a \mathcal{X}_a N$. Further, it follows that if M and N are $L_{\alpha \in \mathbb{N}}$-equivalent then $\exists \alpha M = \exists \alpha N$.

References

MCENHILL UNIVERSITY
Montreal, Canada

Reçu par la Rédaction le 10. 3. 1979

A minimal model for strong analysis

by

Erik Ellestuck * (New Brunswick, N. J.)

In [6] it is shown that axiomatic second order arithmetic does not possess a minimal ω-model. Here we extend that result to general models of the full second order theory of $(\omega, +, \cdot)$ and show that various model theoretic concepts, e.g., the existence of prime models, minimal ω-models, etc., all coincide, but are independent of Zermelo Fraenkel set theory and some of its extensions. These results are then applied to the weak second order theory of real numbers.

Let $\mathfrak{F} = (\mathbb{F}, \omega, +, \cdot)$ where \mathbb{F} is the set of all functions mapping ω into ω. Consider a two sorted language \mathcal{L} for \mathfrak{F} which contains individual variables v_0, v_1, \ldots and function variables a_0, a_1, \ldots. Under our intended interpretation the individual variables range over ω and the function variables range over \mathbb{F}. This distinction between variables has been introduced for convenience. We can easily find an equivalent (though less suggestive) one sorted language for \mathfrak{F}. Thus we assume that all of the standard first order concepts suitably generalize to \mathcal{L}. In particular we shall be interested in the notions of proof (\vdash), satisfaction (\models), substructure (\subseteq), and elementary subsystem $(\models \subseteq)$. Let $T = Th(\mathfrak{F})$ be the \mathcal{L}-theory of \mathfrak{F}. A model \mathfrak{B} of T is said to be prime in the sense of Vaught (cf. [16]) if \mathfrak{B} is isomorphic to an elementary subsystem of every model of T. Let \mathcal{A} be the set of functions $f \in \mathbb{F}$ which are definable in \mathfrak{F} by some formula $\varphi(a_0)$ of \mathcal{L} and let $\mathfrak{M} = (\mathcal{A}, \omega, +, \cdot)$. We characterize the prime models of T in

Theorem 1. \mathfrak{B} is a prime model of T in the sense of Vaught if and only if \mathfrak{B} is isomorphic to \mathfrak{M} and \mathfrak{B} is a model of T.

Proof. We use theorem 3.4 of [16] that a model is prime if and only if it is a denumerable atomic model. See [16] for an explanation of our terminology. For $n > \omega$ let φ_n be a purely existential formula with v_n as its free variable and containing no function variables which defines v_n in \mathfrak{F}. If $\mathfrak{B} = (\mathbb{F}, \mathcal{X} \mathcal{Y}, \exists \mathcal{Z})$ is a prime model of T, we construct an iso-

* Prepared while the author was a New Jersey Research Council Faculty Fellow.
A minimal model for strong analysis

with T. If $\psi(a_1, a_2) \land \lambda(a_1, a_2)$ is consistent with T, then $\exists \psi(a_1, a_2) \times (\psi(a_1, a_2) \land \lambda(a_1, a_2))$. But $\exists \psi(a_1, a_2) \land \lambda(a_1, a_2)$ so that

$$\exists \psi(a_1, a_2) \land \lambda(a_1, a_2), \psi(a_1, a_2) \rightarrow \lambda(a_1, a_2) \land \lambda(a_1, a_2),$$

which implies that $\psi(a_1, a_2)$ is indeed an atom of T. Now let $\langle f, n \rangle$ satisfies $\psi(a_1, a_2)$ in \mathfrak{B}. Since $n(a_1, a_2)$ contains no function variables and n satisfies $n(a_1, a_2)$ in \mathfrak{B} it must do the same in \mathfrak{A}. Also f uniquely satisfies $\psi(a_1, a_2)$ in \mathfrak{B}. Hence $\mathfrak{A} \models \exists \psi(a_1, a_2) \land \lambda(a_1, a_2)$. If $\psi(a_1, a_2)$ is satisfied in \mathfrak{A} by some $g \neq f$, then there are n, n_1, n_2 such that $\psi(n, n_1) = n_1 \neq f(n_2)$ and consequently $\psi(n_1, n_2) \neq \psi(n, n_1) \land \psi(n_2, n_1)$ holds in \mathfrak{A} and therefore also holds in \mathfrak{B} since \mathfrak{B} is a model of T. But this implies that $f(n_1) = n_1$, a contradiction. Thus $\exists \psi(a_1, a_2) \land \lambda(a_1, a_2)$ and $\langle f, n \rangle$ satisfies the atom $\psi(a_1, a_2)$ in \mathfrak{B}, q.e.d.

There is another notion of prime current model in current usage. A model of \mathfrak{B} of T is said to be prime in the sense of Robinson (cf. [11]) if \mathfrak{B} is isomorphic to a subsystem of every model of T. \mathfrak{B} is called an ω-model if it has the form $\mathfrak{B} = \langle \mathfrak{B}, \cdot, +, \cdot \rangle$, $\mathfrak{B} \subseteq \mathfrak{A}$ and \mathfrak{B} is a model of T. We characterize this notion of prime model in

Theorem 2. \mathfrak{B} is a prime model of T in the sense of Robinson if and only if \mathfrak{B} is isomorphic to \mathfrak{A} and \mathfrak{B} is a model of T.

*Proof.** If \mathfrak{B} is a model of T, then by theorem 1 it is prime in the sense of Vauhaft, a fortiori, prime in the sense of Robinson. Conversely suppose that \mathfrak{B} is a prime model of T in the sense of Robinson. Let \mathfrak{M} be a subsystem of \mathfrak{B} which is isomorphic to \mathfrak{B}. Since \mathfrak{B} is also a model of T it must be an ω-model of the form $\mathfrak{M} = \langle \mathfrak{M}, \cdot, +, \cdot \rangle$. Let $\mathfrak{M} = \langle \mathfrak{M}, \cdot, +, \cdot \rangle$ be an arbitrary ω-model of T and let H be an embedding of \mathfrak{M} onto a subsystem \mathfrak{M} of \mathfrak{B}. Since $n(a_1, a_2)$ contains no function variables it is uniquely satisfied in any ω-model by the number $n < \omega$. We will show that H is an identity function by using the fact that embeddings preserve purely existential formulas. Each $n < \omega$ uniquely satisfies $n(a_1, a_2)$ in \mathfrak{B}. Since $n(a_1, a_2)$ is purely existential $H(n)$ satisfies $n(a_1, a_2)$ in \mathfrak{B} giving $H(n) = n$. Let $f \in \mathfrak{M}$ and $n_1, n < \omega$ such that $f(n_1) = n_1 \neq f(n)$. Let $\mathfrak{M} = \langle \mathfrak{M}, \cdot, +, \cdot \rangle$ satisfy $a_1(n_1) = n_1$. Let $H(n) = f(n_1)$ in \mathfrak{M} and consequently $(H(f), H(n_1), H(n_1))$ satisfies $\psi(a_1, a_2) = n_1$. Since H is an identity on a_1, $H(f) = f(n_1)$ for every $n_1 < \omega$ giving $H(f) = f$. Thus \mathfrak{M} is a subsystem of every ω-model of T, i.e., it is a minimal ω-model of T. We determine H as follows. Let $g \in \mathfrak{A}$ and let $\psi(a_1, a_2) \land \lambda(a_1, a_2)$ sufficiently determines some function $f \in \mathfrak{M}$. If $\psi(a_1, a_2) = n_1$, then

$$\psi(a_1, a_2) \land \lambda(a_1, a_2) \rightarrow \lambda(a_1, a_2) \land \lambda(a_1, a_2),$$

and consequently $f(n_1) = n_1$. Since \mathfrak{M} is a model of T, $\mathfrak{M} = \langle \mathfrak{M}, a_1(n), \psi(a_1, a_2) \rangle$ so that $\psi(a_1, a_2)$ uniquely determines some function $f \in \mathfrak{M}$.
must hold in \mathcal{F} and consequently must also hold in \mathcal{M}. But this can only happen if $\phi(\alpha) = \eta$. Thus $\psi = \varphi$ and \mathcal{A} is a subsystem of M. We show that $M = \mathcal{M}$ by finding an \mathcal{A}-model \mathcal{E} of T which omits any given function $f \in F - A$. Although this could be done by the methods of [16], it is more convenient to use theorem 2.1 of [5]. This asserts that if T is a consistent theory in a countable logic and \mathcal{A} is a finite or countable set of formulas $\sigma(\alpha)$ such that each $\sigma(\alpha) \vdash T$ has the property (o) for each formula $\varphi(\alpha)$ which is consistent with T, there exists a formula $\psi(\alpha) \in \Sigma$ such that $\varphi(\alpha) \vdash \psi(\alpha)$ is consistent with T, then T has a countable model which omits each $\sigma(\alpha) \in \Sigma$. There is no difficulty in applying this result to the two sorted logic C. For Σ, take the set $\{ \neg \psi(\alpha) \mid \alpha \in \omega \}$. If $\psi(\alpha)$ is a formula consistent with T, then $\exists \mathcal{F}(\alpha)$ and we can find $\alpha \in \omega$ which satisfies $\psi(\alpha)$ in \mathcal{F}. Hence $\exists \mathcal{F}(\alpha)$ shows that $\varphi(\alpha) \vdash \psi(\alpha)$ is consistent with T. Thus Σ has the property (o). If $f \in F - A$, then for Σ, take the set

$$
\{(\forall \alpha \in \omega)[(\exists \beta \in \omega)(\exists \gamma \in \omega)(\beta < \gamma) \rightarrow \alpha(\gamma) = \eta(\beta)] : f(\gamma) = \eta(\beta) \}.
$$
If $\psi(\alpha)$ is a formula consistent with T, then $\exists \mathcal{F}(\alpha)$ so that some function $g \in F$ satisfies $\psi(\alpha)$ in \mathcal{F}. Since α is not definable in \mathcal{F} we may take $g \neq f$, i.e., there are $\alpha_1, \alpha_2, \alpha_3 < \omega$ such that $\alpha(\alpha_1) \neq \alpha_1 = f(\alpha_2)$. Hence

$$
\exists \mathcal{F}(\alpha)(\varphi(\alpha) \land (\exists \beta \in \omega)(\exists \gamma \in \omega)(\beta < \gamma) \rightarrow \alpha(\gamma) = \eta(\beta))
$$
so that $\varphi(\alpha) \land (\exists \exists \beta \in \omega)(\exists \gamma \in \omega)(\beta < \gamma) \rightarrow \alpha(\gamma) = \eta(\beta))$ is consistent with T. But $f(\gamma) = \eta(\beta)$ and consequently Σ has the property (o). Let \mathcal{E} be a \mathcal{A}-model of T which omits both Σ_1 and Σ_2. Since \mathcal{E} omits Σ, we may take \mathcal{E} to be an \mathcal{A}-model, and since \mathcal{E} omits Σ_1, but f satisfies Σ_1, Σ_1 will not belong to \mathcal{E}. Thus $M = \mathcal{A}$ and \mathcal{F} is isomorphic to \mathcal{E}.

Thus the notions of prime models (in both senses) and minimal \mathcal{A}-models are coextensive for the theory T and are nonaxiomatizable if and only if \mathcal{A} is a model of T. We say that \mathcal{E} satisfies an analytic basis theorem if whenever $\psi(\alpha) \in \mathcal{E}$ is a formula with one free variable and $\exists \mathcal{F}(\alpha)$, then $\psi(\alpha)$ is satisfied in \mathcal{F} by some function $f \in T$. We say that \mathcal{E} satisfies an analytic well-ordering theorem if there is a formula $\lambda(\alpha, \beta)$ with two free variables such that $(\exists \mathcal{F}(\alpha, \beta) : \forall \mathcal{F}(\alpha, \beta))$. Then we have the well known

Lemma. \mathcal{A} is a model of T if and only if \mathcal{E} satisfies an analytic basis theorem.

Lemma. If \mathcal{E} satisfies an analytic well-ordering theorem then \mathcal{E} satisfies an analytic basis theorem.

Let \mathcal{Z} be Zermelo-Fraenkel set theory including the axiom of choice, $V = L$ is the axiom of constructibility, CH is the continuum hypothesis, and MC asserts the existence of a measurable cardinal. Then we have the independence result

Theorem 3. The statement "\mathcal{A} is a prime model of T" is relatively consistent with (1) $ZF \vdash \neg L$, (2) $ZF \vdash \neg CH$, (3) $ZF \vdash CH$, (4) $ZF \vdash MC$, (5) $ZF \vdash \neg MC$. The statement "\mathcal{A} is not a prime model of T" is relatively consistent with (6) $ZF \vdash \neg L$, (7) $ZF \vdash CH$, (8) $ZF \vdash \neg MC$, (9) $ZF \vdash MC$, (10) $ZF \vdash \neg MC$.

Proof. Let \mathcal{M} be a countable transitive model of $ZF = L$. We know from [4] that \mathcal{M} satisfies CH, from [12] that \mathcal{M} satisfies $\neg MC$, and from [1] that \mathcal{M} satisfies $\neg L$ admits an analytic well ordering (in fact a Δ well ordering). This proves (1), (3), and (5). Let \mathcal{M} be obtained from \mathcal{M} by adjoining a single generic function $f : \omega \rightarrow \omega$. From [3] we know that \mathcal{M} contains with the constructible sets of \mathcal{M}, however $f \in \mathcal{M}$, from (7) that \mathcal{M} has the property (o) if $g : \omega \rightarrow \omega, g \in \mathcal{M}$, and g is definable in \mathcal{M} from elements of \mathcal{M} then $g \in \mathcal{M}$, and from (1) that the predicate $\neg \Delta \omega$ non-constructible can be expressed in \mathcal{M}. Form, say $\varphi(\alpha, \beta)$. Then in \mathcal{M}, $\varphi(\alpha, \beta)$ is a formula which is satisfiable in \mathcal{M} but is not satisfiable by any element of \mathcal{M}. This proves (8) and since \mathcal{M} satisfies $\neg MC$ (cf. [3]) we obtain (7) as well. The extension of \mathcal{M} to \mathcal{M} is mild in the sense of [8] so that \mathcal{M} satisfies the MC if and only if \mathcal{M} satisfies $\neg MC$ (cf. [8]). Since \mathcal{M} does not, neither does \mathcal{M}, and we have proved (10). By a result of Solovay (stated in [9]) a non-generic f may be chosen so that \mathcal{M} is a model of ZF, $f \in \mathcal{M}$, every element of \mathcal{M} is constructible from g, $f \in \mathcal{M}$, and $\neg L$ in \mathcal{M}. Then in \mathcal{M}, \mathcal{M} admits a well ordering which is Δ in \mathcal{M}, function, and hence a Δ well ordering. This proves (2). We can prove (3) in exactly the same way that we proved (2) by adjoining a single generic function $f : \omega \rightarrow \omega$. Since this extension is mild, by [8] we know that \mathcal{M} uniquely extends to a normal ω-complete non-principal ultrafilter \mathcal{D} on ω (in the sense of \mathcal{M}) such that every element of \mathcal{M} is constructible relative to D. From (13) we know that \mathcal{M} satisfies $\neg L$ admits an analytic well ordering (in fact a Δ well ordering). This proves (4). Let \mathcal{M} be obtained from \mathcal{M} by adjoining a single generic function $f : \omega \rightarrow \omega$. Since this extension is mild, by [8] we know that \mathcal{M} uniquely extends to a normal ω-complete non-principal ultrafilter \mathcal{D} on ω (in the sense of \mathcal{M}) coincides with the elements of \mathcal{M} constructible relative to D, and $\mathcal{D} \in \mathcal{M}$. From (13) we know that the predicate $\neg \Delta \omega$ non-constructible relative to D can be expressed in \mathcal{M}, say $\psi(\alpha, \beta) \in \mathcal{M}$, and from (13) we see that \mathcal{M} has the property (o). Then in \mathcal{M}, $\psi(\alpha, \beta)$ is a formula which is satisfiable in \mathcal{M} but is not satisfied by any element of \mathcal{M}. This proves (9), q.e.d.

There is one asymmetry in the statement of our theorem. We have not shown that "\mathcal{A} is a prime model of T" is consistent with $ZF \vdash \neg CH$. This seems to be related to the open problem (summer 1967, cf. [9]) as to whether $\neg CH$ is consistent with the existence of a projective well ordering of \mathcal{A}.
We apply our results to certain weak second order theories. Let $\mathcal{R} = \langle R, +, \cdot \rangle$ where R is the set of real numbers and $+, \cdot$ are the usual arithmetic operations. Let T^e be a weak second order language for \mathcal{R} and let T^m be its weak second order theory. The notion of "prime model in the sense of Robinson" has an immediate generalization to the case of T^m models, and so does "prime model in the sense of Vaught" once we have defined w-elementary subsystem to read exactly like its first order equivalent except that we require all parameters to be individual. There is a sentence in T^e which guarantees that each model of T^e admits an Archimedean ordering and therefore has a unique embedding into \mathcal{R}. Thus it is meaningful to talk about minimal models of T^m. Let $B = \{x \in R : 0 < x < 1 \text{ and } x \text{ is irrational} \}$ and define a function θ from B onto F by letting $\theta(x) = f$ where $1 + f(n)$ is the nth denominator in the continued fraction expansion of x. For each subsystem $\mathcal{S} = \langle S, +, \cdot \rangle$ of \mathcal{R} let $H(\mathcal{S}) = \mathcal{S} = \langle \mathcal{S}, a, +, \cdot \rangle$ where $a = \{\theta(x) : x \in S\}$, and for each subsystem $\mathcal{S} \subseteq \mathcal{R}$ let $H(\mathcal{S}) = \mathcal{S}''$ where \mathcal{S}'' is the closure under rational operations of $\langle \theta(n) : f(n) \rangle$. Then we have the lemma. \mathcal{H} takes models into models, is self inverse there, and preserves the notion of proper elementary subsystem.

We merely sketch a proof of this result. By [10] there is a formula $\psi(r_1, r_2, r_3)$ in \mathcal{S}'' with three free variables, each individual, such that if $\exists r$ is a model of T^m, $x \in S'$, and $n \neq a$, then (x, n, p) satisfies ψ in \mathcal{S}'' if and only if p is the nth denominator in the continued fraction expansion of x. From this we immediately see that \mathcal{H} takes models of T^m into models of T^e preserving the notion of proper elementary subsystem. Conversely it is clear that given a family of functions, we can define the field operations which give rise to these functions as continued fraction expansions in a perfectly elementary way, i.e., in the language \mathcal{L}. Thus \mathcal{H} takes models of T^e into models of T^m preserving the notion of proper elementary subsystem. The self inverse property is immediate. Let $\mathcal{S}'' = H(\mathcal{S})$. Then granting our lemma all the results which are mentioned in theorems 1-3 go over for models of T^m (by replacing T by T^m and \mathcal{S} by \mathcal{S}'' in their statements). This is in sharp distinction to the first order case where it is known (cf. [13]) that the algebraic reals is a minimal, and prime in both senses, model of the first order theory of \mathcal{R}. We briefly compare these results with those concerning the weak second order theory of complex numbers. Let $\mathcal{C} = \langle C, +, \cdot \rangle$ where C is the set of complex numbers and $+, \cdot$ are the usual arithmetic operations, and let T^C_C be its weak second order theory. $\mathcal{S} = \langle C, a, C \rangle$ is a model of T^C_C if and only if \mathcal{S} is an algebraically closed field of characteristic 0 and infinite degree of transcendence (cf. [14]). Thus every such \mathcal{S} has a proper subsystem \mathcal{S}' which is also a model of T^C_C, and consequently there is no minimal model. On the other hand, given models $\mathcal{S}, \mathcal{S}'$ of T^C_C, where \mathcal{S} has countable degree of transcendence, by purely algebraic methods, we can find an embedding \mathcal{H} which maps \mathcal{S} isomorphically onto a subsystem \mathcal{S}' of \mathcal{S}. The methods of [15] then generalize so that \mathcal{S}' will be a w-elementary subsystem of \mathcal{S}. Thus T^C_C has prime models in both senses, just as in the first order case (cf. [15]).

References