icm

Direct multiples and powers of modules *

by
Philip Olin (Montreal)

Tn this paper we continue the study of first order properties of
products of modules, begun in Volvatev [6] (see BrSov [2]) and in [4]
Tt seems desirable to analize the usual direct sum and produet operations
on modules in order to reduce the truth of an elementary statement in
the product to truth in the factor modules, hoping to take advantage
of methods developed by Ehrenfeucht [1] and Feferman and Vaught [3].
Furthermore the first order language used should be as strong as possible.

There are two natural first order languages which could be used
to discuss modules. The first would put the sealars into the language
as operations, and the second is a two-sorted language employing two
kinds of variables (module element and scalar), thus allowing quantifi-
cation over the scalars. This second method is equivalent to having
o relativized one-sorted language. It is the second approach that we
shall adopt. This two-sorted logic has the advantage that with it we can
compare modules over different rings and also that it is stronger. For
example, with a first order statement in this language we can state that
a module is torsion, torsion-free, divisible, or n-generated for n finite.
S0 a module, as a relational system, has both module elements and sealars
in its universe, and has the usual finite number of relations.

In what follows, we first give some examples {due jointly to P. Eklof
and the author) which show that elementary equivalence is not preserved
even by the finite direct sum operation on modules. Other examples show
that tensor product does not preserve elementary equivalence, and that
elementary equivalence as Abelian groups does not imply elementary
equivalence as Z-modules. Theorems 1 and 2 show that the power and
multiple operations on finite modules (finite number of module elements;
the ring may be infinite) do preserve elementary equivalence; for direct
powers we get a strong reducibility result using methods of Ehrenfeucht [1],
and for direct multiples we get a result similar to that of Feferman and
Vaught [3]. Finally we show that the direct multiple operation preserves
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Present address: York University, Toronto, Canada.


GUEST


114 P. Olin

equivalenee with respect to sentences with at most one alternation in
quantifiers. The major unanswered question is whether the infinite direct
multiple operation preserves elementary equivalence.

The two-sorted language L, which we use has module element
variables X;, X;, X,, ... and scalar variables &yy By, &gy ... The atomic
well-formed formulas are of the form ;= 2, X;= Xy ot oy = T,
@25 = ax, Xi+X; = Xz, and 2, X; = Xi. The language has two kinds
of existential and universal quantifiers. As a general rule throughout,
module element variables and constants will be denoted by upper case
letters, and scalars by lower case letters. We assume a fixed Godel-
numbering of L. If M is a structure and ¢ a sentence of I, then M=¢
states that ¢ is true in M. Th(M) is the set of all sentences of L, true
in M. M;= M, means Th({M;) = Th(M,), and we say M, and M
elementarily equivalent. We let <y denote Turing reducibility.

If {M:}ier is a collection of modules over the ring R then _@—)IM¢ de-

. are

1€
notes the R-module which is the direet sum of the modules il;. the col-

lection. So A4 is a module element in @ M; if A is a function on I such

i€l
that A4 (i) is a module element in 3 and, for all but a finite number of 8,
A(i) = 0. If M is a module and a a cardinal then @ M is-the direct sum

of a copies of M; we call it a direct multiple of M. For the collection {M;};.;
we let X;.;M; denote the direct product of the modules in the colleetion,
this being defined in the same way as the direct sum except that we
remove the finitely-nonzero condition on the elements A. Tt M is 2 module
and o a cardinal then X, M is the direct product of o copies of M; we
call it a direct power of M .

1. Some examples. The examples of this section are

due to P. Eklof
and the author. : .

ExaMpLE 1. Let F.be a field and let B be the
in one variable over F. Let Ry be the prime ideal i
polynomials without constant term. Then R
an E-module. Similarly, if 1 is the multi
is an R-module. Moreover, E/Ry and R/R(y—1) are isomorphic as modules,
in the sense that there is a one-one function which maps B onto R and
the module elements of E/Ry onto the module elements of RIR(y—1),
preserving all of the module structure. This function is induced by the
map from R onto B which sends ¥ to y—1. So the module isomorphism
' is not the identity on the ring of sealars. So we get B/Ry = R/R(y—1).

Now consider the R-modules R/Ry®R/Ry and B/Ry ® R/R(y—1). The
universal sentence '

polynomial ring F[y]
n R consisting of the
/Ry can be considered as
plicative unit in 7, R/R(y—1)

@)X XD £ 04X, # 078X, = 050X, — 0]

e ©
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ig true in the former (because if f(g/Ry, h/Ry) = 0 with f 0 la,nd_ eith.er
g ¢ Ry or h ¢ Ry then fg e« Ry and fh ¢ Ry and hence f e Ry, which implies

fk e Ry for every k ¢ R) but false in the latter '(y(]/Ry, 0) =0 and yet

y((), 1/R(y—1)) # 0). Thus direct sum, eyen of two modules, does }1013
preserve elementary equivalence, even if the fa_,ctor modules' are iso-
morphic in the sense described above. In particular, the.du"ect sum
operation on modules (as considered here) cannot be a generalized product
as in Feferman and Vaught [3].

BxAMPLE 2. A similar example can be obtained with the.ring of
scalars non-commutative. Let F be a field, let R = F[y, 2] be the non-
commutative polynomial ring in two variables, and 1.et R/R'yz‘ and R]%%zy
pe considered as R-modules. As above, they. are isomorphic (the iso-
morphism being induced by the map on R which interchanges y and 2).
But the universal sentence

(@) (%) (Xl)(Xz)[-%Xl #Ovey X, # 0va, X, # 0va, X, = 0v X, = 0va,=0]

is true in the R-module R/Ryz®R/Ryz and false in the E-module
Ryz® R|Rey. ) .
R/ yEXAniPL}Z 3. Let F be a field, let B = F[y, 2] be the commutative
polynomial ring in ¥ and z over F, .and let I= Ry, J = Rz. g]}en,R aj
above, B/l = R/J as modules. Consider the tensor products : /1», ®R//1
and R/I®R/I. The first is isomorphic to B/I+J and ‘bhe. secon f,ho 2/ 1.
Now in R/I there is a module eleme].nt X and a .non—umt z in ; rn_:)g
such thaf for every ¢ in the ring which is either @ unit or zero, (z— hc) ; #* 01:
However in R/I-++J this first order sentence is false. Hence t o lens‘e
product operation on modules does nop preserve elementary e.qu;va ]tjnce,
even if the factor modules are isomorphic in the sense descl:lbe ha., 0V F;
§. Feferman has informed the author that an example showing this wa;
ier to Ju. L. Eriov.
knongzijé 4. Let Z* denote Z°/D, where Z is the ring f’f integers
and D is a nonprincipal ultrafilter on . (0} course as A};h’aihgrot;:gs
(and as rings), Z and Z* are elemeli"l‘ta,tm}y ggug;alggin log’ ; ;)sf(n;a_ n'.
onsider them as Z-modules. Let fe 3 ) = nl.
];Ean’/jll) is divisible by every member off Z other than zeroZ*S?D tl;ei:egltezr:l:; .
(BX)(x)(BY)[» = 0veY = X] is true in the Z'modulf ut s dearly
false in the Z-module Z. Thus, as Z-modules, Z and Z* are not e
rily equivalent.

2. Direct powers of finite modules. We say M is a finite m{)dult:) ;E_f i;, ll;?z
only a finite number of module elements, a,lthoug.h the ring o sena
maiy be infinite. So every finite Abelian group cogsxdereftii i; ; -
is a finite module. And, as in Example 1 above, if the fie
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field then, with R = F[y], R/Ry as an R-module is a finite module. So
as a result of Example 1, even the finite direct sum (or product) operation
on finite modules does not preserve eclementary equivalence. However
the direct power and multiple operations on finite modules do preserve
elementary equivalence and in fact in Theorems 1 and 2 below we get
stronger results; similar to those obtained for vector spaces in [4] (following
Ehrenfeucht [1] and Scott [5]) in the case of direct powers, and an elimi-
nation-of-quantifiers result similar to Theorem 3.1 of Feferman and
Vaught [3] in the case of direct multiples. )

THEOREM 1. Let ¢ be a sentence of L, with n module element variables
and let p be a positive integer. Then for any module M having exactly p mo-
dule elements and for any cardinal 1 = p»,

XM =9 iff XiM|=¢.

Proof. Suppose ¢ containg m scalar variables. Following results of
Ehrenfeucht [1], it suffices to show that player IT has a winning strategy
in the game Gnym, nsing X» M and X; M, where each player picks (one
at a time) n module elements and m scalars. Let the module elements
of M be Cy, ..., Op, let U = {04, ..., Oy}, and let U’ be the set of ¢-tuples
of members of U. The strategy is as follows. Af any stage if player I chooses
a scalar then player II chooses that same scalar. If player I chooses
B, € X; M, we define 4; e X;n M so that, for all but one %, the sets

D= {il Bi)= 0} and Bp= {i| 4(i)= Ci},

either have equal eardinality < p»—! or Dy has cardinality > p»—* and H;
has cardinality = p»~*. Since U has p members and since 1> pn, we
know that there is at least one %, ¢all it k,, such that Dy, has cardinality
>p*t After 4; has been defined to satisfy the conditions above, let
A,4(d) = Oy, for all remaining coordinates 4. If player I chooses 4, € X I
then B; e X; M can be defined in exactly the same way.
Now suppose players I and IT have each choosen 7 (1 < r < ) module
elements; Ay, ..., 4r from XM and By, .., B, from X,M. For each
“ coordinate j, (Ay(f), ..., A¢(f) is called an A"-column. The columns are
_thus members of U". Similar notation is adopted for the Bys. Now as
r-hypothesis, suppose we have the following. Let vy be any member
of U", let a be the mumber of A*-columns which equal y gnd g the number
of B"-columms “which equal y. Then a << pr— iff B < p»7, and in this
case a = f. Now suppose player I chooses B,yq e X; M. We wish to define
Aryre Xl Let y e U" be such that a= f<prr, Let Cp be any
member of U and let f; be the number of B -columns with last mem-
ber Cx and with the first » members equal to y. S0 B < B. We choose
any fr A"-columns which are equal to y and for each such coordinate j
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we define Arr1(j) = Ckx. Repeat for all (i e U. This construction ensures
that, for every y e U” sich that a = < p*,if ' ¢ U""" and y' extends
then the number of B™'-columns equal to »' equals the number of
AT -columns equal to y’. Henee for such 9’ the (r--1)-hypothesis will
be true. Now suppose y € U is such that f > p— (hence o > p*—7), and
suppose O and Br are as above with fr < p»~0+0 = pn—-1 1In this case
we define A,., at & further S5 coordinates whose A”-columns equal y to
be Cr. Because § > p™" and because U has p members, not every Cx
has B < p" '~ Without loss of generality, assume g, > p*~"1 Now
if k=40 and fr>=p* "%, define A,; at a further pm—"1 coordinates
whose A"-columns equal y to be Cr. So for this y we have defined so far
at most'(p-—l)ﬁ"—“1 coordinates of A,;;. Since a > p»*, there are at
Teast pn—"—! A”-columns equal to y which have not yet been considered.
Tor all of these we define A,.,(§) to be Cy. The construction ensures that
the (r+1)-hypothesis is satisfied.

If player I chooses A,y in XM, the procedure for constructing
Byy1 in X3 M is the same as that given above. In this case, for y e U" such
that a > p™ " and o, = p* "1, we will be defining B,.1(j) to be C, at an’
infinite number of coordinates j if A is infinite.

This completes the strategy of player II. After all the choices have
been madein the game Gy We have the r-hypothesis satisfied with r = n.
This guarantees that if y ¢ U” then some A"-column equals y iff some
B"-column equals y; i.e. they “realize” exactly the same eolumns. This
implies at once that the map which is the identity map on the scalars
and which maps .4; to By is an isomorphism. Henee player IT has a winning
strategy, completing the proof.

COROLIARY 1. If ¢ is a sentence of L., p a positive énteger, and 4 any
cardinal >0 then we can effectively find a semtence p in Ly suck that for
any module M with exactly p module elements

XMy iff Mly.

Proof. Suppose ¢ has n module element variables in it. Theoren} .1.1
of [4] contains the following regult: if 8 is a sentence of L, and r a positive
integer then we can effectively find a sentence y of L, such that for any
module M, XM |=.0 itf M |=y. Now if 4> p" then by the theorem,
XM |=gp iff XM |=p. Applying the above result with 0 =¢ and
r=pn we effectively find a sentence y such that XM =g ittt M|=y.
If 4 < p then just apply the above result directly with 6= ¢ and r= A

COROLLARY 2. If M has a finile number of module elements then (a)
for A, v infinite cardinals, X2 M = X, M and Th (X3 M) =”U M Th(X,M)

<o m<n<o
and (b) for any ecardinal 1, Th(X; M) <z Th(M).
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Hence any direct power of a decidable finite module is decidable,
the theory of the class of all direct powers of a decidable finite module
is decidable, and the theory of the class of all finite direct powers (equals
direct multiples) of 4 decidable finite module is decidable.

3. Direct multiples of finite modules. We now wish to consider direct
multiples of finite modules. Let p, r, n be positive integers with = >,
Let M be a.module with p module elements 0y, ..., Op. Let U = {C, ..., €}
and U" the set of r-tuples of members of U. Suppose {B,ﬂ}, 1<k <7~_}_1
1 <h <p", is a matrix with 7+1 rows and p” columns, the entry B} in
the kth row and Ath column being a member of U. We call the columns
of this matrix h-columns. The zero column is the column all of whose
entries are the zero module element. Similar notation would apply to
the matrix {45, 1<i<r, 1<j<pn ‘

We wish to define a first order predicate HE,( Y, XJ) of (r+1) prtrpn
module element variables. A detailed first order writing of this predicate
would be too obscure and so we give an informal definition. It will be
clear that the predicate is first order. For {BY} and {45 as above,
H?,(BY, AY) states that:

(1) there can be at most p»~+D h-columns which are identical
and not the zero column and

(2) it y in T” is not the zero column, § is the number of j-columns

which are equal t0 ¥, y1, ..., yp are the p possible ways of extending y to
be a member of U™, and g is the number of i-columns which are equal

to y¢ (1 <4< p), then either (i) g+ ... +pp = or (ii) A, + .. CFBr< B
and there is at least one ¢ such that f; = pr—r+1),

Assume r <n and A4,,.., 4, are module elements in C—BM (the

countable direct multiple of ). We define K7 (4, ..., 4,) to be a2 matrix
Ah, 1<igr, 1 <Jj < p™ with » rows and p» columns, unique up to
permutation of the columns, and with Ai e U. The definition is as follows
If y in U is not the zero column and § is the cardinality of {j] (dy(

., Ai(j)) = y} then

(1) if 0 < pn=7, then there are exactly 4 j-columns in {A]} which
equal y and

2)if 6>
equal 9.

All the other columns in the matrix are defined to be the zero column.
The matrix is well-defined since U has p" members.

LEMMA. If Ay, ..., Apy Apyy e@ M (r4+1 <n), Epn(dy, ..., Ar) = {A}}

and B 1n(Ay, oy Arpy) = (B thm H2,(BE, AY).

> p"~" then there are exactly p»— j-eolumns in {47} which

e ©
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Proof. 'By the definition of K7, and EP..,, {BY is an r-1 by p
matrix and {43} is an r by p* matrix. Condition (1) in the definition of H® "
follows at once from the definition of KY,,,. Assume the hvpothem of

condition (2) of HY,. Let d; be the cardinality of || (44 Arpa(h))
— yi). T4, for each 4, 6; < "+ then f; — & and f,+- .,,+p’p = ﬁ < prr.
Now suppose some- §; = pm~r+D, Let »,..., v, be those &’s such that

Sz pr Y and gy, ..., e be those &s such that 6y << p*~+D, (Thus
s+t=1p 2 and s = 1) If Hi= d; then ﬁr, = §;. If Vi = 0; then /3:‘ zpﬂ—("-l—l.\.
If t = 0 then fi+...4 fp = p(p" ) = p»~7 and f= p»—*. If {3 1 then
e ’\“MH‘( —t)p"=0+2. This last number will be < g if
some y; > pr-rtD :md it will be equal to § if every »; = pn—t+n,

We can now prove a theorem similar to Theorem 3.1 of Feferman
and Vaught [3].

THEOREM 2. Let p be a positive integer and ¢(Xy, ..., X, 1y, ..., )
a formula in L, whose free variables are among X, ..., X,, Tyy aeny 5. Sup-
pose at most n module element variables (n = 1) are mentioned in @. Then
we can effectively find a formula v (X1, &, ..., 2,) Lyl <i<rl<j<pn,
of rp* free module element variables and s free scalar varrz'ables such that
if M is a module over B with p module elements and if A,, ..., A, are in
DM, a;,...,0s € B and K7u(4,, ) = {Al} then

OM =4y, oy Ay ayy yas)  iff  Mi=yp(dl a0, a0).

Proof. The proof is by induction on the number of logical connectives
in . Suppose ¢ is an atomic formula. If ¢ is & = @y, 2+ 2, = &y, or 2,25
= &, then let p he ¢. If pis X, = Xz, X, +X,= X, or le X, then

let y be, respectively, /\ (X=X, /\ (X{+Xi= X}, or /\ (0, X5 = X3).

The result then foilows at once bmce we have n = r and, fwm the defini-
tions involved, for any y e U': there is a j such that y = (4,(5), ..., 44(j) }
iff there is exactly ome j such that y = (41, ..., 4}). If, by the induction
hypothesis, 9 corresponds to ¢ then ~v will correspond to ~¢. Suppose
each @i Xy, ..., Xr, 2y, ..., ), for t=1,2, has free variables among
X, X, m,, . %5, and o total of n module element variables are
men‘rloned in ¢ and ¢,. By the induction hypothesis, suppose pi(Xi,

&y -y Bg) corresponds to ;. Then we have at onee that v, Ay, will cor-

respond to @, Ag,.

Now consider (Bx)@(Xy, ..., Xy, 2y, ..., 25). By the induetion hypo-
thesis suppose (X7, @y, ..., %) corresponds to p. Then it follows at once
that (Buw,)y will corresponds to (Hu)e.

Finally consider (BX, 1)@(Xy, vy Xrs X, 1, @, ..., #s) where, by the
induetion hypothesis, we have (X%, Ty, .., @s) corresponding to ¢(Xy, ...,
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ey Xpy Xogry By ooy @), With 1 <0< r q n

3 Ay Apgry Py -oey Ls)y <e<<r+1, 1< <pY and r+1 < n. W
. > o e
claim that to (BX,1)e(Xy, ..., Xr, Xrs1, @5 ..., %) We can correspond

S .
(B YD) 1ancrsnicneplt (Yo, @1y ey 2) AHEL( Y0, XDT.

Suppose Ay, .., dre @M, ay, ..., a5k, and K7u(Ay, ..., Ay) = {4]).
First assume that '

(13 Ml= (EX1~+1)<p(A“ ey -Ar, Xr.H, yy ey dg) .

Let Ayey in @M be such that @ M |=g(dy, ..., Ay, Arys, 0y, ..., )
p < AN

By the induction hypothesis, for KP,;.(4 B
. R PELIAELLy ey Ar-l—l) = {Bk} 1<k
\fre; I—J{L;;elﬂgp Iz;tp})we;ave M |=p(BE, @y, ..., a). By the lemm,a above
; r{Bry 47). Hence we have the result by letting L k
Now assume that : v . 5 ¥h be B
M = (BY ickersracicoly (YE, ay, ..., ag) NHE( Y3, AD].

) Ry o .

Let {Bg} be the matrix whose existence is asserted. We shall define
a module element A, e@®M so that KDu(Ay, .., Ar, dyys) = {BY.

Suppose y is in U" em.d Ie}j be the number of §-columns in {45 which
equal y. Leti y3, ..., y5In U be the p ways of extending y by one element
andd .1et (Si be the nur_nber of h-columns in {B% equal to yi. Let a be thé
?r' 1.11?111?37 of B ={j] (4:(3), ooy A §)) = y}. We shall partition B into p
disjoin sets B, ..., Bp. Then, in each case below, we define 4, 1(j), for
j €E117f to be the last member of the (r-+1)-tuple y; i
¥ is the zero column then «= §,. Assum i

= §;. e yp is the (extended)
zero column. Then let E; have cardi it p ; f
e T + have cardinality f; for 1 < ¢ < p, and let B,

Suppose y is not the zero column. Hence « is finite.

SineeC ase ln._ (ﬁ;—; BitPp and > pr-r. In this case f= p»~* and
lﬁi\\p 0%, we get ;= pn—0+D for each 4. So let F; have at 1 :
Z,n—(rﬂ) members for each i. ¢ DNave d €as

Case 2. f= g +..4+58, and - n=r, i
it ,3,1_ 4 Bo @< p* . In this case f = a. Let By
defm(i}tfibje S.f /3H<p ‘31—{'— -+ fp and a = pn*. In this case f= pr»—r. By the
_:pn—(r-:ll) oT . ,j;,hwe can dassume without loss of generality that fip
= . uet E; have cardinali i i
oI pq,). rdinality g; for 1< i< p, and let Bp= I—

Cased. B < Bi+...4 fpan :

..+ fp and a < p"**. In this case a = B, As i

e Tt - this = s in case 3

we can assume Bp=p "+, And each E; it defined as iﬁtcase 3. ’

icm®

Direct multiples and powers of modules 121

The constr’uction ensures that Kiiip (Ay, oy Arrr) = {BY. Since we
pave M |=p(Bk, 61y .., 6): by the induction hypothesis & M |= (4, ...
R A""H’ LeTRE) a"")' Hence Cj? M |: (E-XT-'rl)(p(Al: ey .Ar,»j,.yr+1, By ooey a_,,).
This completes the proof of the theorem.

COROLLARY 3. Let p be a positive integer and ¢ a sentence of L. Then
we can ¢ffectively find a sentence p of L. such that if M is a module with p
modile elements then : :

Mg iff M-y
Proof. This is just the theorem with r = ¢= 0.
COROLTARY 4. For any cardinal o and any finite module M, Th(® M)

<z Th(M). ‘ ‘

Proof. It « is infinite, it is clear that @ M = @ M. The result then
follows by Corollary 3 (for « infinite) and ioy the ‘;esult of [4] which is
cited in Corollary 1 above (for « finite).

Hence any direct multiple of a decidable finite module is decidable,
and the.theory of the clags of all direct multiples of a decidable finite
module is decidable (using the remark following Corollary 2 above).

4. Further results. In Txamples 1 and 2 above it was shown that
not only was elementary equivalence not preserved by the finite direct
sum operation on modules but that the two direct sums could differ for
o universal sentence. If all the modules in question had been Z-modules
we will show that this could not have happened. We write M =4 NifM
and N have the same true universal (and hence existential) sentences.

TaEoREM 3. If {Mi}ier and {Nilier are Z-modules and ;= N; then
(‘BIMi =4 ®N: and Xy M; =2 Xier N1
i€ i€l

Proot. The proof is simple; it is based on the fact that any member
of Z is definable in Z. For the first part it sutfices to show that if Ay, ...r 4n

are module clements in @ M; and @i, ..., dm € 7 then we can find module
i I . -
elements By, ..., Bac¢ @)“Ni guch that the correspondenee which is the
identity on a; and maf)g Ajto Byis an iéomorphism. Let g;(z) be a formula
with one free variable (in the language for rings) such that Z [= @i(b)
iff b = ay; i.6. ; defines a; in Z. Fix i eI. Form A Py, where each P i8

k .
either an atomic relation among Ay(8), ..; Anli), Gry ey dm O the negation

‘of such, whichever is true in M;, and where every such atomic relation

m .
or its negation is some Pg. Now form A PeA A\ pslay). In this formula,

k j=1 .
replace 4,(4) by X; and ay by #; and existentially quantify the result,
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- getting a sentence ¥ of I,. Note that # is not necessarily an existential
sentence because of the ¢;’s involved. We have M; |=F. Since M; = Xy,
we get Ny |=F. Let Bi,...,Bi, b, ..., by be the members of N, whose
existence is asserted. Since N;|=@y(bs), Z |=ps(b;) and so by is a;. Angd
80 the map which is the identity on a; and which sends 4;(4) to B}' is an
isomorphism. Repeat for all ¢ eI. For 1<j< n, define B, E'®1N’£ by

By(i) = B;' The construction ensures that a;«ra; and 4;< B; is an iso-
morphism. Interchanging the roles of M; and N;, we get finally that
@ M;=4 @ N;. The proof that X M, =4 X;; Ny is exactly the same,
iel i

It is 1eelfear that if R is a ring' such that for any 7 ¢ R there exists
- a formula @(t), with one free variable, in the language for rings, such
that B |=¢(a) iff a = then the theorem is true with Z replaced by R.
Since the direct sum operation does not preserve elementary equiva-
lence and the direct multiple operation on finite modules dees, one major
open question is whether the direct multiple operation on modules
preserves elementary equivalence. Theorem 4 helow is a partial angwer
to this question. oo
We say that M =,z N if M and ¥ are modules and if @ is a sentence
with. at most one alternation in quantifiers then M |=¢ iff N |=¢.

THEOREM 4. If M and N are modules (not mecessarily over the same
ring) and M =45 N then for any cardinal a, ® M =z ® N.
a o

Proof. If « is finite the result follows easily from the proof of
Theorem 1.1 of [4]. If a> w then for any module M, @M =P M. So

w

it suffices to prove the result with ¢« = . Using the method of Ehren-
feueht [1] the result will follow if we can show the following. Let #, m,
P, ¢ be fixed non-negative integers. Suppose 4,, ..., 4, are module ele-
ments and @y, ..., a, scalars from @ I, Then we can find module -ele-

ments 0, ..., Oy and scalars ¢,, ..., ¢, in @ N such that for any module

elements. Dy, ..., Dy and scalars d, y seny d: in @N there exigt module

elements B,, ..., B, and scalars biy ..y by in @M such that the mapping
A1 0y Bie> Dy, agesci, byesdy is an isomoﬁphism.

So suppose now that 4,, oy Any @y, i, ay are given. Let ¢ be the
smallest integer such that if § >¢ then A1(j)= .= An(j) = 0.

Let S be the set of all atomic relations which are formed from
Wo=0, Wy, ..., Wy, Y1y s Ygy @1y ..., am and which are of the form
W= W;, Wi+ W; = Wk, asWy= Wy, or YiWy= Wyx. Then S has finite
cardinality s. Let r= 2° et b5, 1<i<r, be a list of all formulas
PiA.APg where each Py is either the kth member of § or its negation.

Let T' be the set containing zero; the constants A4(j), 0 < j <t+7
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and 1<i<n; ag, 1<i<<m; and the variables Yi', 0<j<<t4+rand 10
< p; Yoy L << ¢ Leb py, o, po be a list of all the formulas N Qr where
= k

each @ is an atomic relation among the members of T or the negation
of such, and each such atomic relation or its negation is present with the
following restrictions:

(i) If only constants are involved in such a relation then Qr must
be true in M.

(i) Tf Q& involves Aj)'s andjor ¥Ps then all the numbers in the
j-places must be equal; for example, Qr might be A,(3)+Y:= ¥} but
it could mot be 4,(3)+¥s= ¥;. Let » be the sentence (EYY) ..

o (BYEY (By,) .. (Byg) ps. Form i/z\lgui where w; is »; if M |=»; and y; is

: )
~w; it M |= ~v;. Hence M |= A y;. Now in this last formula replace a;
=1

by @ and Aqj) by X% and existentially quantify to get a sentence p. Of
course, M |=%. And, from its construction, y is an EA" sentence {one
alternation in quantifiers). So, since M =,z N, we get N |=y. Let C;
and ¢; be the X} and a; whose existence in N is first asserted. Define
Cie®N . by Ci(§) = O} for 0 < <t+r, and if j> 147, Cy(j)=0. In

fact, since A4(j) = 0 for t < j < t+r, we have Cy(j) = 0 for a]lj? i. .Alst?,
the sentence gotten from y; by replacing 44(j) by Ci(j) and a; by ¢; is
now true in N. .

Now suppose D, ..., Dy are module elements and d,,..,d; are
sealars in @ N. Recall the definition of § and 0z, 1 <k <r, above.

Without loss of generality let 6, ..., 0, u <r, be those f¢’s such that
there exists a j > ¢ such that if W is replaced by Dy(j), 1 < < p, s b}: d?-,
and a; by ¢; then the result is true in N. Let j;, ..., ju bg gu'eh that j is
a j which has this property with respect to 6. The definition of § afnd
the 0;’s ensures that for every j > ¢ there is a ji such Pha‘n the_ mapping
diesds, cierey, 00, and Dy(j)«>Dq(jx) is an isomorphism. Defm‘e Dj to
be Dy(j) if § < ¢, to be Dy(jx) for j = t+k, and to .be Ofortt+tu<j< t+1.:.
Now replacing ¥4 by D}, ys by di, 4i(j) by 0ilj) aind a; by ¢;, there is
a v, and up which are satisfied in N. So by the choice of ?i and e;, vy a8
originally defined is true in M, Let B and b; be the ]z'l a,nd; Ys Who)se_
existence in M is thus stated. Define B; e@M by Bi(j) = Bi for 0 <

' <t+7 and By(j)=0 for §j>t-+r. This construction ensures that for

any j there i§ a j' such that A«j)e 0i(j'), aiercs, B:z(])(——).Di(j’), byerd; is
an isomorphism; and similarly for any j' there is a j such that the sgm.cf
map is again an isomorphism. Hence A« Ci, aio co, BiorDi, bied; is
an isomorphism and the proof is complete.
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Ags a corollary of the proof it is not difficult to show that if M s 4N
then for any cardinal a, XoM =4 X, N. Further, it follows that if M
and N are L, .-equivalent then @M =@ N.
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A minimal model for strong analysis
by .
Erik Ellentuck * (New Brunswick, N. J.)

Tn [6] it is shown that axiomatic second order arithmetic does not
POSSESS & minimal o-model. Here we extend that result to general models
of the full second order theory of {w, 4-,-> and show that various model
theoretic concepts, e.g., the existence of prime models, minimal »-models,
gte., all coincide, but are independent of Zermelo Fraenkel set theory
and some of its extensions. These results arve then applied to the weak
second order theory of real numbers.

Let § = (F, @, +, -> where F' is the set of all functions mapping o
into . Consider a two sorted language £ for § which contains individual
variables ¥g, 0y, ... and function variables e, ¢, .. Under our intended
interprétation the individual variables range over e and the function
variables range over F. This distinction between variables has heen
introduced for convenience. We can easily find an equivalent (though
less suggestive) one sorted language for §. Thus we assume that all of the
standard first order concepts suitably generalize to £. In particular we
shall be interested in the notions of proof (i), satisfaction (=), sub-
system (C), and elementary subsystem (). Let T=Th(F) be the
£-theory of §. A model P of T' is said to be prime in the sense of Vaught
{cf. [16]) if P is isomorphic to an elementary subsystem of every model
of T. Let A be the set of functions f ¢ ' which are definable in § by some
formula p(a) of £ and leb A= <4, 0, +, ->. We characterize the prime
models of T in

TEROREM 1. B is @ prime model of T' in the sense of Vaught if and only
if B is isomorphic to U and A is o model of T.

Proof. We use theorem 3.4 of [16] that a model is prime if and only
if it is a denumerable atomic model. See [16] for an explanation of our
terminology. For % <  let n(v,) be a purely existential formula with v, as
its free variable and containing no funetion variables which defines 7
ing. It P=<P, N, @, O) is a prime model of T, we construct an iso-

* Prepared while the author was a New Jersey Research Counecil Faculty Fellow.
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