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1. Introduction. Recently it has been shown that if @ and K are
two groups, then there exists a complete metric space X such that the
full homeomorphism group of X is isomorphic to @ and such that X has
a complete subspace ¥ whose full homeomorphism group is isomorphic
to K ([5], Thecrem 3). This result points out rather dramatically that
a topological space is not characterized by the algebraic nature of its
full group of homeomorphisms. Nevertheless, within a given class C of
topological spaces, it may be true two members of € are homeomorphic
if and only if their corresponding full homeomorphism groups are iso-
morphie. Indeed, J. V. Whittaker has shown that this is true of the
class C of all compact Euclidean manifolds with or without boundary
([9], Theorem 4). In [3], P. Fletcher and R. L. Snider introduced the
class of topological Galois spaces and econjectured that two Hausdorff
Galois spaces would be homeomorphic if and only if their full homeo-
morphism groups were isomxorphic. In their own words, the suthcrs of [3]
offered only “scant evidence” that their conjecture might hold; and, in
any case, the conjecture remains unresolved.

In this paper we study topological Galois spaces and two subclasses,
strongly locally homogeneous Gezlois spaces and representable Galois
spaces. It is conceivable that the conjecture of P. Fletcher and R. L. Snider
might prove false for Galois spaces and yet hold in the more restrictive
classes of strongly locally homegeneous Galois spaces or representable
Galois spaces. On the other hand examples of two (non-homeomorphic)
strongly locally homogeneous Galois spaces with isomorphic full homeo-
morphism groups would quash their conjecture once and for all.

We Dbelieve that the results and examples of this paper might aid
in the search for counterexamples to the conjecture given in [3] or to
the corresponding conjectures for representable Galois spaces and strongly
locally homogeneous Galois spaces — if, indeed, such counterexamples
do exist.
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We show that every linear topological space is a Galois space and
that every locally convex linear topological space is strongly locally
homogeneous. We also show that every representable continuum is de-
composable.

It is known that every strongly locally homogeneous space is re-
presentable and that every representable space without isolated points
is a Galois space ([2], Theorem 4). Furthermore, the unit circle and the
unit circle together with its center, with their usual subspace topologies,
are two non-homeomorphic strongly locally homogeneous spaces which
clearly have isomorphic full homeomorphism groups. For these reasons,
we assume throughout this paper that all spaces under consideration
are Hausdorff spaces without isolated points.

2. Preliminaries. Let (X, ®) be a topological épace. We let H(X)
denote the group of all homeomorphisms from the space (X, B) onto
itself and let ¢ denote the identity of H(X).If A CX, then A'= {he H(X):
hlA = i{A} and if G is a subgroup of H(X), then & = (e X: g(a) =z
for each ge G}. 1t G C H(X) and AC X, then G(4)= {g(a): g e G, ae A}
We often write {#'} for {#}’ and G(z) for G({z}).

DEFINITION ([4]). A topological space (X, T) is strongly locally homeo-
geneous it for every neighborhood of any point , there exists a sub-
neighborhood U= such that for any 2 e U, there exists a homeomorphism
g e (X—Uz) with g{a) = 2.

DerINrrioN ([2]). A topological space (X, G) is representable provided
that if F is a closed set and « ¢ X—F, then F'(z) contains an open set
about x.

DEriNrrIoN ([3]). A topological space (X, B) is a Galois space provided
that for each closed set F, F = F", :

Every strongly locally homogeneous space is a representable space
and every representable space without isolated points is a Galois space
([2], Theorem 4).

It is convenient to give alternate characterizations of Galois spaces
and representability.

. PROP.OSITION 2.1 ([2]), Proposition 1). 4 topological spaces (X, )

is a Galois space if and only if for each closed set F and each e X—F,

there exists h e F' such that h{x) s .

) Lemwma 2.2 ([2], Corollary to Theorem 1). A topological space (X, G)

is representable if and only if for each closed set F and each xe X—F

F'(a) < B. ‘ 7
ProrosiToN 2.3. A4 topological space (X, B) is representable if and

only if given p e U € G, there exists V e G with P eV CU such that if y e V,
then there exists ke (X—T) with h(p) = y. )

icm
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The closed disk is an example of a Galois space which is not re-
presentable. Although it would appear that representability is a weaker
property than strong local homegeneity, we do not know of a representable
space which is not strongly locally homogeneous. Indeed, the following
theorem shows that for a large class of spaces these two concepts are
equivalent.

THEOREM 2.4. Every locally connected representable space is sirongly
locally homogeneous.

Proof. Let (X, B) be a locally connected representable space and
let x € U e G. There is & connected open set ¥V such that zeV C U. Let
y eV. For each vV, there exists W, ¢ TG with v e W,CV such that if
w e Wy, there exists h e (X—V)" with h(v) = w. There is a simple chain
{Weii=1,..,n} from x to y. We may assume that x = 7, and y = vs.
For 1 <7< n—1, choose @i e Wy » Why,,. For each i with 1 < i< n—1,
let f; e (X—V)" such that fi{v:) = 2y and let g: e (X—V)" such that gi«(z:)
= ;o1 Let h = g1 o faciogn-sofaczc.ogeofoegiofi. Thenh e (X—TV)
and Ni(x) = y. Therefcre (X, ®) is strongly loeally homogeneous.

3. Linear topological spaces.

THEOREM 3.1. Every topological vector space is a Galois space.

Proof. Let E be a topological vector space. Let € be a nonempty
closed subset ¢f E and let # e E— (. Let f be the translation on E given
Dby f(z) = 2—x. Since F has a local basis at 0 consisting of star-like sets
([6], Lemma. 1.0), there is a star-like open set § such that §4 8 C f(E—C).
VWithout loss ¢f generality, we may suppose that § is symmetric. Since
0 = O, there is y e S, y # 0, such that the ray from 0 through y, Ray[0:¥],
intersects f((). Let {} = Ray[0:y] ~BdS. Then there exists « with
0 < a< 1 such that y = «b. Define the function g mapping § onto § as
follows. Let g(0) = 0. Let z e S—{0}. If Ray [0:2] C §, then define g(2) = =.
If Ray [0:2] ¢ S, then let {2} = Ray[0:2] ~BdS, {2} = Ray[0:2]n
~ Bd((a +1)/2)8, {2} = Ray[0:2] » BdaS, {z}= Ray[0:2]~ Bd(a2)8
and let {z,} = Ray[0:2] ~ Bd(e/4)S. I ze[2:2) v (0:2], then define
g(2) = 2. If z €[2,: 2] 50 that there is a real number ¢ with 0 < < 1 such
that z=tz,+(1—1)2z, then define g(z) = teg+(t—1)2;. If ze[2:2], so
that there is a real number s with 0 < s < 1 such that &z = sz,+(1—8)2,,
then define g(z) = sz,-+(1—s$)z;. Extend g to E by letting g(z) = 2 for
each z e« B— 8. Let k be the translation on E given by k(2) = z+y and
define h = f 'k "'gkf. Then & ¢ H(E) such that A]C = i|¢ and such that
hix) #= .

it is known that every normed linear space is strongly locally homo-
geneous ([4], Theorem +.3). A slightly stronger result also holds.

THEOREM 3.2. Euvery locally convex topological vector space is strongly
locally homogeneous. '
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Proof. Let E be a locally convex topological vector space. et
#e B and let U be an open set containing . Since ¥ is locally convex,
there exists an open convex set ¥ such that ¢V C U. Let 4 ¢ V. Define
the funetion 2 mapping ¥ onto V as follows. Define h(#) = y. Let z e V—{x).
It Ray[z:2]CV, define h(z) =2+y—az. If Ray[e:2] ¢V, then let {2}
= Ray[z:2] ~ BAY. Then there is a real number a with 0 < a < 1 such
that 2=+ a(2y—x). Define h(z)=y+ a(s—y). Extend b to E by
letting h(z) = zfor each 2 ¢ E—V. Then h ¢ H (E) such that 1| B—V = {| BV
and such that h(z) = y.

CoROLLARY. 3.3. Bvery manifold which is modeled on a topological
vector space is a Galois space. Bvery manifold which is modeled on a locally
convex topological wvector space is strongly locally homogeneous.

4. Representable continua. Every connected representable space ig
homogeneous {[2], Theorem 2), so that in particular every representable
continuum is a homogeneous continuum. It follows from . Theorem 3.2
and It corollary that for each integer n > 1, &, and S, are representable
continua. It also follows from this theorem that Hilbert space i a re-
presentable continuum, and we now show that the Hilbert cube is a re-
presentable space as well.

For each positive integer ¢, let I;=1[0,1] and let ;= (0,1).
fed

Define the Hilbert cube, I°, to be [[ I; and define I*— [7 1.

LevmA 4.1. Let = (x) eI® and let U be an open subset of I® con-
taining x. Then there exists an open subset V of 1I° such that x ¢V C U and
such that if y eV, then there exists h e (I°— V)" with h(z)=y.

Pro of. There exists a positive integer 7 and a basic open set.
V= ﬂ T (Vi) such that 2 ¢ V' C U where for each ¢ with 1 < ¢ < n there

exist a, and b; with 0 < a; < b; < 1 such that V; = {teli a; <<t << by}
Let y= (y;) V. For each i with 1 <i<n, let ¢;, diel; such that
O<a<er<di<bi<1 and such that ¢; < 4 < d; and c,<yz<d¢

For each i with 1< i<Cn, let Wi = {tels: ;< t< di). Let geH(]—]Ii)
such that 9{(1y oy Za)) = (W1, ..., ¥a) and such that ge ]7 I— H W)
i=1 qe=1

[7 Iﬁ

t=n+1

Since I is homogeneous [7], and since I is homeomorphic to
there exists sz(l_:[n]+ o) such that f((@ns1; Znsa, o)) = (Ynsa, Ynse, o).
Since every homeomorphism on I is isotopic to the identity ([1], Corol-
lary 10.5), there is an isotopy Fy: H I— ]7 T;, 0

f=n+1 i=n+1

<t<<1 such that
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= f and ¥, is the identity on ] [ I;. Define h € H(I”) as follows. Let

i=n+
z=(21) e I°. For each i with 1 < i< n define # by
0, if zm<arorzn>b;.
: 1, if ¢ < 2 \di
*“la, if thereis a with 0 <a <1 such that 2; = ae;+{(1—a)a; .
B, if  there is £ with 0 < 8 <1 such that & = pd;+(1—B)b; .

Let t=min{t: 1<i<n} Let (wy,...,w,) = (21 -o-y 20) and let
(Wnr1, Wnioy o) = Ft(znﬂ, Zntzy...). Define h(z) = (10y, W, coy Wy Wor1y o).
The function 2 thus defined is an element of (I°—¥)’ such that h(z) =

TeEBOREM 4.2. The Hilbert cube is a representable continuum.

Proof. By the previous lemma, it suffices to show that if z e I°—
and U is an open set containing », then there is an open set V with
eV CU such that if yeV there is he(X—T) with Juz) =y. Let
@ e I°—1* and let U be an open set containing z. Let p e I”. Then there
exists fe H(I”) such that f(z)=p. By Lemma 4.1, there is an open
set W such that p e W.Cf(U) and such that if g W then there exists
g« (I°~W) with g(p)=g. Let =" (W) and let yeV. Then fgf*
e (I"—V)" such that fgf (x) =y.

Despite the fact that the universal curve is strongly locally homo-
geneous and hence representable ([8], p. 602), there is some justification
for the point of view that representable continua are “well behaved”

Lenmva 4.3. Let (X, B) be a representable continuum, let F be a closed
subset of X and let x e X—F. Then F'(z) is a subcontinuum of X with
interior points.

Proof. Let € be the component of F'(x) which contams 2. Then
{R(C): h ¢ F'} is the collection of all components of F'(z). Since (X, )
is a Hausdorff continuum, there exists p e F'(x)—F'(x) such that p is
2 limit point of C. Suppose that p ¢ . Then by Lemma 2.2, F'(p) is an
open set about p and so there exists h e ' such that h(z)e G ~ F'(p).
Then p e F'(z) — a contradiction. Thus p eF. It follows that p is a limit
point of each component of F'(z). Let B = |_J @_): heF'}, Then B is
connected and F'(z) C B C F'(z). Consequently F'(z) = B which is con-
nected. By Lemmsa 2.2, F'(x) is open, and it is clear that F'(z) is a con-
tinnum.

THEOREM 4.4. Hvery representable continuum s decomposable.

Exavpre. The pseudo-arc is a homogeneous plane continuum which
is not representable.

Exavpre. The solenoid group is a metric continuum which is
a topological group but which is not representable.
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L. R. Ford, Jr. has given an example of a compact metric homo-
geneous space which is not representable ([4], pp. 494-495). We do not,
know, however, of & homogeneous Galois continuum which is not re-
presentable. It would therefcre be interesting to know if either of the
previous two examples is a Galois space (1).

5. Quasi-reasonable topologies.

DEFINITION ([4] and [8]). Let X be a topological space. A topology G
for H(X) is quasi-reasonable provided that there is a point z e X such
that, with the quotient topology induced by B, H(X)/2' is homeomorphic
to X under the map 5: H(X)/z' X defined by #(fr') = f(#). A quasi-
reasonable topology G for H(X) is reasonable provided that (H(X), o, 6)
is a topologicdl group. A topological space (X, B) is (quasi-) reasonable
provided that H(X) possesses a (quasi)-reasonable topology.

Lemwa 5.1, Let X be a completely regular, homogeneous, represeniable
space, let U> be a compatible wuniformity for X and let » e X. Let H(X)
have the topology of uniform convergence generated by . Then the Sfunction
Oy H(X)—>X defined by Pyg) = g(x) is open at the identity.

Proof. The proof of this theorem follows with minor modifications
from the proof of the corresponding theorem for strongly Iocally homo-
geneous spaces ([4], Theoreim 4.1).

THEOREM 5.2. Every homogencous completely regular representable
space is o reasonable space.

Proof. The proof follows from Lemma 3.1 and the proof of Theorem
3.2 of [8].

COROLLARY 5.3. Bvery representable continuum is a reasonable space.

TeEoREM 5.4. Let X and Y be homogeneous completely reqular repre-
sentable spaces; let e X and y e Y. Suppose that H(X) and H (Y) have
quasi-reasonable topologies and that ¥: H(X)—H (Y) is a topological iso-
morphism from H(X) onto H(Y) such that ¥(a')=y'. Then X is homeo-
morphic to ¥Y.

Proof. Let ¥; be a homeomorphism from H (X)/z" onto X and let ¥,
be a homeomorphism from H(Y)y' onto Y. Let g: H (X) —~H (X)[z'
and g2 H(X)—=H(Y)/y' be the natural projection maps. Let f, = g, 0 V.
Let By = {(hy, hy) « H (X) X H(X): fy(hy) = fy(hs)} and let oy: H (X)—H (X)/R,
be the mnatural projection map. For each ¢ e H (X)/R,, there is only one
B eH(X)y' such that a=f(§). For each a < H(X)/R, define g,(a) — f.
Then g¢,: H(X)/R;—~H(X)}y' is a one-to-one mapping onto H(Y)/y'.
Sinee g; g, = f; which is continuous, ¢, is continuous.

() It is now known that the solencid group is a Galois space (Notices American
Mathematical Society 18 71T-G46).

©
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We now show that H(X)/R, = H(X)/x". For h e H(X)and ke H(Y),
¥(ha') = P(h)y' and ¥ (ky') = ¥ '(k)a’. Let ae H(X)/R,. Then there
exists ke H(Y) such that a=fi'(ky’). It follows that a— T (ky')
= P ky") = ¥7(k)2' e H(X)je'. Thus H(X)/R,C H(X)j2'. Similarily
H(X)/z'CH(X)/R,. Thus g, is a one-to-one continuous funection from
H(X)/z' onto H(Y)/y'. It can he shown in a straight forward manner
that g7 is also continuous so that ¥, g, » %5 is a homeomorphism
from X onto Y.
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