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by
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1. Introduction. The property of local equiconnectedness was intro-
duced by Fox [4]. Briefly, a space is locally equiconnected if there exists
a jointly continuocus selection of paths between nearby points, with
the constant path being assigned if the points coineide. This obviously
implies local contractibility, and in finite-dimensional metric spaces,
these properties are equivalent, though not in general. On the other
hand, every metrizable absolute neighborhood retract is locally equi-
connected; the converse (for metrizable spaces) remains an open
question. ’

Dugundji [3] and Himmelberg [6] have studied local equiconnectedness
an various specializations, principally in metrizable spaces. There are
certain additional “local convexity” conditions one can require of local
equiconnecting functions, which are sufficient (but not necessary) for
obtaining absolute neighborhood retracts. Alternatively, by considering
continuous systems of singular simplexes of all dimensions, similar to
the “convex structures” of Michael [8], one obtains a characterization
of metrizable absolute neighborhood retracts.

In § 2 of this paper we present proofs of some of the basic results
on local ‘equiconnectedness and its specializations in a more general
setting. Some theorems on limits of inverse sequences of metrizable abso-
lute neighborhood retracts are established in § 3, and in §4 various
examples of strictly locally equiconnected spaces (including polytopes
with the metric and CW topologies) are given. All spaces considered
are Hausdorff.

2. Local equiconnecting functions and local convex structures.

DerivirioN (Fox [4]). A local equicomnecting fumction for a space
Y is a mapiA: UxI-Y, where U is a neighborhood of the diagonal in
¥ X ¥, such that Ay, ¥, 0) = ¥, ¢ = 0,1, and i(y,¥,9) =1, for every
Yo, Y1, Ye X, tel
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The A-extension of a subset M C Y is the smallest non-empty subset
MC Y (it it exists) such that Mx M C U and A(M XM xI)C M. M is
A-convez it M = M.

DeriniTioNs (Dugundji {3]). A local equiconnecting function 2 is
stable if for every neighborhood N of any point p in ¥ there exists
a neighborhood M such that MCH.

(Himmelberg [6]) A local equiconnecting funection A is strict if for
every neighborhood N of any point p in ¥ there exists a convex neighbor-
hood M such that M C ¥.

For U an open cover of ¥, and % > 1, let ¥™(W) = {(#,, ..., ¥a) ¢ T
{1y -y ¥n} C U € W), with the relative topology. Let 7" denote the
standard (n—1)-simplex in Buclidean n-space: T" 7" = {(t, ..., ta) ¢ B":
>0, Sti=1%

DerINITION (cf. Himmelberg [6]). A local convex structure for a space
Y consists of an open cover U and a sequence of maps A" Y"(U) %
XT" 'Y, n =1, such that: -

(@) A5 vey Yns Ty vy B) = A Gy ey Uy ooy Yng 1y oory By e
tm = 07

(ii) for every neighborhood N of any point p in Y there exists
a neighborhood M such that A(M™xT" ') CN for all n.

Note that (i) implies 2*(Y, ..., ¥; b1y ..., ta) = 4, and can be viewed
as an equicontinuity requirement for the sequence of maps A" on the
diagonals 4™

We shall say that Y is (strietly, stably) LEC if it admits a (strict,
stable) local equiconnecting function, and that ¥ is LOCS if it admits
a local convex structure.

PROPOSITION 2.1, Strictly LEC implies stably LEC implies LCS
implies LEC.

Proof. The first and last assertions are obvious. Suppose A: U XI Y
is a stable local equéconnecting function. Let U be an open cover of ¥ by
sets ¥V such that V exists. For (y, ..., yn) ¢ Y(V), inductively define
A" (Wry oy Yny tyy ey ta) = 9, if £, =1, and l(yl, B sy ey Yy BJ(L—11),
e taf1—1), 1_t1) otherwise. Then A(V*x T C¥ for n =1, Ve,
and U, (2") is a local convex structure on Y. :

: It is known (see below) that LCS does not imply stably LEC. Whether
in general LEC implies LCS; or stably LEC implies strictly LEC, are
open questions. '

‘While every neighborhood retract of a LEC (LCS) space is LEC
(LCS), a stronger condition is required, and is useful, for strictly LEC
spaces. A neighborhood retraction r: N —4 onto a subset 4 of a strictly
LEC space Y is strict if each point of A has arbitrarily small convex

) it
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neighborhoods (in ¥) which are mapped into themselves by r. (A similar
condition could be given for stably LEC spaces.)

PROPOSITION 2.2. Hwery sirict neighborhood retract of a sirictly LEC
space is strictly LEC.

Following the notation of Hanner [5], we shall say that a space ¥
(not necessarily metrizable) is a neighborhood extension space for the class
of metrizable spaces, or NES (M), if every map f: 4 —»Y from a closed
subset A of a metric space Z into ¥ can be extended to a neighborhood
of A. Then ¥ is an ANR(I) iff it is a metrizable NES().

PROPOSITION 2.3 (Himmelberg [6]). Every ANR (M) 4s LCS.

Proof. By a well-known theorem of Kuratowski and Wojdyslawski
[1, p. 79], the metric space Y can be imbedded as a closed subset of
a convex set Z in the Banach space of bounded real-valued maps on Y.
Since Z is strietly LEC, it is LCS, and since ¥ is a neighborhood retract
of Z, it is LCS. .

The following theorem was proved also by Himmelberg, in a different
manner, for metrizable spaces.

THEOREM 2.4. Hvery LCS space is NES(I).

Proof. An easy generalization of Dugundji’s extension of the Tietze
theorem. Let b, (A") be a local convex structure on ¥, and f: A->Y
a map of a closed subset A of a metric space Z into Y. There exists an
open cover {G,} of Z\4, canonical with respect to Z [1, pp. 69, 70]. For
each set G, select a point ase 4 such that, for some gu e Gu, d(gy, @)
< 2d(g,, A). For each aecd let V(a), Na)= {zeZ: d{a,z) < s} be
neighborhoods of a in Z such that &, ~V(a) £0 implies G, C Na),
and f({Nss(a) A A}C T for some UeW. Set V=) {V(a): a ¢ A}. The
nerve %t of the covering {G.~ V} of V\4 is a CW polytope, and there
exists a map 7: V\A—>N such that v (stp,) C Gu ~ ¥, where p, is the
vertex of It corresponding to Gun V. Totallyl;order the collection {pu}

of vertices, and define the map 7: R—>Y by 7% (Dtipd = 2Mf(ay), .-, Flan);
b

t1, ..., ), where p; < p; if i < j. It can be verified that {f(a), -.., f(ax)} C U
for some U b, so 7 is well-defined. Then g: ¥V X, defined by g4 = f,
gIV\4 = 7 0 7, is a neighborhood extension of f. We need only verify the
continuity of g on A. Let ac 4 and a neighborhood N of f(a) in ¥ be
given. There exists a neighborhood M of f(a) such that MM T HCN
for all . Choose s,f> 0 such that G, ~ N:(a) s @ implies G, C Ni(a),
and f(Nes(a)) C M. Then g(Nga) ~V)CXN, and g is continuous at a.

A space Y is locally contractible if for every neighborhood N of any
point p there exists a neighborhood M which is contractible in N. ¥ is
strictly locally contractible if each point has arbitrarily small neighbor-
hoods contractible in themselves.
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PROPOSITION 2.5. Huvery (stably) LEC space is (strictly) locally con-
tractible.

Proof. Local contractibility is obvious. Striet local contractibility
follows from the fact that the 1-extension M of a subset M is contractible
in itself. :

Since finite-dimensional loeally contractible metric implies ANR (),
it follows by (2.3) that such spaces are LCS. Borsuk’s example of a locally
contractible (but not strictly locally contractible) metric non-ANR has
been. shown by Dugundji [3] to be non-LEC. Since there exist finite-
dimensional compact AR (M) spaces which are not strictly locally con-
tractible [1, pp. 152-155], it follows also by (2.3) that LCS does not imply
strict local contractibility.

A (strict, stable) local equiconnecting function i defined on all of
¥ x¥YxXI iy a (strict, stable) equiconnecting function, and we say that
Y is (strictly, stably) EC. Likewise, a local convex structure L, (A") on
Y is a convex structure if ¥ ¢ U, and we say that ¥ is a CS space. Clearly,
every (strictly, stably) EC space is contractible and (strictly, stably)
LEC, and every CS space is contractible LCS. For a large class of spaces
the converses are true.

Levma 2.6 (Hanner [5], (12.3)). A map f: A—>Y from a closed sub-
set A of a mormal space X into a contractible space ¥ can be eatended to all
of X if it cam be extended to a neighborhood of A.

A space Y is w-paracompact if Y" is paracompact for all n > 1.
The class of w-paracompact spaces includes all metric spaces, all com-
pact spaces, and all locally countable CW polytopes. The following
theorem was proved by Dugundji [3] for metrizable spaces.

THEOREM 2.7. Every w-paracompact contractible (sirictly, stably)

LEC space is (strictly, stably) EC, and every w-paracompact coniractible
LCS espace is CS.

Proof. Only LOS spaces will be considered; the other cases are much
easier. Let W, (1") be a local convex structure for Y, and let U be an
open star-refinement of W. Then ¥™*(V)C Y™(W) for all n. We shall
indyctively construct maps 4™ Y'XT" 'Y, maps r: T T,
and open sets 0" C ¥, # > 1, such that: '

i) YMV)C 0" C 7™ (W),

(ii) #"(BAT"™") C BAT"™, and +"/BA ™" is the map induced by 7,
(iii) An(yla ey Ynj tly ters tﬂ) = An(:’/l) oy Ynj Tn(th seny tﬂ)) if (y17 a"./n) € On’

" (ivz) A1y ey Y by ey tn) = A" Yy oy iy eony Y Tiy iy Ty vory Tn)
i = V. .
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Then by (i), (ili), and (iv), (4™) will be & convex structure for Y. We begin
by defining A'y; 1) =y, r'(1)=1, and 0' = Y. Suppose A%, #*, and o* -
have been defined for & < n. For convenience in defining 4™ and +""*,
we consider an arbitrary homeomorphism h: T™-T"x {0} v BAT"xI
CT"xI, such that k(t)=(f,1) if {eBdT™ Let m: Y"*'>Y" be the

n+1

projection parallel to the ith coordinate. Since YA A ('1] 27 (0™ is

an open neighborhood of ¥™*(U), we may choose 0" such that ¥"**(?)
C 0™ and O™ C Y™ m’ﬁln;l(o"). Let p: h(T™)-T" be the pro-
1

jection map. Define 7" RTHI"X{0}) =poh, r"TAT(BAI"X[},1])
=1"opoh (¢ BAT">BAT" is the map induced by 7" Tt Y,
and extend ™ “linearly” to h™*(BAT" X [0, 3]). We first define 4™ on
a neighborhood of O""'xT"u E““ X BAT" as follows: A" (y; 1)
= " y; ") iy e AW ) 7 (07, ATy 9= 47 (g5 pohid)
it e Y (BAT" x [}, 1]), and A™Y " xBdT" is defined by condition (iv).
By (2.6), 4™ can be extended to ¥™** x T, and conditions (iii) and (iv)
are satisfied.

The lemma and theorem to follow were proved by Hanner for
ANR(M) spaces, and by Himmelberg for metrizable LEC spaces.

LEyva 2.8. Let ¥ = Y, u ¥, be normal, with each ¥; open and LCS
(LEC). Then Y is LCS (LEC).

Proof. Again, we consider only LCS spaces. Let Us, (A1), i=1,2,
be local convex structures for ¥, ¥,. There exist closure-disjoint open
sets Z,, Z, in ¥ with Y\¥,C Z, and Y\Y; C Z,. For each y ¢ Y\(Z; v Z,),
let U, be an open neighborhood of y such that for some U;eU; and
U, e, UyCU T, and AHTyxT")CT, for all n>1, i=1,2.
Take W= {T; ~ Zy: Uy e Us} w {TUpn Zy: Vo Unp o {Uyiye YN\(Z, v Zy)},
and let 7: ¥ —I be a map such that r{Z,) =0 and 7(Z,) = 1. For each
71, define A" YWy xT" " T as follows:

[2(was @), X urwa=o0,

!z?(z?((ym (1), Bl (@) 1—Dtrwd, Dur@),

| 0< Dtrly)<1,
(@) @), D tr@)=1.

Tt remains an open question whether the above result can be extended
to stably or strictly LEC spaces.

THEOREM 2.9. Every compleiely normal paracompact space which s
locally LOS (LEC) is LOS (LEC).
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Proof. An immediate consequence of Michael’s theorem on §-he-
reditary local properties [7], the preceding lemma, and the facts that
open subsets, and discrete sums, of LCS (LEC) spaces are LCS (LEC).

3. Inverse sequences of ANR(IN) spaces. We shall say that a series DUy
of open covers of a space Y converges if every sequence (y:) in ¥, for
which {ys, ys+1} C Ui € Wy for all 4, converges. If U is an open cover
such that, for every sequence (y,) satisfying the above condition, {y,, limy;}
C U €W, we shall say that D Uy is subordinate to U.

LevMA 3.1. Let Y be a complete metric space, and U an open cover,
Then there exisls a convergent series D Uy of open covers subordinate to U
Conversely, if Y is paracompact and there exists a convergent series of open
covers, then Y is completely metrizable.

Proof. Let g(z,y) be a complete metric on Y. Let U = {V.} be an
open loca,ll}L finite refinement of W, and shrink {V.} to an open cover {W,}
such that W, CV,, for all a. Let {fo: ¥ —I} be a collection of maps such
that fo(Wa) =1, f(¥\V.) = 0. Define a continuous pseudo-metric g,
on Y by gz, y) = sup|fa(@)—fuy)l. Then d(z,y)= o(2,y)+ 0z, ¥) is
a complete metric on ¥, topologically equivalent to o(z,y), and the
covering by open unit balls of (Y, d) refines W (cf. Michael [7]). Take Uy
to be the covering by open balls of (¥, d) of radius 27",

Conversely, suppose DUy is a convergent series of open covers. We
may assume each Uy is locally finite. Then [Wsi—1, Wes] = {Usi—1 ~ Tyt

Ur € Uy} is also loeally finite, for all 4. We claim that [’j[cum_l 5 Usg)
1

is & base for ¥. If not, there exists @ ¢ U, U open, and a sequence (Uj),
Uie Ui, such that o e Uy and Usiy » U\U # @ for each 4. Choose
Zoz € Uiy » UsA\U. Then the sequence (2;), where @s; ;= 2z, must con-
verge, which is impossible. Thus Y has a o-locally finite base and is
metrizable. For each n, let g,(z,y) be a compatible metric for ¥ such

that {¥oa(y; 27"): y € ¥} refines WU,. Then o(z,y) = > min{ea(z,y), 2™
1

is a compatible metric for ¥ such that for éach n, the covering U, by
open balls of radius 27 refines U, . Thus Z‘U'n is a convergent series,
and every Cauchy sequence in (¥, ) has a convergent subsequence.

Let U, be an open cover of a space Y, and consider maps f, g: X 7.
We say that f and g are ‘1L homotopic if there exists a homotopy H:
X XI-Y such that H( p, f(p yD)=¢(p),and H(pxI)C Uy e W,
for every p e X. Let f(U) = {f 7Y U) U e W}

DEFINITION. A map f: X —Y is a fine homotopy equivalence if for
every open cover U of ¥, there exists a ma.p g: ¥ —X guch that fo.qgis
U-homotopic to idy, and gof is f (U )-homotopic to idx.

icm
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THEOREM 3.2. Let ¥ = Hm (Y, fir1) be the limit of an inverse sequence
of topologically complete ANIT(EIR) spaces, with each fiyy: Yiz1—>Y; a fine
homotopy equivalence. Then Y is a topologically complete ANR (DY), and
the projection maps are fine homotopy equivalences.

Proof. Let Uy, (17) be local convex structures for the spaces Yi,
and for AC Y, define A(4)= (U [AHA (W) xT"7): n=1}. We in-
ductively construct sequences of maps ¢i: Y;—>Y¥iy:, homotopies Hy:
Y,-xI—>Y; (i > 1), and open covers Uy, Wy, (WF: n > 1) of ¥y, such that:

() Ui={F: VeVU} is a loeally finite refinement of Uy, and Uy
is a reﬁnement of (Fiisr o - o fi) " (Whox) for each 1 <k <4,
(ii) ‘W is a locally finite star-refinement of a star-refinement of Uy,

(iif) > W? is a convergent series of open covers subordinate to a star-
refinement of W;, and mesh W7 <277

(iv) fir1 0 gsis Wi homotopie to idy,, and Hsyi is a Frl Wi -homotopy,
with Hipi(y, 0) = gi o fira(y) and Hin(y, 1) =¥, )

(v) forevery ¥ € Vs andt e T, oA firr o HipalhiaD), 1)) CW e Wi

With p;:
= 1i111f,‘+1 LIPS

n—>o0

Y Y, the projection map, define ¢i: Y;—=Y Dy pjegs
o fni1° gn o . o gi. It can be verified that g:is a well-defined

map, and g1 ° gs = ¢i. Define a homotopy H: Y x[1, co]+Y as follows:

0<s<t,
p<s<1,

qipi(y) 5

H(Z/y i48) = qi+1H-t+1(Pi+1(?’)’ 28—

1),
H(y, o) =¥

With U = pr{(V,), let F={FCY:F is finite non-empty and
FCV eV} A level indicator o for F e is a function c: 2P\{@} +[1, oo]
such that:

(i) for ACBCUPF, w(4)> w(B),

(ii) for A C F non-trivial, w(4) < ¢ and ps(4) C V € 0, for some i > 1.
Let §" = {( Yiy ooy Yy ©): Wy ooy Yny €F and o is a level indicator for

W1y ooy y,.}} with the topologv of point-wise convergence (product topo-
logy). Define a sequence of maps AR FUx TV 15X, n> 1, as follows:
/10(3/1: very Y Ty ey s w)

(1 (=Y2= .= n)y O ey Yn} = 0,

l Qi+1H~:+1(li+1(Pi+1(y:), cvey Piga(¥n)i Ty s ta) s 23"1) )

—J w{yl,...,yn}=i—{—s, %‘<8\<\11

= )s

l f1+1 z+1(271+1 J1), Oy Pid1(n); try s tn))s A?(Z’i(?h)’ vy PilYn);

l fyy ey tn); 28, 1—Js>, 0y s yny =i+s, O0<s<h.
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We shall inductively construct a sequence of maps A™: F*x "', ¥
such that:

() A"Yry o5 Yns Ty ooy Ty @) = AG(G1y oy Ynitay oy s @) B 0f g, oony )

= max {w(¥:)},
= {ii) An+1(y1, ey Yngry Ty ey Tngs; @) = An(?/n T oy Yntiy Fyy el
ti, ~--71n+1§ CL)) if ty= 0.
Suppose A" has been defined; let (yy, ..., Ynt1} b1y ooy tarr; @) in F* x 7™
be given. Let e; ¢ T" such that ef) =1 if ¢i=34j, 0 otherwise. With
k= (max{o¥)}— o, ., Ynsa}) T, let Ep™ denote the convex hull of
{81y oors bnga} C I, where 8(j) = (5+2)/(n+k+2) if ¢=7,1)(n+k+2)
otherwise. Consider 7" = "1™ w BA*I™ x [k, co], with BA*T" x {k} = Ba*1™,
and BA*T"x {co} = BAT™. For the given point (¢, ..., tysa) = . %7¢; in ™,
there are two possibilities: '

n(ﬁ it X ey = 3 ey € *T", define A" (g, oy Ynis by ooey buga @)
= Ao W1y ooy Ynt15 Tuy eoey tag1; @),

(i) it Dtse; = (Z{tjfj:j # i}, g) e BA"T" x [, o], define 4™ '(y,, ...,
Ynt1s by ooy tngay @) = ANY1y ooy Yoy ooey Yna1j By ooy by oony Ings; @g), Where
o d) = {(g— k) o (A)/(g+1) +(E+1) oYy, ..,y Ynsa}l(g+1).

B Fﬂr non-trivial 7 ¢, there is a largest integer ¢ > 1 such that pi(F)
CV e s. Let v = max{d(p(F), TAV): V ¢ Ui}, and w = int {max {d(pila)
W):acF): We ’wi}. We define a level indicator map m: §—[1, oo] as
fo}lqws (% is given the Hausdorff metric for subsets): m(F) = oo if F is
trlv.ial, i—w]/(v-4w) otherwise. It is clear that for F ¢ §, w: oft \{D} +[1, o]
defined by w(4) = m(4) is a level indicator.

f‘or each n > 1, define 1™: Y™ (V) X T" ' Y by A"(#s, cos Y} 1y -or, tn)
=T/1 (Y17 oy Yn5 t‘I, - tu; w), where w(4) = m(A4) for every 4 C {yy, ..., ¥n}
We show that U, (") is a local convex structure. For 8 C ¥ with Pi+a(S)
CTile Vi and 4 <m <41 for some 43> 1, let Ay(S, m) = v {ANS,
"oy n> 11, where w(4) = m for each finite 4 C §. Then,pi(/f(,(s, m))
CW e Wg, and 1(8) is contained in the union of sets of the form /L,(R, q),
where BEC S, piya(R)CVeUysya, and i<ji<q < j+1. For each such
p.aur (B,q), we have p;(dy(R,q))C W e W;. Since H(R, q)C AR, q),
since {p:(H(y, ) ,Api(y)] CWeW; for every y ¢ ¥, and since ps(S)C W
€ ‘IDi{ we have pi(l(S’)) CV eVUi. Thus ¥ admits a local convex structure
and is therefore an ANR ().

Theorem ?».2 i§ -also true for completely metrizable LEC spaces, with
}:‘he proof a sxmpllflfza,tion of that presented above. The requirement of
ine homotopy: equivalences is essential—there are easy examples of

non-locally connected tree-like continua with bonding maps deformation
retractions.

?

¥
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LemMa 3.3. A retraction f: X >Y onto a paracompact space ¥ is
a fine homotopy equivalence iff for every open cover U of ¥, f: XX is
F7HW)-homotopic to idzx.

Proof. Only the necessity of the condition requires proof. Let U be
a baryeentric refinement of U, There exists amap g: ¥ —X, and a F)-
homotopy G: X xI->X with G{z,0) =%, G{z,1)= gf(z). Define H:
X xI->X by H(z,t) = Gz, 2t) if 0 <t <}, and H(z,t) = G(f(z), 2—21)
if 1<t<1. Then H is a f (U)-homotopy between f: XX and
idx.

A retraction whieh is a fine homotopy equivalence will be called
a fine deformation retraction.

COROLLARY 3.4. The limit of an inverse sequence of ANR(IN) spaces,
with bonding maps fine deformation retractions, is an ANR(IN), and the
projection maps are fine deformation retractions.

Proof. This is a corollary of the proof of (3.2), and holds also for
metrizable LEC spaces. The hypothesis of completeness was used only
in obtaining, for each ¢ > 1, the convergent series of open covers PRIA
But this convergence property is unnecessary when the maps fiy, are
retractions. The maps g2 YY1, g2 ¥i—>¥ may he chosen to be
the inclusion maps. The sequence (Wi: % >> i) may be chosen to be any
sequence of open refinements of W; such that mesh Wi 2™

A retraction f: X ¥ is a sitraight deformation retraction if there
exists a homotopy H: X xI->X between f and idx such that fH(z,?)
= f(») for all z,¢. Obviously, f is then a fine deformation retraction.
It can be shown that the limit of an inverse sequence of metrizable
stably LEC spaces, with bonding maps straight deformation retractions,
is stably LEC. We give an example of a fine deformation retraction r:
|P| Q| of a contractible finite complex |P| onto a subcomplex |@)| which
is not a straight deformation retraction. Let P be the complex in R
with 2-simplices P,, P,, Py, P, spanned by the sets {(0,0,0), (0,1, 0),
(0,1, 1)}, {(0,0,0),(0,1,1),(1,1,0}, {(0,1,0),(0,1,1),(1,1,0)} and
{(0,1,0),(1,1,0),(0,2,0)}, respectively, and let @ be the subcomplex
with 1-simplices @;, @, spanned by {(0, 0, 0), (0,1, 0)}, {(0,1, 0), (0,2, 0)},
respectively. Topologically, |P] is a 2-cell and |@] an arc in its boundary.
The retraction r7: |P|-|@| is defined by 7(x,y,2) = (0,4, 0).

4. Some examples of strictly LEC spaces. While every convex subset
of a (locally convex) topological linear space is (strictly) EC, it is not
clear whether every topological linear space, or even every metrizable
linear space, admits a convex structure. :

‘We show here that all polytopes with the metric topology, and & large
class of polytopes with the CW topology (including all 1-dimensional
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and all locally countable polytopes) are strietly LEC. Hanner [5] observed.
that all metrie polytopes are NES(IM) spaces, and Hanner and
Dugundji [2] independently obtained the same result for all CW poly-
topes.

Levva 4.1. Every full metric polytope is stricily EC.

Proof. We may regard such a polytope |K| as the convex hull of
the elements of an orthonormal basis for a suitable Hilbert space.

LeMMA 4.2, Boery subpolytope |L| of a full metric polytope |K| is a sirict
neighborhood retract of |K|.

Proof. We use the standard neighborhood retraction. Since the bary-
centric subdivision sdZ is full in sd K, and since the identity map (|sd K|,
|sd.L)) ~(|K|, |Z}) is & homeomorphism, the map 7: [ {stv: v e sd L} ~[sd L]
defined by r(am—i—(l—a)y) =2, where 0 <a <1, vxeoesdl, and yev
esd K such that |z} ~|L| =@, is a neighborhood retraction onto |L|.
(Here, and in what follows, 7 is the open simplex, [z| the closed simplex).
We use the metric d((z), (4.) = Dla—1Yya] on |sd K], where the @, are
the barycentric coordinates of £ = (#,) in the polytope sd K. For » € [sd L}
and t> 0, let N(z; t)= {y ¢ [sdK|: d(w,y) <t}. Rather tedious but
straight-forward computations show that N (z; ) is a convex subset
of |K| and that r(N(; t)) C N (w%; t), assuming ¢ is small enough.

THEOREM 4.3. Bvery metric polylope is strictly LEC.

Proof. Every polytope [L| can be regarded as a subpolytope of
a full polytope |K|, and the result follows from (4.1), (4.2), and
(2.2).

LemyA 4.4. A countable-dimensional linear space B with the finite
topology is a locally convex topological linear space.

Proof. Let {u;} be a basis for B, and for each n, let Ly = {fuy: —oo
< t< oof. Let U be an open neighborhood of 0. Take V, to be an open
symmetric convex subset of L, such that 0 ¢ ¥, C U. Inductively, take Vy

to be an open symmetric subset of L, sueh that c?)’ﬁV(LjVi) C U. Then
1

eonv(Llei) C U is an open symmetric convex neighborhood of 0. Since -

scalar multiplications #—>ax and translations z-s>z-, are continuous
on finite-dimensional flats, and therefore on B, and since the symmetric
convex neighborhoods of O form a local base, B is a locally convex
topological linear space.

COROLLARY 4.5. Hvery full countable CW polytope is strictly BC.

Proof. We may regard such a polytope |K| as the convex hull of
the elements of a basis for a countable-dimensional linear space with the
finite topology.
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LeMMA 4.6. Bvery subpolytope |L| of a full countable OW polytope | K| is
a strict neighborhood retract of K|,

Proof. Again, we use the standard neighborhood retractionr: {_j{stv:
vesdL}—>[sdL|. Let e oyesdl, and let U C|K| be an open neighbor-
hood of z. Let V, be a relatively open convex set in o, containing x, with
Vo C U~ g, Let {0;}7 be the collection of minimal simplices of sd K
having ¢, as a proper face, i.e., dimo; = dimg,+1 for all 7. For > 1,
inductively choose V; to be a relatively open convex set in |o;| such that:

(i) VoCViCUnagi oV,
(ii) Vi D eonv({JV;) m o1,
i<i

(iil) p¢(Vi) CV,, where pi: o3 v 0,0 is the projection onto oy,
(iv) econv(|JV;) C T,
i<i

(v) @nv(|JV;) ~ ox = conv (|UVs) n o, for all k < 1,
i<i i

j<i

(vi) SORV({JV)) N om Cpm(Vo), for all m > i

i<t
o .
Then V = conv | JV; is an open convex subset of U ~sto, contain-
1

ing # (note that ¥ m |o| = conv [ J{Vi: |o:| C |o]}), and we show that
r(V)CV.Fory eV, wehave y € o e sd K, and |o] = conv(|oz] v |o*]), where
lool C lox] C1L| and |o*| ~ 1L} = |a,|. Thus y = ayr+(1—a)y* with yz
econv (J{Vi: |05 C |ozl} and y*econv [J{Vi: |03 C |o*{}. It is easily
verified that 7/|o|: |o]—|or| maps intervals onto infervals. Thus 7(y)
= br(yz) + (1 —b)r(y*) = byr+(1—b)y,, for some bel, y,eV,, and r(y)
econv | J{Vi: |oe| Clozl} CV. i

COROLLARY 4.7. Hvery countable CW polytope is strictly LEC.

THEOREM 4.8. Hvery OW polytope in which every 1-simplex is a face
of only countably many simplices is strictly LEC. )

Proof. Clearly, we may assume each vertex of such a polytope K is
a face of a 1-simplex. Introduce an equivalence relation ~ on the set {ea}
of 1-simplices of K as follows: eaiaeﬂ if 6, =€ Or €, €5 C [o] for some
simplex o e K, and e,~ep if there exists a chain a= a;, g vy &= I
with e,,lrieuzri i»ean. Let {B,: y eI} be the set of equivalence classes
of 1-simplices; each E, is countable. For each y, define K, = st(E,)
= ({sbe: ¢  B,}. The 1-simplices of K, are precisely the members of E,,
and |K,| is a countable connected subpolytope of |K|. Let 4,: U, xI—|K,|
be the strict local equiconnecting function obtained by (4.7). Define
U= U, v U{st(v, E,,) xst(v, K,,): y1 7 72, vy 0 K,}. Then U is

r

a neighborhood of the diagonal in |K| x|K|, and since the restriction
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of 1, to each simplex of K, is linear, we may define 1 UxI->|K| as
tollows: AU, %I = A, and for @ e st{v, K,), i=1,2, with »;(v) > 0 the
-barycentric coordinates, A(w:,#a, 0) = @1, A(wl, @y, (1 —2,(v)) / (2—ay(v)—
ﬁwg(v))) = v, and Ay, %, 1) = @,, Wwith 1(.501, Ty, t)A extendeé.t piecewise-
linearly on I. Then 1 is a strich local equiconnecting function for |K|.

LetJi= [—27F, 2 and J* = ];]Ji, with metric d(z,y) = Mmax|r— 9.

Then J° is & copy of the Hilbert cube I®. Let R be the equivalence re-
lation in J*° defined by @Ry iff x=y or = —Y, and consider the
metrizable quotient space J©/E. The image of z e ‘under the natural
projection J* »J°/R will be denoted by [2]. Schori [9] showed that
J*|RxI® is homeomorphic to I7(2),
subsets of I° containing at most 2 points, and asked whether JZ|R, or
J®|R xI®, is homeomorphic to I. Wong subsequently noted tha,tlJ‘” JR\[0]
is not simply connected, hence J®/R cannot be homeombrphic to .I"".
Whether J°/RXxI” is homeomorphic to I® remains an open question.
Here, we show that J/R is ab least an AR ().

TrEoREM 4.9. J7/R s strictly EC. ‘
Proof. Define A: J°/RXJI|RXJ -J”/R as follows: if [y]= [0],

1
21

1.

_2t)m]7

(=], [91, 1)

i

0<t<
1<t

Otherwise, with m = log,(d(z, —9)/d(s, ¥)), and sgnm=11if m >0, -1
it m< 0,
[sgnm)ty+(1—Hal, Im| =1,
gtmy[(1-+Im])+(1 —2t/(1 +{m]) o],
0 << (14+m])/2, Im <1,

[
[(sgnm) (26— (1 +m])) y/(L—fm]) + (2 — 20 my/ (L~ {m])] »

[
=], (9], %) =‘
l A4mz<t<l, Im <1,

It is easily verified that A is a well-defined continuous equiconnecting
function, and that J°/R has an open base of A-convex subsets.

Added in proof. Schori and Barit have recently shown thatb
J*|RxI” is homeomorphic to I”.

icm

the hyperspace of all non-void

1]
[2]
{31

[4]
£5]

[61
7

(8]
[9]
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