8. Armentrout

Since both z and y belong to ¢g—[M] and g [M]C g~ [W], there
exist disjoint open $-cells Uy and T, containing & and y, respectively,
and contained in ¢~ [W].

By Lemma 6, there is an arc g in (Int4) ~ g~ [W] from a point
of U, to a point of U,. By Lemma 7, there is an arc ¢ in (IntB) ~ g-1[W]
from a point of Uz to a point of Uy. Let y be a gimple closed curve formed
by joining 6 and ¢ by an arc in Uz and by an arc in Uy. Then y is a loop
in ¢g-[W] and it is clear that y+0 in 4* v B*. However, W has the
property that each loop in g~ [W] is homotopic to 0 in A* - B*. This
is a contradiction, and thus Z has no brick decomposition.

The following summarizes our results.

TueoreM. There exist compact meiric spaces X and Y such that (1)

X, Y, and X ~ Y have brick decompositions, but (2) X v Y has no brick

decomposition.
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Determinateness in the low projective hierarchy *

by
Harvey M. Friedman (Madison, Wisc.)

Introduction. This paper contains results on ¥} determinateness,
determinateness for certain fragments of the Boolean algebra generated
by the X} sets, and 4; determinateness. We use L for the class of con-
structible sets. In the first seetion, we use L, for the set of all sets of
level < ¢ in the constructible hierarchy, and L.(z) for the set of all sets
of level < @ in the constructible hierarchy starting from z. Tn Sections 2,
3, 4, however, we found it convenient to use, respectively, L{a) and L™a),
and to use L® for the ¢lass of sets constructible from z. (No confusion
will arise as to which of the possible notions of relative constructibility
is used.) By K determinateness, where K C (¥ xN¥), we mean that
(VA e K) (A is determined). By “4 is determined” we mean that the
game G4 has a winning strategy for either player I or player 11, where
@ is played as follows: players I, IT play alternately, starting with I.
Each move is an integer. The result of the game is an element x of ¥ ¥x N,
and T is deemed the winner if # < 4; 1T is deemed the winner otherwise.

In Section 1 we consider X; determinateness (a relativized version,
Theorem 1°, is stated in Section 4). Previonsly, there were two muain
results about X* determinateness. The first is the result of D. Martin [4]:
that 3¢ determinateness follows from (x) of Section 2, which in turn
follows from measurable cardinals. The second is that Zi(®) determi-
nateness implies that every uncountable Xi (¥3) subset of NV contains
a perfect subset (Davis [2], Theorems 4.1, 4.2). The former result sug-
gested that it would be worthwhile to find 5 consistency proof for oy
(3}) determinataness using the consistency of some currently formulated
axioms about sets. The latter result showed that, by Solovay [10], 1 (2)
determinateness . implies that N ~ L is countable (NN ~ L(x) is count-
able for all #C w), and so Zi determinateness cannot be proved from
the currently formulated axioms about sets, since they are all compatible

_ with (Vz)(z e L). But it was still possible that 51 determinateness was

* This research was partially supported by NSF GP-13335. This is a revised
version.
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80 H.M. Friedman
equivalent to L ~ NV is countable (or ¥}
L(z) n N¥ countable for all #C w). .

By proving that X} determinateness fails in all forcing extensions
of I, we refute the possibility, and show that no consistency proof of 3*
determinateness can be given using current methods (i.e., current axiom;
about sets and current .methods of proof). Thus X} determinateness
provides an example of a sentence known not to hold in any forcing
extension of L but not known to impiy (%) for = @. ‘

Now it ¥ ~L” is countable for all #C o, then 2 must be inacces-
§ib1e in I® for all 2C w. Hence X determinateness implies that 0 is
inaceessible in L” for all #C w. This raises the question of how large 0
musi:, appear to be in L%, #C w, if ¥} determinateness holds. We show in
S:actmrlz 2 that Psing a slight (?) extension of X determinateness, written
%: & IT; determinateness, we can conclude that 2 is quite large in every L%

determinateness equivalent to

e.g., that it is the Qth inaccessible in every L°, # C w. The best previous

results a.long_the lines of proving that £ appears large in every L%, #C w
fro(]ln detgigll?gteness were the one cited above for ¥ determinateness
and & result of Solovay (personal communication m, i
iy ) that 1; determinateness
. ZFn the second part of Section 2 we extend the method of proof in
dea;tm_[ﬂ to prove that certain Boolean combinations of ¥i sets are
rminate, using (+). Just as in [4], we mak ili
gotns on extiade [4], e use of an auxiliary open
. Iu Section 3 we prove that 43 determinateness implies (*). The best
previous result was due to Solovay (personal communication), that 15 de-

terminateness impli i i i i ]
forinad Mmm.p es (x). This result of Section 3 is due, independently,

§ 1. Our first goal is to gi initi
S ) give the definition of semi-generi -
ordering. We use the treatment of forcing in Shoenfield [7%. ol

the n]?)::;]}:fl:‘f:t(?:ml;. F;)lr each c?L_mtable admissible ordinal o let C, be
baitil et o gw 1?se conditions are the functions from some finite
i seg 0o @ into a, and where p < ¢=g¢Cp. A semi-generic

on of a is & function g: w +a which intersects every dense sub-

set of Cy which lies i i issib
by i Le+ya, where ot is the least admissible ordinal greater

Dx:
salled :n::yTnlgi 7;;.0 I;?etlla ‘ge _coun;able and admisgible. Then #C « is
L1EC : -ordering of type a if there i i- i
enumeration, g, of a, such that o — {2ﬂ3m: p (17/)5!](1,;:)}18 2 §emi-generic

LEMMA 1.1. Let o be a countable and admissible,

generic enumeration of a. Then I, i issi and L g be any somi-
least admissible greater than a. ld) %0 on imiseibl ety where o ts the
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Proof. See Barwise [1], Appendix B. Set b=ga, 7= at. In
[1], forcing is presented using the ramified language, and of course we
have the equivalence of that notion of genericity with our semi-ge-
nericity.

We let a<¢ be the set of conditions in Ce.

TmMmA 1.2. Let a be countable and admissible. Let g be any semi-generic
enumeration of a, and let y C o have y e Lw(g). Then there is a function
f: a<®xXw->{0,1} such that Ffela&(Vn)ney=(Tpea)pCy&
& flp,n) = 1“

Proof. Choose a term t in the forcing language which defines ¥
in Le+(g). Set f(p, n) =1 if p forces P e?; 0 if p does not force 7 €.

Derrnrrion 1.3. Let A be a transitive set. Then a relational structure
(B, R) is called an &-extension of A if

ACB&(Voe A)(V))(R(y, )y ¢ 4) & (Vo e 4)(Vy e 4)(E(@, ) = <)

Tmyma 1.3. Let a be couniable and admissible, and let (o, R) be iso-
morphic to some &-ewtension of Lo+ Let f: a<*Xw->{0,1} have f e Lq,.
Then f e Loyro(R)-

Combining Lemmas 1.2 and 1.3 we obtain

TmymA 1.4, There is a f < at such that whenever g is a semi-generic
enumeration of a and (w, R) s isomorphic o some s-extension of Lo, and
y C o has y e Le{g), then ¥ < Lglg, R).

Tmyma 1.5. Let a be admissible, g o semi-generic enuwmeration of a.
Then for all B < at there is a ¥ C o with y ¢ La(g)—Lp(g)-

Proof. If not, then L.{g) must satisfy the existence of a first un-
countable ordinal, which must be >a, at the same time satisfied to be
admissible, which is a contradietion.

LmvMMA 1.6. Let o be admissible, g a semi-generic enumeration of a,
(o, R) isomorphic to some &-extension of Las. Then B ¢L.3+(g).

Proof. Combine Lemma 1.4 with Leroma 1.5.

LevMa 1.7. Let o be admissible, ¥ & semi-generic well-ordering of
type a, (w, R) isomorphic to some s-extension of Le-. Then B s not hyper-
arithmetic in y.

Proof. From Lemma 1.6 together with the observation that the
subsets of w present in an admissible set are always closed under relative
hyperarithmeticity.

The following is due to Ville (unpublished).

Tmnyva 1.8. There is a sentence g such that for all admissible a,
&-extension of a1 satisfying @ must be isomorphic to an &-extension of Lz,
and furthermore, p holds in {(La+, ).
Fundamenta Mathematicae, T. LXXII

any
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We now immediately obtain

Tmvma 1.9. Let o be admissible, y a semi-generic well-ordering of type ay
{(w, R) isomorphic to some &-emtension of a--1 satisfying ¢. Then B is not
hyperarithmetic in y.

Timnora 1.10. There is o Zi subset ¥ of N7 X NV such that no winning
strategy is hyperarithmetic in any semi-generic well-ordering.

Proof. Take Y = {(f, g): either g does not code a well-ordering of
type some admissible ordinal o or else g does code a well-ordering of
type o, a admissible and f codes an (w, R) isomorphic fo some - extension
of a41 satisfying ¢}. Then ¥ can easily be seen to be 1. If there is
a winning strategy for II for ¥ then the set of plays for IT is a ] set of
coded well-orderings, and hence must be bounded in order type by, say, a
But then I could thwart this winning strategy for IT by playing any
(w, R) isomorphic to Ls+, where § is the least admissible ordinal greater
than a: Hence there is no winning strategy for IT for ¥. If there is a winning
strategy for I for Y that is hyperarithmetic in some semi-generic well-
ordering of type a, y, then II can thwart this winning strategy for I by
playing a code for y. Then the winning strategy directs I to play something
hyperarithmetic in y, and so I loges by Lemma 1.9.

DEFINITION 1.4, A notion of forcing is a partially ordered set ¢ with
a maaumum element. See Shoenfield [7]. A regular class in a class ¥
satisfying ZF'C which contains all the ordinals and which is transitive.

) Dermnrrion 1.5. Let € be a notion of forcing. A dense subset of ¢
is an ¢ C O such that for all y € ¢ there is an a € » such that a <¢y.

DeriNITION 1.6. Let € be a notion of forcing, ¥ be a regular class.
Then xis C-generic over Y just in case # C ¢ and (Vy)(V2) (ew &y <co)~
>z ) and for all dense subsets ¥ C ¢ with y ¢ ¥ we have # ~ y #0.
We let Y (x) be the least regular clags containing ¥ u {&}. If we write
“z is C-generic”, we mean “z is C-generic over L”.

The following is a basic lemma about forcing. See [7].
Levwma 1.11. Let P be a sentence in the language of set theory, and
let ¥ be a regular class, C <Y a notion of forcing. Suppose that there is

a G-generic 2 C C such that ¥ (x)|=P. Then there is an a ez such that
for all C-generic yC C with a ey, we have ¥ (z) |= P

LeMwmA 1.12. The property of bemg a relation B on o such that (w, R)
w4 (Lat, &) for some admissible a, is IT:.
From this we may obtain

Lmwna 1.13. The property of being a semi- -generic well-ordering is Zi.

. Lemwa 1.14. The propeﬁy of being hyperarithmetic in some semi-
generic well-ordering is
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Now by the absoluteness theorem [6] we have

LevaA 1.15. There is a senience P such that for all regular classes ¥,
we have ¥ |= P if and only if for all #C o with z € ¥, z is hyp in some
semi-generic well-ordering.

We fix this P.

DermnrrioN 1.7. For zeL let CA(z) be the least cardinal in L, a,
such that z e L,.

The following is a basic lemma about forcing. See [7].

TEMMA 1.16. Let C ¢ L be a notion of forcing and let x C O be C-generic
over L. Then for all y C w with y e L{x) we have that y € Loae)(%)-

The following is 2 recursion-theoretic refinement of the usual theorem
which says that generic sets exist.

Levmwa 1.17. Let Ce L, aeC, C a notion of forcing, and let y be any
well-ordering on w of type CA(G’) Then there is a generic € C C with aex
such that x e LCA(C)-:—CA(G)(Z[)-

From Lemma 1.16 we obtain

TmyvA 1.18. Let C e L, a € 0, O a notion of forcing, and let y be any
well-ordering on w of type CA(0). Then there is a generic x C C with a e,
such that every 2 C o with z e L(z) is hyperarithmetic in ¥.

Choosing y to be any semi-generic well-ordering of type CA(0),
we obtain the following from Lemma 1.15.

Lemva 1.19. Assume CeL, C a notion of forcing, a<C, CA(C) is
countable. Then there is a yC C, y O-generic, with a ey, L(y) = P.

By Lemma 1.11 we have

IEMvaA 1.20. Assume CeL, C a notion of forcing, CA(C) is countable.
Then for all C-generic y C C and @ € L(y), we have that x is hyperarithmetic
in some semi-generic well-ordering.

By Lemma 1.10 we have

LEMMA 1.21. There is a X5 subset Y of NY  N¥ such that there is no
winning strategy for ¥ present in any L(y) where y is C-generic for some
notion of forcing C e L with CA(C) countable.

We may ehmmate the hypothesis that CA.(C) be countable by & fmcmg
argument.

TEROREM 1. There is a Xy subset ¥ of NY < NY such that there is mo
winning strateqy for Y present in any L(y) where y is C-generic for some
notion of forcing C e L.

Proof. Tt suffices to show that this theorem is satisfied to be frue
in any countable transitive model M of ZF. Suppose it fails in M and C
provides the counterexample. Pass to any forcing extension, ¥, of M
obtained by adding an enumeration of CA(C) generic over M. Then apply

8%
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TLemma 1.21 in N for . Note that by absoluteness, anything satisfied
by M to be a winning strategy for the 2} set must be satisfied by N to
be so; obviously, any #C C satistied by M to be C-generic must be
satisfied by N to be, also. ) .

§ 2. The first part of this section concerns X% & I determinateness,
which asserts that every pairwise intersection of a =t subset of NV x ¥
with the complement of a 3 gubset of NV x NV has a winning strategy.

DermiTioN 2.1. Let V(0) =0, V(a+1) = P(V(a), V(4) = UlV(a%

We say that an ordinal o is weak I} indescribable just in case for all
tirst-order P(X, @y, ..., Tx), By, -, @k € V(a), such that (VY C V(a))((V(a) U
v {3}, s) [=P(XY, @1y ey mk)), there exists 8 < a with @, ..., 2z ¢ V() and
(FECT(@)([V(B) v (T}, ¢) |=P(T, i, ...y @x)). We abbreviate the latter
by writing V(8) |= VE(P(X, @y, -.., #2))-

DerFmNITioN 2.2. Let 2 be the first uncountable ordinal, and let
Z* = ZEC—P 44 P(w) be ZFC without power set but with the existence
of the power set of w.

LievMA 2.1.1. Suppose &y, ..., 2k € Lo, P. first-order, y C o,

Lo l=VY(P(Y, Lyyeeey wk)) .

Then there is an o < Q such that Lo(y) |= (La|= VY (P(Y, @y, ..., ar))) & 2.
Proof. Note that Q,= 2nd uncountable cardinal satisfies the con-
clusion except that Q, < 2. 8o instead choose a countable elementary

submodel of Lq,(y) and take the image of the isomorphism onto a transi-
tive set.

DernrrioN 2.3. If Y is a transitive set, (¥, &) |= 2% let 2(¥) be
that ordinal in Y which is satisfied, in (Y, ¢), 0 be the first uncount-
able ordinal.

Lemma 2.1.2. Suppose @,,..,2peLo, P  first-order, yC o,
Lo |=VY(P(Y, %, ..., wx)). Then there is an o< Q such that Lu(y) = (Lo
{=VZY(P(Y,w1,4...,wk))), and there is a well -ordering, 2, on w of order
type Q(Lu(y)) such that a is not an ordinal recursive in (y, 2).

Proof. Choose « as in Lemma 2.1.1. Then L.(y) is admissible. Hence
by Barwise [1], Appendix B, there is a well-ordering z on w of type 2 (Lu(y))

such that Lu(y,2) is admissible. Then clearly o must not be an ordinal
recursive in (y, 2).

LEm 2.1.3. X determinateness implies that (L |=a is naccessible),
where a is the first uncountable ordinal.

;Pro of. See Davis [2] and Solovay [10}, as described in the Intro-
duction. :
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The following is well known.

Levma 2.1.4. We have that L= ((Le=V(a)) = (2u= a)). There is
a first-order P(¥Y) such that L |=(L.= V(a) = L |= VY{P(Y))).

We immediately have the following using Lemmas 2.1.3 and 2.1.4.

LEMMA 2.1.5. Assume X; determinateness. Suppose for every first-order
P, 2y, o, @x e Lo~ Plw) such that Lo = VE(P(XY, 2y, ..., o)), there exists
an a< Q such that Lo =VY(P(Y,z,, ..., 2x)}, and 2y, .., 2ceL,. Then
(L |= a is weak In indescribable), where a = 0.

THEOREM 2.1. X & I delerminateness implies that (L |=a is weak
IT+ indeseribable and inaceessible), where a = Q.

Proof. Using Lemma 2.1.5, let Lol=VI(P(Y,, .., z)). We
consider the following subset, S, of NVxNY: 8= {( f,0): f codes a well-
ordering on w of type [f| with @, ..., #x € Ljy;, and either g does not code
a well-ordering on o or g codes a well-ordering of type ig| and (VY C L)
(Y e Ly—(Lyy v {¥}, &) = P(X, 25 s 7x)}}. As written, it is not obvi-
ous that § is X! & II;. However, it can be seen to be such by employing
the I predicate of g, h, written Ly(k), which means that h is a coded
version of the constructible hierarchy based on the ordering g, which
may, however, not be a well-ordering. However, if g is a well-ordering
and Ly(k), then & will correctly code up the constructible hierarchy up
through |g!. Thus we have S = {(£, 9): f codes a well-ordering on w of type
|f} with &y, ..., @ € Lyp, and either g does not code a well-ordering on o or
(Hh)(l}!,l(h) & (VY C L) (Y coded in h—(Ly v {X}, &) = P(Y, 21y .ry xk)))} .
(Note that {(f, g): f codes a well-ordering on w of type |f]| with #y, ..., Tz
¢ Lz} will be 21 since there will be a countable ordinal o such that the
above set is just {(f, g): f codes a well-ordering of type >a}.)

Now by =i & M} determinateness, either I has a winning strategy
for § or IT does. If IT has a winning strategy, ¥, then choose a and 2 as
in Lemma 2.1.2, and have I play 2 Then II will play, using strategy =,

some g <rz Now g must code a well-ordering, and by Lemma 2.1.2 it
is clear that it must be longer than a. But then a is an ordinal recursive

in z, which is a contradiction.

Ro I has the winning strategy. But since T is always playing well-
orderings, and since =7 sets of (coded) well-orderings on o are always :
bounded, we let a bound the order types of the well-orderings that can
be played by I. Then it is clear that there is some f < a such that
L= (Lp =VYY(P(X, 2y, ey mk))), or else by the regularity of 2, IT could
thwart the winning strategy for I by playing a guitably long well- ordering.

COROITARY 2.1.1. X} & IL determinateness implies that (L|=a is
the o-th inaccessible cardinal), where a = 0.
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Proof. If (L |=ais the pth inaccessible cardinal), for some £ < Q= q,
then there will be a first-order sentence P (f) such thab (L =(Val=P(B) &
& (Vy < @)V, |= ~P(B))), violating Theorem 2.L.

We may relativize Theorem 2.1 to any #C w.

COROLLARY 2.1.2. 3t & IL determinateness implies thai for all 2Co
we have (L” |= a is weak IT; indescribable and inaccessible), where a= Q.

‘We now give a proof of determinateness for a class of sets which
form a fragment of the least o-algebra (or even Boolean algebra) generated
by the analytic (¥]) subsets of NY, using the hypothesis () below.

(%) For each hereditarily countable set @, each 1-st order formula
@(Tgy wey Un, Unya), ONd each sequence of wncountable cardinals ay, ..., an,
Bos evey Pn with aie aj= i< By, we have

L(@) |= @(; -5 any @) = @(Boy s by ) -

DEFINITION 2.4. For all sets v, if f e y° then F(n) = (£(0), ..., f(n—1)).
Fors € y»we write In(s) = n,9° = {< >}. Wehaves = (8(0), ...,s(ln(s)ﬂl)),
and for i < In(s) we write §(5) = (s{0), ..., s(i—1)). We say that sis an
initial segment of # it In(s) < In(f) and (Vi < In(s)) (s(3) = 1(3)).

DEFINITION 2.5. A tree is a subset, T, of A=? guch that every initial
segment of an element of T is an element of T where A is some set.
A path through 7' is an f e A® such that (V%)(]N’('n) € T). A tree is called
well-founded just in case it has no paths. .

DrrINITION 2.6. Let h: (0<®)*>w. Then we write T'a(s, ), 8, t € 0=,
for the tree {aew<e: (&i)(h(3(),3(5), #{s)) = 0)}. We write Ii(f,9)
= {a e w==: (@)h(T (), F(6), §(3)) = 0}}. ,

The following is a basic fact about co-analytic sets.

Lmwnra 2.2.1. Boery IIF subset of (NV) is of the form {(f, g):. Tn(f, 9)
is well-founded}, for some h: (0<*f >o.

We wish to prove (II; & ¥1)v ¥; determinateness from (x). For this
purpose, we fix functions hy, ks, hs. The set we are trying to prove de-
terminate is 8= {(f, 9): Tn(f,g) is well-founded and Tx(f,q) is not
well-founded) or Tx(f, ¢) is not well-founded}.

DEFINITION 2.7. For s,te w<® we define s < ¢ if and only if either

(1) ¢ properly extends ¢ or

(2) neither is an initial segment of the other and s is smaller than f at
the first argument at which they differ.

The following is well known.

LeMmA 2.2.2. Note that < is a_linear ordering and that for trees

T C w<e, we have that T is well-founded if and only if < vestricted to T 18
a well-ordering. '

icm

©

Determinateness in the low projective hierarchy 87

Ve now describe an auxiliary game. Player I’s moves will either
consist of an integer or a pair consisting of an integer together with an
element of Qprg— (Qo-+1) w {B}, where E is a special symbol for “error”.
In the first case, the first part of his move will be that integer and there
will be no second part. In the second case, the first part will be that
integer and the second part that element of Qoro—(Q0+1) v {B}. We
could have said that Is moves consist of partial functions on {1, 2} such
that the domain contains 1. Keeping this in mind, we stipulate that I’s
moves must be partial functions from {I1,2,3} into Onw {E} whose
domain contains 1, such that the first part must be an integer, the second
part must be an ordinal > Qo.0, or B, and the third part must be <Qpor K.

The auxiliary game starts with I’s 0th move, then II’s 0th move,
then I's 1st move, then II’s 1st move, etcetera. If it is T's turn to make
his nth move, then the numerical history of the game (up to then) is
((@gy +vry Gn—s)s (Boy ey Bn—1)), Where a; is the first part of I’s ith move,
b; is the first part of I1’s jth move. If it is TI’s turn to make his nth move,
then the numerical history of the game is ((ao, ey Oa)y (Do, ...,b,,ﬂl)).

We fix Z as any recursive function from o onto w<® such that the
inverse image of every element is infinite.

DerINITioN 2.8. A coded partial isomorphism, for the purposes of
this paper, is a finite partial function f: w—>On such that whenever
a, b eDom(f) we have Z(a) < Z(b) = fla) € f(b).

YWe now describe, in detail, what the legal moves are for I, IL

Suppose it is I’'s turn to play his nth move. Let ((a,,, ceey 1)y
(Bgy ooy bn_l)) be the numerical history. The first part of I's nth move
must be an integer. If Z(n) € Try((agy -y Gn)s (Boy +ory bn—y)), and no B
has yet been played by either player, then (a) if there is an a € Qo10—
—(Qp-+1) such that Ak (the second part of I's kth move if k< n; aif
k= ) is a coded partial isomorphism, then I is legally required to play
such an a for the second part, (b) if no such « exists, then I is legally
required to play # for the second part. In all other cases, I is legally
required not to have a second part at the nth move.

Suppose it is II's turn to play his nth move. Let ((a,o, ey On)y
(byy eoey bn_l)) be the numerical history. The first part of II's nth move
must be an integer. If Z(n) € Ta,((doy .., @n); (boy --v; bu—1)), 2nd no F has
yet been played by either player, then (a) if there is an a > Qo4+o such
that Ak (the second part of II’s kth move if k < n; a if k=) is a coded
partial isomorphism, then II is legally required to play such an a for
the second part, (b) if no such e exists, then II is legally required to
play B for the second part. In all other cases, IT is legally required to
have no second part at the nth move. If Z(n) « Th,((aﬂ, ey Oa)y (Doy eersy b,._l)),
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and F has not been played earlier by IT, then (a) if there is an a e,
such that A% (the third part of II’s kth moveif k < #; ¢ if k = n) is a coded
partial isomorphism, then IT is legally required to play such an a for
the third part, (b) if no such a exists, then IT is legally required to play B
for the third part of II’s' nth move.

The outcome of the auxiliary game is defined as follows: I ig the
winner if and only if IT eventually plays an E.

Obviously we have

TEMMA 2.2.3. The winning set in the auziliary game is open in the
usual topology of Y* for the appropriate set Y.

Tmya 2.2.4. The auxiliary game is determinate; furthermore, it has
a winning strategy definable from (Qa, Loie) in L(hy, hy, hg).

Proof. Going through the usual proof of determinateness for open
games, we see that it is a matter of assigning ordinals to trees con-
structible in (Ry, ks, by). Then one invokes absoluteness properties of
L(hyy by, by).

This above lemma enables us to use hypothesis (x) effectively.

We fix J as a winning strategy for the auxiliary game, definable
from (Lo, Qote) i L(hy, hsy hs).

THEOREM 2.2. If (x) holds, then (I} & ¥i)VZ; determinateness holds.

Proof. We must show that the original game on »®, the one with
winning set (for I) §, is determinate.

Case 1. J is a winning strategy for I.

Consider the following strategy for I in the original game. In order
to determine I's #nth move when II has moved by, ..., bp—1, We consider
all possible legal (in the auxiliary game) sequences of moves (ay, ¢),
(Boy @oy €0)y -ors (Gn1y Cu1); (bu—1y dn1, €n—1), (@n, ) that would ensue if T,
TI were playing the auxiliary game and I was using strategy J and IT was
under the restriction that he must only play cardinals or ¥ or nothing
for his 2nd and 3rd parts. By indiscernibility, since J iy definable in
L(hy, hyy By} from (Qe, Qoyo), we see that the numbers gy, ..., an are

independent of exactly what the d; and e; are. So we set I’s #th move .

to be ay.

We must prove that either T(Ai(as), 4i(bs) is well-founded and
Tra(As(as), M(bs)) is not well-founded, or T (Ai(as), Ai(bs)) is not well-
founded, where ay, a,, ... are the moves player I will make according
to the strategy just outlined for him in the original game, where player
I plays by, by, ...

Assume that this is false. We then give a line of play for II in the

auxiliary game which, if T uses J, will result in a loss for I, which is
a contradiction.
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Case 1a. Tafli(as), 26(b) and Tfli(ar), 2(bs)) are well-founded.
Let f be any isomorphism from Tha(}.i(ui),ig(bi)), under <, into cardi-
nals <. Let g be any isomorphism from Ta,(di(ar), 4i(bs)), under <,
into eardinals >Q¢.o. Have IT play in the auxiliary game in such a way
that the first parts are b, by, ..., the second parts are g(Z (k)), whenever
IT is legally required to play an ordinal for the second part of his kth
move, and the third parts are f (Z(k)), whenever IT is legally required to
play an ordinal for the third part of his kth move.

It is clear than when I responds to the above line of play using J,
he will play a,, a1, ... for his first parts, by the definition of ay, a;, .-

"Hence IT will never play E, and so I loses.

Oase 1b. Ty,{i(a:), i (b)) is well-founded, and both Ty, (4i(as), 4i(by)),
T;.,(li(a,-), M’(b;)) are not well-founded. In this subease, it is important
to note that if II uses only cardinals, or E, or nothing, for his second
and third parts, then not only are the first part of I's moves independent
of the second and third parts of II’s moves; in addition, the second parts
of I’s moves are independent of the second parts of II's moves. That is,
if T is playing aceording to J in the auxiliary game, then his entire moves
are completely determined by the first and third parts of II’s moves,
as long as I is restricted to playing eardinals for his second and third
parts (or E, or nothing).

Fix f as any isomorphism from Th,(li(ai), 2i(by) into cardinals < Qo.
Consider the moves (d, ¢g), (@15 ¢1), -~ for I that ensue if player I is
using J and IT is playing cardinals or E or nothing for his second parts,
when ordinals are required, and plays f(Z (¥)) for his third parts whenever
legally required to play an ordinal for the third parf of his kth move.
More precisely, we consider such arbitrarily long finite injtial segments
of the auxiliary game. Arbitrarily long ones do exist because every finite
linear ordering can be mapped isomorphically into the cardinals >Qq:0.
Since T,(Ai(as), 4i(bs)) is not well-founded, clearly for some k, e = B.
Fix g such that g is any isomorphism from {Z{a): a < k}, under <, into
cardinals >Qq40. We now describe the line of play for IT which, if T
follows J, will result in & loss for I. Have the first parts of IT’s moves
be by, by, ... For a < k, have the second part of II’s ath move be g(Z(a))
if an ordinal is required. Have II play f(Z(a)) for the third part of his ath
move, whenever an ordinal is required. Of course, have 1T play legally.
Then the second part of I’s kth move will be %, and so IT will thereafter
never have second parts to hiy moves. Obviously, II will never play H,
and so I loses.

Oase 2. J is a winning strategy for IL

Consider the following strategy for IT in the original game. In order
to determine IT’s nth move when I has moved d, ..., 0, We consider


GUEST


90 H.M. Friedman

all possible legal (in the auxiliary game) sequences of moves (ay, ¢),
(by; doy €0); -~ (@ cn)s (b, @n, €n) that would ensure if T, IT were playing
the auxiliary game and II was using strategy J and I was under the
restriction that he must only play cardinals or F or nothing for his
second parts, and must never play Qp or Qpie. By indiscernibility,
since J is definable in L(hy, ks, hy) from (2o, L2a+0), We see that the
numbers by, ..., b, are independent of exactly what the d; and e; are.
So we set I’s nth move to be bs. ‘

We must obtain a contradiction under the assumption that either
T, (% (as), 4 (bs)) is well-founded and T,(4(a:), %(bs) is not well-founded,
or Th(ti(ae), 1i(bs) is not well-founded, where by, by, ... are the moves
player II will make according to the strategy just outlined for him in
the original game, where player 1 plays ag, @, ...

Case 2a. Ty (1i(a), 4i(by) is well-founded and w.L_f.’;.,(M'(a.-),}Li(b()) is
not well-founded. Let f be any isomorphism from Tha(li(ai),ﬂa}(bg)),
under <, into cardinals in Qoi0— Q0. Have I play as follows in the
auxiliary game. His first parts are a,, a5, ... The second part of his %th
move is f(Z(k)} if an ordinal is required. Since Ts,(Ai(as), 45 (bs)) is not
well-founded, clearly for some % either the second or third part of IT’s kth
move, if he follows J, will be K, ands o I wins, contrary to_ the choice of J.

Case 2b. Th(li(ai), 2i(by)) is not well-founded. In this subecase, it is
important to note that if I uses only cardinals, or Z, or nothing for his
second parts, then the third parts of II’s moves are independent of exactly
what those cardinals are.

‘ Consider the moves (b, dy, 60)(b;, dy, €1), ... for II that would ensue
if player IT is nsing J and I is playing cardinals or B or nothing for his
g,econd parts. More precisely, we consider such arbitrarily long finite
initial segments of the auxiliary game. Since Tw(Ai(a:), 4 (bs)) is not
well-founded, clearly there is a % such that either dy or e; is E. In either
case, let 7 be any isomorphism from {Z(a): a < ¥}, under <, into cardinals
in Qg10—(2+41). Have the first parts of I’s moves be ay, a,, ... For
@ <k, have the second part of I's ath move be f (Z (a)) if an ordinal is
required. Then clearly if IT uses J then he will play an E on his kth move.
and so will lose, contrary to the choice of J. ’

§ 3. In this section we derive the hypothesis (#), used in Section 2
from the determinateness of 45 subsets of N7 (43 determinateness). ’

We make use of a lemma due to Jensen (unpublished) which he
proves by means of an elaborate forcing argnment. We give a proof of
this lemma directly from a sharp version of an earlier result of Saks
that every countable admissible o is w{ for some f: w->w, using thé
theory of relative hyperarithmeticity and hyperjump. ’
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DEFINITION 3.1. We let f <p g mean f is recursive in g, f = rg mean
f<rg &g <rf Welet f <pgmean fis hyperarithmetie (hyp) in g, f=zrg
mean f<pg &g <af We let f<rg mean f<rg&g<rf, f<ny mean
f<ag & ~g<af We let TJ(f) be the (characteristic function of the)
Turing jump of f. We let HI(f) be the (characteristic function of the)
hyperjump of f. We let TI%(f)=HI(f)=Ff TI*(f)=TIYf)
= TJ (235 f)), HI*Hf)= HI (HI*(f)). We let A(f) = {a: a is admis-
sible in f}. Let o] be the least element of A(f), w}.1 be the least element
of A(f) greater than o). Let 4 = {a: « is admissible}.

TEMmA 3.1. Suppose a< Q, h: w—>w, ae A(h). Then there are un-
countably many g with h<pg such that A(k) ~ a= A{g) ~a.

Proof. If f'is a function from o into o generic over L*a), then
A (( I, 1) na= A(h) ~ a. Furthermore, there are uncountably many
such f.

LeMyA 3.2. Suppose BeacA(h)~Q. Then there is an f such that
A(f) na= (a—(ﬁ+1)) ~A(h), and b <rf.

Proof. Choose f* to be a well-ordering of type f generic over Lh(a),
and set f= (f*h).

The following is a result of Sacks.

TEvvA 3.3. Suppose BeacA(h) Q. Then there is a g such that
A(g) na=(a—p) n A(k) and h<rg.

Proof. Fix f as in Lemma 3.2. Following the proof of (Hg){o]=B),
which can be relativized to (Hg)(e!= & h<ryg) in Friedman and
Jensen [3], we form a model of an auxiliary theory T, and extract (g, k)
from that model. But going through the completeness theorem for the
infinitary language fq, (Ca(h)), used there, we see that the model of T
can be chosen hyperarithmetically in f, and so g can be chosen hyp in f
with of = a, and so 4(g) ~ a= (a—f) ~ A(k).

DEFINITION 3.2. Let Z(i) be the following assertion: let fe ael2,
hi w—o, fc A(R). Let a;, ..., a; be the first i elements of A4 (h), aie B ea.
Then there is an f such that the first ¢ 4-1 elements of A(f)are oy, ..., ai, B,
and h<rf and A(f) ~ (a—p) = A(h) ~ (a—F).

Our immediate aim is to prove the result of Jensen (unpublished)
that (V3)(Z(i)).

Leyma 3.4. Z(0).

Proof. This is, verbatim, Lemma 3.3.

LEMMA 3.5. Suppose P is a 3% predicate with parameter k, and there
are uncountably many solutions to P, and HI (k) <z g. Then (E{f)(P( N&-
& (f, BI (1) =» g)-

Proof. Let Q(f) be the Xi predicate P(f)& ~f<sh. Then by
hypotheses, @ has solutions. Put @ in the form (Ha)(Vn) (R(E'(n), fln),
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ﬁ(n))), where R is a recursive predicate. We simultaneously define fune-

tions f, « such that An(R(?z’(n), f(n), "(n))), in stages. Suppose we have
reached stage %k, and have by then defined F(0) = o, ...y Fflh—1) = ag—,
a(0) = by, .., alg) = by, and (Ff)(Ha) ((Vn)R('oT(n),f(n),h(fn)) & f extends
(agy -ory Gr—1) & o extends (Bo, -.., by)).-

Case 1. There are at least two number az such that (Hf)(Ha)
((Vn-)R(&(n),f(n), 77(%)] & fextends (ay, ..., tp-1, ox) & a extends (b,..., by)) -
Then if g(g+1) = 0 then define f(%) to be the least such az. I g(g+1)=1
then define f{k) to be the second least such az. Define a(g-+1) to be least
with (Hf)(Ha)(Vn)R(@(n), Flny, B(n)) &f extends (dg; -, i1, f(k) & a
extends (g, ..., bg, a{g+1))- .

Case 2. Case 1 does not apply. Then define f(%) such that (€ f)(Ha)
((Vn)R(’E(n),f(n), h(m) &f extends (@, .., a1, f(k)) &a  extends
(b, -5 bg))- Do not; define a(g+1). :

To see that a gets defined we have to show that Case 1 applide
infinitely often. Suppose not. Then there would be finite sequences
(@gy -5 @&)y (Bg, --y bg) such that there is one and only one f with (Ha)
(V)R (a(n), T(n), h(n)) &F extends (ag, ..., ax) & a extends (by, ..., by)).
But then this unique f would be hyp in h, which is a contradiction. By
the way f, « were defined, clearly (f, a) <r TJ(g). Since Case 1 applied
infinitely often, we have g <r TJ(f, HJ (h)). Hence (f, HI (k)) =1 g.

LeMMAs 3.6. Z(n)>Z(n-+1).

Proof. Suppose Z(n). Let feae n A(h). Let a, ..., ans: be the
first n+1 elements of A(h), apy1¢ P € a. Let P(f) = “the first n+1 ele-
ments of A(f) are a;, ..., any: and h <z f”. Then by Lemma 3.1, P has
uncountably many solutions. Note that P is a X7 predicate with para-
meter HI"(%), since 4 (HI"(h)) = 4(h)—{ay, ..., an}. For we can express
P(f) by saying that every ordinal recursive in HI™(h) has <n-1 ordi-
nals < it that are admissible in %, and every well-ordering present in
Lay+1) is isomorphic to some linear ordering recursive in HI"(h). Now
by Lemma 3.5, (z[f)(P( ) & (f, B h)) =, g)), for any ¢ with HI""(#)
<ry. Note that B <A (HI"" (%)), and so by Lemma 3.3 choose g with
Alg) ~a= (a—p) mA(HJ"“(h)), and HJI*'h) <rg. Then choose f
with P(f) & (f, BI"™(h)) =ag. Note ol =0, &... & wliy= aper. Note
B e A(HI"(R)). S0 whiz= f. Since f<u g, cleatly wlio=p, and A(f) n
~(a—B)= A(g) n (a—B) = A (k) ~ (a—B). So Z(n-+1) follows from Z(n).

Lewva 3.7 (Jensen). (Vn)(Z (n)). In particular, for every h, if ag, ..., tn

are countable and admissible in h, then there is an f such that h <r f & o]
= al&...&w7f,= [
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Proof. From Lemmas 3.4 and 3.6.

We now show, using Lemma 3.7, that 4; determinateness implies (%)
of Section 2.

DEFINITION 3.3. An ordinal o < Q is called w-stable in k if and only
if (L*a), &) is an elementary submodel of (L*(2), ¢). '

The following is well known from the theory of indiscernibles.
(Corollary 3.2 of Silver [9].)

LEMMA 3.8. Suppose for each h: o —w there is a ¥ C Q, Y uncountable,
such that for any formula @(vg, ..., 0, v) and pair of sirictly increasing
sequences of ordinals ay, ..., Gny Boy ooy Pne ¥, we have LMQ) |=g(ay, «-eq @ny )
= @By, --s Pns B). Then (x) holds.

LEevMMA 3.9. Suppose for each h there is a closed ¥ C Q, ¥ uncountable,
such that for any formula ¢ (v, ..., vn, ©) end any pair of sirictly increasing
SEQUENCES  Ogy wuey tny Boy ey Pu Of elements of X, we have I*(an)
[= @Gy oy ans, ) if and only if L(Bn) [=@(Bo; -, sy h). Then (%)
holds.

Proof. For each k choose Y5 as in the hypothesis. Then consider
Y; ~ {a: a is w-stable in h}. Since each ¥, is closed and unbounded,
clearly ¥5 ~ {a: o is w-stable in A} is uncountable (and closed). Now let
@y, ey Oy Pos ooy Pu b€ 2 Dair of strictly increasing sequences of ordinals
in ¥pn{a: ais w-stable in A}, and @(vo, «.; ¥n, ?) & formula. Choose
a,feTnr{a: a is o-stable in Rk}, aw<a Pa<p Then IMa)
I= p(dgy ) amy B)y; L(B) |= @(Boy ey Bu, h). Since a,f are w-stable in h,
we have LMQ) |= @ (agy -y any B) = @(Boy vy Bus B)-

Lemma 3.10. Suppose AL determinateness. Then let ¥ C o be 43 and
Jave (V) ((fe ¥ & g=rf) g < X). Then

EN (Vo) (f <z g9 DIV(Vg)(f<rg—>g¢ ) -

Proof. This simple, yet powerful lemma is due to Martin. One
considers the 45 set {(f,g): fe Y &g<zf). If the game based on this
set has winning strategy & for player I then (V) {(h <z f—fe X). IEfor 11,
then (Vf)(h <zf-f¢ X).

THEOREM 3. 43 determinateness implies (¥).

Proof. Assume 4. determinateness. Then let h: w->o, and form
B, = {f: L"0}.)=¢(ol, ..., o}, b)), for each ¢ of k41 free variables.
Note that B, satisfies the hypothesis of Lemma 3.10. Hence let f have
(Vo)(f <z g—f € B,), the other case being symmetric. Let a;, ..., 0k, tk+1
be a strictly increasing sequence of ordinals in A(f) ~ . Then by

Lemma 3.7, there is a g with f<r ¢ such that =& &oh=ad&
& s = apes. Hence ge B, and LMags) = (ar, -5 0k, )-

It
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To summarize, for each ¢ of %k-+1 free variable there is an '; such
that either for all strictly increasing aj, ..., @+ e A(f) n 2, Log+y)
l= @(ayy ey iy ), or for all strictly increasing a;, ..., ag41€ A(f),m.Qr
IMagy) |= ~gl(a, vy ok, b). Now for each formula ¢, choose an f, with
this property. Then choose g such that each f, <rg. FL’hen clefamrly .Y,,
= {a: a iy oco-stable in g} C A(g), and hence for all pairs of strletfly in-
creasing SEqUENCes &y, ..., Gk+1y Pry oy Bt all 9 of k41 free variables,
WehaveLh(ak-H) l=@(ay, ..oy ax, b) if and only if L*(frt1) [= @(Brs s Bry B).
So we are done by Lemma 3.9, since each ¥y is closed and uncountable.

§ 4. We mention some open’ questions.

We will state the open problems only for classes of subsets of
N¥ N definable in various ways from a parameter; in every single
case, there is the obvious corresponding open problem for classes defined
without parameters. Thus we remark that Theorem 1 can be easily
relativized to obtain :

TrrorEM 1°. Let #C o. Then there is a subset ¥ of NV xx NV which
is I} in @ such that there is no winning sirategy for ¥ present in any L ((a:, y)),
where y is C-generic over L(x) for some notion of forcing C ¢ L(z).

1. Does =1 determinateness imply (x) of Section 2%

Connected with 1 is the following question.

2. Suppose that for each xC w there is a set of integers, y, such that
for all notions of forcing, O € L(x), and oll C-generic 2, we have y ¢ L ((z, 2)).
Then can we conclude (*)?

As discussed in the Imtroduction Xi determinateness implies that
Q is satisfied to be inaccessible in every L(z), # C w. :

8. Does determinateness for every element in the o-algebra generated
by the X7 sels imply that Q is satisfied to be mahlo in every L%, o C w?

4. Does () imply determinateness for provably Ay sets? A provably P
set 8 is a set such that for some X3 predicates P(f), @ (f), we have L |=P(f)
= ~Q(f), and 8= {f: P(f)}. If not, then does (*) imply determinateness
for the o-algebra generated by the i sets?

Note that our proof of Theorem 3 shows that provable 4; deter-
minateness implies ().

3. Does determinateness for the o-algebra generated by ¥; sets imply
that ZF +-H measurable cardinal is consistent? .

This 5 was suggested by a result of Solovay (personal communication)
that X} determinateness proves Con(ZF--T measurable cardinal).

6. Does 43 determinateness fail in every forcing emtension of the universe
constructed from a normal ultrafilier?

It is known that 4; determinateness fails in the universe constructed
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from a normal ultrafilter, since by Martin and Solovay [5], 45 deter-
minateness implies that A; subsets of o are not a basis for I subsets
of »®, but by Silver [8], they are satisfied to be a hasis in T*.

Added in proof. D. A. Martin has recently obtained a positive answer to 3,
a negative answer to both parts of 4, and a positive answer to 5. Since the “axiom”
of determinateness (for any particular class of sets) does not remotely possess the
character of an axiom of set theory as it stands, it is of interest to investigate, e.g.,
the “axiom” of degree determinateness, whose statement (for the class of £ sets) is
the consequence of Lemma 3.10, and whose meaning is less obscure (and transparent
to any recursion theorist). It would be of considerable intrest to reinvestigate the
questions asked for determinateness, for degree determinateness. For instance, our
Theorem 3 goes through, but not our Theorems 1, 2.1 and 2.2. In addition, the
result of Davis, and the recent recents of Martin do not go through as they stand.
In’ addition, one can employ other types of degrees than Turing degrees. Perhaps
there is some general notion of degree perhaps lattice-theoretic for which one ecould
study “full degree” determinateness.
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