Monotone decompositions of continua irreducible
about a finite subset

by
M. J. Russell * (Manhattan, Kans.)

This paper is concerned with monotone decompositions of continua
which are irreducible about a finite subset. The term “continwum?” is
taken to mean a compact connected metric space. For definitions not
given here, the reader is referred to [5].

The present work deals only with hereditarily decomposable continua
and is essentially an extension of the work of Miller [4]. T am grateful
to the referee for bringing to my attention the work of Kuratowski in
this area ([2], [3]) which does not assume hereditary decomposability.
These results, along with the work of Thomas [7], would significantly
strengthen the present theorems. However, they seem to invite a different
approach as well as suggesting further areas of investigation and, conse-
quently, ave left for future investigation.

Miller [4] has shown that a hereditarily decomposable irreducible con-
tinuum M contains two, and only two, mutually exclusive continua B,
and H,, called the H-continua of M, such that M is irreducible between
two of its points if and only if one of them belongs to B, and the other to F,.

In the same paper it is shown that a hereditarily “decomposable
irreducible continuum M has a monotone upper semi-continuous de-
composition @ into an are, the ends of which are the E-continua of M,
such that no member of @ has an interior with respect to 1. In the present
discussion, this result will be referred to as Miller's decomposition
theorem.

This paper generalizes the above results. In particular, Section 1
develops the concept of the ends of a hereditarily decomposable con-
tinuum which is irreducible about a finite subset while section 2 is devoted
to proving a generalization (Theorem 2.4) of Miller’s decomposition
theorem. .

* This work was done in part while the anthor was an N.D.E.A. Graduate Fellow.
16*


GUEST


256 M. J. Russell
MThe third section, which is eoncerned with the application of Theo-
rem 2.4 to K-like continua, where K iz a tree, was motivated in part
by a theorem of Bing [1] which is similar to Miller’s decomposition
theorem. In Section 3 it is shown that a generalization of this theorem
of Bing’s is a corollary to Theorem 2.4. Bxamples are given to show that
it M is a K-like continuum with the decomposition G determined by
Theorem 2.4, K and @ are not necessarily as closely related as one
might hope. )

I would like to thank my major professor, W. 8. Mahavier, for his
valuable advice and guidance during the preparation of this paper.

1, n-ended continua. The following sequence of theorems, while primarily
intended as a Dbasis for proving Theorem 2.4, can be compared to Lemma A
of [4].

LEnvora 1.1, Suppose M is a hereditarily decomposable continuum which
is irreducible about the subset W= {4,, ..., As} but is not srreducible about
a subset containing fewer than a poimts. For i=1,2,...,n, let H; be the
set of all points P of M such that M is irreducible about (W —Aq)+-P. If
My is a subcontinuum of M that is irreducible about W—Aq, then I —M; is
a continuum that is irreducible from By to M;. Moreover, H; is an E-con-
tinuum of M—DM;.

Proof. M is irreducible about M;+{4:}, so by Theorem 48 in
Chapter I of [5], M —M; is connected. Thus I = M—M; is a continuum,
which is hereditarily decomposable since M is hereditarily decomposable.

It is a straightforward matter to show that I is irreducible from F;

to M; and that the E-continuum of I containing FE; contains no points
other than those in ;.

THEROREM 1.2. Let M be an hereditarily decomposable continuum which
is irreducible about n, but no fewer, of its points. Then there are n mutually
disjoint subcontinua By, B, ..., By of M, none of which has an interior
with respect to M, such that M is irreducible about the finite point set K

if and only if K imtersects each of By, B,, ..., By,. Moreover, the n subcontinua
are unique.

Proof. Let 4;, 4,,...; 4, be n points such that M is irreducible

?Jbout W= {41, 4,, ..., 4s}. For each i=1, ..., %, let B; be defined as
in Lemma 1.1. It is elear that 4, is in By if and only if i = j.
Having defined the point sets By, B,

: wey By, let us'now verify the
following statements about them: T v

) (i) For each 4, B; is a subcontinuum of M which has no interior
with respect to M.

(ii) If j # 4, then E; and H; have no point in common.
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(iii) Tf K is a subset of M which intersects each of the H;, then M is
irreducible about K.

(iv) If M is irreducible about the finite subset K, then K intersects
each of the H;.

(v) If Fy, Fs, ..., Fy, are subcontinua of M such that M is irreducible
about the finite subset K if and only if K intersects each of the F'y, then
{By,y o, Fu} = {Byy s Bn} :

Proof of (i). By Theorem 46 of Chapter 1 of [5], there is a sub-
continuum J; of M which is irreducible about W-—A;., M; does not
intersect Hj;.

By Lemma 1.1, I = M—1I, is an irreducible coptinuum and Fy is
an B-continuum of I. This implies that E; is a subcontinuum of I which
has no interior with respect to I. It follows that F; is a subcontinuum
of M with no interior with respect to M.

Proof of (ii). Suppose there is a point P which belongs to both E;
and F;, where i #=j. M is nob irreducible about [W—(4:+4;)]+P,
50 there is a proper subeontinuum M’ of M containing [W— (4d:+45)]-+P-
Then M’--E; contains (W—A;)+P, about which M is irreducible. Thus
M'4+EB;= M, so M—E;CM'. But this implies that M’ is M, contra-
dicting the supposition that M’ be a proper subcontinuum of M.

Proof of (iii). Let K be a subset of I which intersects each of the H;.
Suppose 1/ is not irreducible about K. Then there is a proper subcon-
tinnum M’ of M containing K. There is a j such that 4; is not in M'.
K contains a point B;y of Hj.

Since M’ intersects each of the By, M" = M’+(.L#ij;) is connected,

1

and thus is a subeontinuum of M. M’ cannot be M because it does not
contain A;. But M” does contain (W—A;)-+Bj, about which M is ir-
reducible.

Thus M is irreducible about K.

Proof of (iv). Denote the finite point set K, about which M is
irreducible, as {Py, Py, ..., Pe}. Suppose there is an ¢ such that K does
not intersect B;. For each j=1,2,..,% M is not irreducible about
(W —A4A4)+ Py, so there is a proper gubecontinnum N; which is irreducible

i
about this set. N; does not intersect B;. Then N = | JDN; is also a proper
=1

subcontinwam of M, proper because it does not intersect B;. But N con-
tains K, and M is irreducible about K. .
Proof of (v). Suppose Fi,Fe, ..., Fy are subcontinua of M such
that I is irreducible about the finite subset K of M if and only if K inter-
sects each of the F;. Since M is not irreducible about a subset con-
taining n—1 points, no two of the F¢ can have a point in common. M is
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irreducible about W, so each member of W belongs to exactly one of the F;.
Tet us assume that the F; are indexed so that, for each ¢, 4, belongs to F;,
Tt is then a routine matter to show that F; = H; for each 4. Thus

{Fyy ey Fu} = {Byy ooy Bn} .

This completes the proof of Theorem 1.2.

It M is a hereditarily decomposable continuum which is irreducible
about #, but no fewer, of its points, then the subcontinua 1, B, ..., B,
of Theorem 1.2 will be called the ends of M. It will be said that M has
n ends, or equivalently, that M is an n-ended CONTIMUUM.

In the following theorems it will be assumed that I is a hereditarily
decomposable n-ended continuum whose ends arve By, B, ..., B, and
that W = {4;, 4, ..., As}, where, for each ¢, 4; is a point of H; (making W
a set about which I is irreducible).

The statement that the point set K is strongly connected means
that if P and Q are two points of X, then K contains a continuum which
contains both P and Q. (See [5]).

TEHEOREM 1.3. For each i=1,2,..,n, M—H; is strongly connected.

Proof. Let P and @ be two points of M — FE;. Since P and @ are
not in E; there are proper subcontinua Mp and My containing (W —A4,)++P
and (W—4;)-+@Q, respectively, neither of which intersects I;. Then
M’ = Mp+Mp is a subcontinuum of M containing P and ¢ which is
a subset of M —Z;.

) THEOREM 1.4. If K is a subcontinuum of M which intersects Iy, then
either K is contained in B; or E; is contained in Inty (K), the interior of K
with respect to M. :

Proof. Assume that K intersects, but is not contained in, E;. Let P
be a point of K n B; and @ be a point of K —H;.

Since @ is not in By, M is not irreducible about (W—4.)+¢. Then

there is a proper subcontinuum M’ of M containing (W —A4,)+@, and M’
does not intersect H;. ,
) M'+ K is a subcontinuwum of M containing (W —4,) -+ P. Since P is
in By, t‘his means that M’4-K is M. Then if X is any point of F; there
is a region R containing X such that R does not intersect J’. Then R is
a subset of K. Thus F; is in the interior of K with respect to IM.

Levwma 1.5, If M’ 4s o subcontinwum of M which s irreducible about
the subset W' = {4y, Az, ..., Ay} of W, where 2 <t < n and M’ has ¢ ends
then By By, ..., By, are the ends of M'. ‘ ’
4, 151;201?7;,11% Fy, Fyy ...y Fy be the ends of M’, where, for each i,
. By T.heorem 1.2, for each 4, F; is a subcontinwum of M’ with no
interior with respeet to I’. It follows that F; has no interior with respect
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to M. F intersects Hj,, for A is in both ¥y and Z;,. Then, by Theo-
rem 1.4, F; is contained in By, Also by Theorem 1.4, because & > 2, B, is
contained in M.

Suppose there is a point P of By which is not in Fy. Because P is
not in F;, there is a proper subcontinuum M" of M’ which is irreducible
about (W'—A4;)-+-P. M’ does not intersect F;; in particular, 4; is
not in M".

Now M is a proper subcontinuum of I which intersects Hy,, and
B, is not contained in M"'. Then, by Theorem 1.4, M is a subset of Hj,.
However, W' —A; (which is non-void since ¢ 3> 2) is in M but does not
intersect Hj;. Thus, for each 4, Fi= Hj.

Tf X,Y and Z are three points of the point set M, the statement
that ¥ weakly separates X from Z in M means that Y is in every sub-
continuum of M which contains X and Z.

TEywa 1.6. If P is in M—W and A; is in W, there is a point Ay of
W such that P weakly separates A; from Ay in M.

TaroREM 1.7. If K is a subcontinuuwm of I which is irreducible about
a finite subset and E; intersects K, then either K is contained in By or B is
an end of K.

Proof. There is a positive number ¢ such that X has t ends. If ¢ is
one, I is degenerate and the theorem i trivial. Let us assume, then,
that ¢ > 2.

Tet V = {By, Bs, ..., Bi} be a point set about which K is irreducible.
Let By, Fy, ..., Fy be the ends of K, where for each j, By is in Fy.

Suppose that the end E,; of M intersects, but does not contain, K
and is not an end of K. The ends of K have no interior with respect to
I, so, by Theorem 1.4, Hy does not intersect any of the Fy. (Also, by
Theorem 1.4, B C Intar(K).)

Tet P ¢ B;. There is a proper subcontinuum I of K which is irreducible
from B, to P. Let G; and G, denote the ends of I, where B; € Gy and P € Gy.
‘ @, is a proper subcontinuum of M which intersects Bi, and Inta(Gs)
— @, 50, by Theorem 1.4, & C Fi. Also the proper subcontinuum I of M
intersects, but is not contained in, B, 80 B CInty(D). T follows, then,
that @, C Inty(I), and thus G, CIntx .

There is an m such that P weakly separates B, from By, in K. By i8
not in Gy, and I— G, is, by Theorem 1.3, strongly connected, 50 B i8
not in I. There is a proper subeontinuum K’ of K which is irreducible
from Bm to I, and K’ does not intersect @, since @, C Intx(I) and
E'~nICK—I

Let Z be a point of K’ ~ I. There is » subeontinuum I’ of I which
is irreducible from Z to B;. Since Z¢ G,, I’ contains no point of G.
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Then I'+ K’ is a subcontinuum of K containing B, and By but not P,

However, this contradicts the fact that P weakly separates B, from B, in K.
Therefore, either By contains K or I; is an end of K.

k3
CoROLIARY 1.8. M— |JB; is strongly connected.
i=1

n
Proof. Let P and Q be two points of M — | JF;. There is a proper
i=1

subcontinuum K of M containing P and @. K has two ends F'p and F,
containing P and @, respectively.

Tor each =1, ..., %, neither P nor @ is in H;, so F; is not an end
of K, and K is not contained in %;. Then, by Theorem 1.7, K does not
intersect H;.

n
Thus X is contained in M — | JH;. Therefore M — Lnjlfh is strongly
i=1 i=1

connected.

2. Monotone decompositions of n-ended continma. The decomposition
theorem of Miller can be generalized to #-ended continua, where = ig
an integer greater than or equal to 2. If & is greater than 2, the de-
composition space is not an are, but a tree. A tree is a locally connected,
hereditarily unicoherent continuum which i the union of a finite number
of arcs. Every point of a tree is either an endpoint or a cut point.

Tt will be convenient to distinguish between cut points of a tree
which separate it into two components and those which separate it into
more than two components. It is known that, if P is a point of a tree T,
the number of components of 7'—P is the same as the Menger order
of P with respect to 7. [8] (For a definition of Menger order, see [5].)

Several basic properties of trees will be of use in the proof of the
following theorem. The following lemmas can be proved using ideas in [8].

Levma 2.1, If T is an n-ended tree, then T has at most n—2 points
of Menger order greater than 2.

Levua 2.2. If T is a tree and H and K are disjoint closed connected
subsets of T, then there is a point of order 2 which separates H from K in T.

Levwma 2.3. Suppose T is a tree and P, X, Y, and Z are four poinis
of I. If P separates each of X, ¥, and Z from the other two in T, then P is
a point of order greater tham 2 in T.

THEEOREM 2.4. Let M be an hereditarily decomposable continwum which
has n ends, where n is an integer greater tham or equal to 2. Then there is
a monotone decomposition G of M such that

(1) mo member of @ has an interior with respect to M, y

(2) G is an n-ended tree with respect to its elements, and

(3) the end elements of G are the ends of M.

itions
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Proof (by induction on ). Miller’s theorem establishes the theorem
for n=2.

Assume that # is greater than or equal to 3 and that the theorem
holds for all- k-ended continua, where % is less than n.

Tet M be an n-ended continuum, with ends By, ..., B,. For each ¢,
let 4; be a point of E;. Then M is irreducible about W= {4,, ..., 4a}.
M is not irreducible about W' = W—A,, so there is a proper subcon-
tinuum M’ of M which is irreducible about W'.

M’ does not intersect By, but it does intersect each of the other
ends of M, of which there are at least two, so, by Lemma 1.5, each of
By, ..., By is an end of I'. This means that M’ must be an (n—1)-ended
continuum. M’ is, of course, hereditarily decomposable.

By the induction hypotheses, there is a monotone decomposition &
of M’ such that no member of @ has an interior with respect to M’ and
@' is an (n—1)-ended tree with end elements Fiyuny By,

Tet K Dbe the set of all members of & which intersect M —M". It is
relatively easy to verify that K is a subcontinuum of &'.

Let I — M—M'. By Lemma 1.1, I is a continuum which is irreducible
from B, to M'. I also is hereditarily decomposable. Thus, by Miller’s
theorem, there is a monotone decomposition H of I such that no member
of H has an interior with respect to I and H is an arc with respect to
its elements. B, is, by Theorem 1.7, one of the ends of I; the other end,
which we will eall kg, contains I ~ M".

Since, by Theorem 1.4, each end of M’ is in the interior of M’ with
respect to M, none of the ends of M’ isin K. I ~ M " is contained in kg,
s0 E* ~ I is contained in hx.

Let gr = hx+ K*, and let G = (¢—K)+(H— hg)+{9x}-

We now show that G satisties the requirements of the theorem. In
order to do this, we prove the following:

(i) The members of G are subcontinua of M.
(ii) No two members of G intersect.

(iii) No member of G has an interior with respect to M.

(iv) @ is upper semi-continuous.

(v) G is an n-ended tree with respect to its elements, and the ends
of @ are By, By, ..., Bn.

Proof of (i). It is clear that the members of G which belong to
either @ or H are subcontinua of J7. The only other member of G is gx.
K is a collection of subcontinua of M which intersect hx, 0 (K4 {h&})*
= K*-+ hg = gk is also a subcontinuum of M.

Proof of (ii). Because G' is upper semi-continuous, no two members
of @ — K intersect; likewise, no two members of H — hg intersect. Further-
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mare, sinee (@' —K)* and (H—hx)* are contained in M'—1T and I—*
respectively, no member of &'—XK intersects any member of H—j,.
The only other possibility is for some member of G other than g,
to intersect gx. However, it is not difficult to show that the upper semi-
continuity of ¢' and H prevents this from happening.
Thus no two members of @ intersect.

Proof of (ili). Clearly, no member of ¢'—K or of H—hg hag an
interior with respect to M.

It is & straightforward matter to show that K* has no interior with
respect to M. Thus, since hx also has no interior with respect to M, it
follows that gx has no interior with respect to M.

Thus no member of & has an interior with respect to .

Proof of (iv). The fact that ¢’ and H are upper semi-continuous
assures us that @ is upper semi-continuous at all elements other than Jx.

It is a routine matter to show that, if D is & domain containing gx,
then D contains a domain D’ such that every member of & which inter.
sects D' is contained in D. Thus @ is upper semi-continuous at gx also.

Proof of (v). & is an (n—1)-ended tree with respect to its elements,
and the end elements of G are H, ..., B,_;. Clearly @' = (G — k)4 {gx}
is also an (n—1)-ended tree. Similarly, since H is an arc with respect
to its elements, H' = (H —hg)+ {¢x} is an arc, and the end elements of H’
are gg and Ey.

Then G'-H, which is @, is an n-ended tree with respect to its
elements, and the end elements of & are By, ..., By.

This completes the proof of Theorem 2.4.

In considering the decomposition of I described in Theorem 2.4,
it is apparent that the decomposition @ is uniquely determined, so that
the result is a specific decomposition. Note that the requirement that &
satisfy properties (1) and (3) assures that @ is mingmal (cf. [8]) in the sense
that if H is any decomposition of I into a tree and g e @ then there is
an element b of H such that gCh.

Thus as a result of Theorem 2.4 we have the following:

COROLLARY
ends (n > 2),
then G is a m

2.5. If M is an hereditarily decomposable continuum with n
and. @ is the decomposition of M described in Theovem 2.4,
vindimal monotone decomposition of M into a tree.

3. Monotone decompositions of K-like continua.
ment that the continuum M is K-
number ¢, there is an e-K-chain covering M.

A theorem of Rosen (Theorem 8 in [4]) implies that, if K is a tree

with # endpoints and the continwum M is K-like, then M is irreclucible
about a subset containing » points.

If K is a tree, the state-
like means that, for every positive
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Thus a generalization of Bing’s theorem, which was mentioned
earlier, is a corollary to Theorem 2.4.

CoROLLARY 3.1. If K ds a tree with m endpoints and the hereditarily
decomposable continuum M is K-like, then there is an upper sems-continu-
ous decomposition G of M such that

(1) no member of G has an interior with respect to M,

(2) G is a tree with respect to its elements, and

(3) the number of end elemenis of @ is less than or equal to m.

In the following discussion, assume that K is a tree with m endpoints,
M is an hereditarily decomposable K-like continuum, n is the number
of ends of M, and @ is the decomposition of M described in the proof
of Theorem 2.4.

The relationship between K and @ is not as close as one might hope.
For instance, n is not necessarily equal to m. It may even be the case
that there is no n-ended tree W so that M is W-like, as the following
example illustrates. i

BExsamere 1. Let M be the set consisting of all points (z,y) of E?
satisfying one of the following conditions:

(1) 2=10 and ye[—2,2].

.1
(2) ze(0,1] and y = 251n$~0.

.1
(3) ze[~1,0) and y = sin—.

Here, M is T-like but is not arc-like; however, M is irreducible
so @ is an are.

Even if G and K have the same number of endpoints, they may
fail to be homeomorphic. Consider the following example.

Exsampre 2. Let M be the set of all points (@, y) of E? that satisfy
one of the following conditions:

(1) =0 and ye[—3, 3].

.1
(2) #e[—1,0) and either y=3 or y = 2s1n5——1.

. 1L
(3) we(0,1] and either y = —3 or y=2sm5 +1.

In this example, M is H-like, while & is an.X. ) .

There are several questions related to those discussed in this paper
that would be interesting to investigate. ‘ o

If one generalizes the definition of “end of a ?ontlnuum” by5d€.:f12111111§
a subcontinuum B of M to be an end of M prowded. Lemma 1. 1}? T ©
it “By” is replaced by “E”, a number of questions arise, such as chara
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terizing those continua which have ends about which they are irreducible,

One might then consider the possibility of obtaining interesting de-

compositions of such continua.
Of course, the work of Kuratowski (especially [2]), as well as that
of Thomas [7] are most suggestive. A future work dealing with those

ideas is planned.
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On criteria of Blumenthal for inner-product spaces
by
Joseph E. Valentine (Logan, Utah)

1. Introduction. The problem of characterizing generalized euclidean
spaces has been solved by various authors in many different ways. It is
the purpose of this paper to solve the problem along the lines exhibited
by Blumenthal [2]. At the same time g generalization of his criteria is
obtained and a question asked by Freese in [7] is answered.

2. Four point properties. The following six classes of metric quadruples
have been introduced by Wilson, Blumenthal and others.
A metric quadruple p,, Py, Ds, D4 belongs to class:

Oy if and only if p,, p,, ps, P, are pairwise distinet;

0, if and only if p,, p,, ps, p, are pairwise distinet and it containg
a linear triple;

O, if and only if p,, p,, ps, p, are pairwise distinet, p; is between
D2y Py 204 Popy = PyPy; ‘

) O, if and only if p,, p,, 95, p, are pairwise distinet, Doy Dgy Py aTE
linear and p,p, = P94

0, if and only if p,, p,, ps, p, are pairwise distinet, p; is between
D2y Pa A4 PoPy = PyPa, P1Ps= P1Ps;

0, if and only if p,, p,, ps, p, are pairwise distinet, p, is between Pas Py
while p,p; = 2pyp, and p,p, = p,p;-

DrrFINITION. A metric space has the euclidean, euclidean weak,
euclidean feeble, euclidean isosceles weak, euclidean isosceles feeble,
euclidean external isosceles feeble four-point property provided every
quadruple of its points of class G, 01, 0y, Cs, Cy, O, respectively, is
congruently embeddable in euclidean space.

It is known that in a complete, convex, externally convex metric
space the euclidean, euclidean weak, euclidean feeble, and the euclidean
external isosceles feeble four-point properties are all equivalent. See [9],
(13, 21 7. Moreover, each of these properties implies the euclidean
isosceles weak and the euclidean isosceles feeble four-point properties.
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